

Master of Information Systems:

Management and Innovation

How to get away with technical debt:
An explorative multiple-case study on autonomous teams and

technical debt management

Karl Omar Skeimo – Student no. 703957

A report submitted in partial fulfillment of the requirement for the degree of Master of
Information Systems: Management and Innovation

Supervisor: Ranvir Rai

Restricted: c Yes c No

Kristiania University College

Prinsens Gate 7-9
0152 Oslo

Norway

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

2

Abstract

Technical debt (TD) is constantly accumulating throughout software development processes.

In many autonomous teams this technical debt will damage and injure the process, prohibiting

them from adding new functionalities to their products. Tech companies must therefore

understand how they can manage TD to avoid getting stuck fixing bad code. In the research on

technical debt management (TDM), there seems to be a lack of empirical studies that examine

how TD is managed in autonomous teams. Some frameworks are developed with the purpose

of investigating TDM but lack the empirical validation and reliability.

This study investigates how autonomous teams actively manage technical debt, by conducting

a multiple-case study in a Norwegian fintech company. The teams are studied by utilizing the

TDM framework, measuring autonomous teams’ degree of maturity within different TDM

activities in order to understand their current state of practice and how to further improve these.

The study found that all autonomous teams practiced TDM, but to various extents. Some teams

had structured processes, while others had no clear strategies. Most of the teams were ranked

with what the framework call “received level of maturity”, and conducted TDM activities

occasionally based on their current needs. The study also found challenges related to the TDM

frameworks maturity levels relation to TDM success, and identified that TDM activities ranked

as highly mature did not necessarily translate into higher TDM success.

The study identified a need for the TDM framework to be further empirically tested and iterated

on for it to work as a an accurate tool for understanding and improving autonomous teams’

TDM processes.

Keywords: agile software development, autonomous teams, technical debt, technical debt

management, case study

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

3

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor, Ranvir Rai, for giving me great

guidance and for stepping in as my supervisor on short notice.

I am also grateful for fellow students, friends, and family showing their support throughout this

research project.

I would also like to thank the case company and respondents for providing me with excellent

insights into their inspiring work with software development.

I also wish to offer special thanks to my initial supervisor, Knut H. Rolland, who helped me

initiate and organize this research project. Although he is not with us anymore, he opened my

eyes to the agile universe with his passion, and will continue to inspire me in my future work.

I certify that the work presented in the thesis is my own unless referenced

Signature:………………………………

Date:…………………………………...

Total number of words: 19 809

05.25.2021

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

4

Table of contents
1.0 INTRODUCTION .. 6
2.0 LITERATURE REVIEW .. 8

2.1 AGILE SOFTWARE DEVELOPMENT AND AUTONOMOUS TEAMS .. 8
2.2 TECHNICAL DEBT .. 9
2.3 TECHNICAL DEBT MANAGEMENT ... 11

2.3.1 TDM activities .. 11
2.3.2 Challenges related to TDM .. 15

2.4 TDM FRAMEWORK ... 16
3.0 RESEARCH DESIGN .. 19

3.1 MULTIPLE-CASE STUDY .. 19
3.2 CONSTRUCTION OF RESEARCH INSTRUMENT ... 21
3.3 DATA COLLECTION ... 21

3.3.1 Transcription of video recordings, coding, and data analysis ... 22
3.4 VALIDITY AND RELIABILITY ... 23
3.5 CASE DESCRIPTION ... 24

4.0 RESULTS AND ANALYSIS ... 26
4.1 SUMMARY OF FINDINGS .. 26
4.2 TDM ACTIVITIES .. 29

4.2.1 Level 1 – Unorganized ... 29
4.2.2 Level 2 – Received .. 30
4.2.3 Level 3 – Organized ... 36

5.0 DISCUSSION .. 40
5.1 DISCUSSION OF TDM ACTIVITIES ... 40

5.1.1 Organized activities ... 41
5.1.2 Received activities .. 43
5.1.3 Unorganized activities ... 45

5.2 RELIABILITY OF TDM FRAMEWORK ... 46
6.0 IMPLICATIONS .. 48

6.1 LIMITATIONS ... 48
6.2 PRACTICAL IMPLICATIONS .. 48
6.3 IMPLICATIONS FOR FUTURE RESEARCH ... 49

7.0 CONCLUSION ... 51
REFERENCES ... 52
APPENDIX .. 61

APPENDIX A: ETHICAL APPROVAL AND NSD APPROVAL ... 61
APPENDIX B: RESEARCH INSTRUMENT ... 63

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

5

Tables and figures

Table 1: Overview of TDM activities suggested by Li et al. (2015) 11
Table 2: TDM framework 17
Table 3: Overview of case study classifications 19
Table 4: Overview of interviews 22
Table 5: Summary of findings 26
Table 6: TDM framework and team evaluation 29

Figure 1: Data collection process 23

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

6

1.0 Introduction
Due to complexity and uncertainty influencing how companies work towards software development,

companies have recognized human capital and agility as fundamentally crucial to create organizational

success. Thus, the agile project management methods became the new way of working towards software

development (Dybå et al. 2014, 281). The agile way of approaching software development has nearly

become a synonym for success, and methods such as Scrum (Kniberg 2015), eXtreme Programming

(Beck 1999), and Kanban (Huang and Kusiak 1996) have become industry standards caused by their

ability to shorten development cycles, focusing on iterative work and quicker product releases. In many

ways, the "agile way" of working has become a shift in how companies approach software development,

where its practices are based upon principles from The Agile Manifesto (Agile Alliance 2001).

Companies constantly needs to increase their speed of innovation, which demands them to understand

how to balance the ambidexterity of prioritizing different factors that can affect their pace of

responsiveness. This often results in software teams paying less attention to a product's design,

programming practices, and test coverage and more attention to the product's visible functionality to

release it (Codabux and Williams 2013, 8). As a result, many autonomous teams are trying to find short-

term beneficial shortcuts in software development. They constantly make trade-offs where faster value

delivery to their customers is prioritized over internal product quality (Klotins 2018, 75). Consequently,

many software teams are left with accumulated technical debt (TD) they will have to repay in later runs.

Originally, TD was introduced in 1992 as a metaphor to communicate the consequences of poorly

developed software (Cunningham 1992). Since then, the concept has become widely known in agile

software development (ASD) practices. Choosing a shortcut in the code writing can provide the team

with short-term benefits from having a quicker product release, please the customer, and give the

company clear advantages in the time-to-market competition (Kruchten et al. 2012; Yli-Huumo et al.

2016). However, the accumulated debt can quickly turn hurtful towards the quality of the product and

the ASD process itself (Zazworka et al. 2011). As autonomous teams tend to lean towards building up

debt, the complexity of the product will also increase accordingly (Yli-Huumo et al. 2016, 195).

Because of the severity TD can have on ASD processes and product releases, it can be argued to be

crucial for companies to know how autonomous teams should manage the down payment of

accumulated debt. One could easily argue that a simple solution for doing this is to repay the known TD

as soon as possible. However, autonomous teams are often restricted in terms of team size and resources,

as well as shorter deadlines and tight schedules. This often makes it difficult to focus on repaying the

debt, which will not provide customers with any noticeable results or expansion of product functionality.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

7

Therefore, companies must know how to manage TD early and ensure that autonomous teams have a

strategy to repay the debt as soon as possible.

TD has been under the spotlight of IS research for a longer time. Studies have reported that technology

companies struggle with managing their TD. Because of TD's growing interest in size, this has resulted

in autonomous teams not using their time on new feature development and has severely impacted

companies' speed of innovation (Verwijs 2018). Challenges like these have raised attention to IS and

software engineering practitioners, and thus the field of TD management (TDM) became its own topic

within research. As a result, researchers have tried to develop TDM frameworks for understanding and

improving companies' TDM processes. Still, most of these frameworks seem to mostly live within the

borders of research journals and have not received adequate empirical validation. In addition, there

seems to be a general lack of qualitative studies on autonomous teams and their work towards managing

TD (Nielsen et al. 2020, 12). Because of this gap in research, it is essential to further explore the field

of TDM and test TDM frameworks created by researchers to find whether these could be used by

practitioners for understanding how they can get away with TD. This study, therefore, aims to use Yli-

Huumo et al.'s (2016) TDM framework as a theoretical lens in order to answer the following research

question:

How do autonomous teams actively manage their technical debt?

This dissertation will answer the research question by conducting a multiple-case study on how one of

Norway's biggest actors within the fintech industry is managing TD today. This study aims to further

study the concept of TD management, empirically test the TDM framework by Yli-Huumo et al. (2016),

and contribute to the field of research and practice of TDM by investigating how autonomous teams

actively manage TD and whether the TDM framework could work as a reliable tool for practitioners to

use in order to understand and improve TDM processes.

The study will have the following structure: First, a synthesized literature review will occur, presenting

and synthesizing relevant literature surrounding TDM and the TDM framework. Secondly, the research

method will be presented, explaining how the project got executed. Thirdly, the findings and analysis

will occur, where the findings will be organized according to the theoretical framework. Fourth, a

discussion will be presented, where the findings will be discussed against the theoretical framework and

previous research. Lastly, the conclusion will briefly present the study's implications, limitations, and

suggestions for further research.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

8

2.0 Literature review
This chapter will present key topics and concepts which is relevant for this study. The first three

subsections will present theories and research on autonomous teams and TDM, while the fourth section

will present the TDM framework, used as the theoretical proposition.

When researching the topic of agile software development and technical debt, I initially approached

collecting literature through Kristiania University College’s library catalog Oria and using different

databases such as Wiley and Web of Science. In order to broaden the parameters of my search, I found

the need to use more open search engines for exploring the field of research and used Google Scholar

to explore the field further. In order to effectively find relevant literature, I specified keywords I wanted

to find in articles, such as “agile,” “technical debt management,” and “autonomous teams,” to narrow

the search results down. To ensure that collected literature can be perceived as legitimate and peer-

reviewed, I also aimed to direct my searches towards well-reviewed journals in the field IS research

referred to as the Basket of Eight-journals, such as MIS Quarterly, Information Systems Research, and

Journal of Information Technology.

This assignment will followingly present a concept-centric structured literature review to present the

literature in a logical and reader-friendly way. Webster and Watson (2002) suggest organizing literature

by concepts rather than conducting an author-centric literature review, caused by that author-centric

literature reviews present a summary of relevant articles and fail to synthesize them properly (16).

Therefore, the following presented literature and findings will not be sorted after author, but by concept.

2.1 Agile software development and autonomous teams
Agile software development (ASD) is fundamentally based on The Agile Manifesto (Agile Alliance

2020) in which takes a point of departure from a set of principles focusing on (1) individuals and

interactions, (2) working software, (3) customer collaboration and (4) responding to change in software

development. As a response to better the traditional software development methods, focusing more on

linear workflows, ASD methods improves this method by addressing changes through iterative

development cycles, focusing on the creation of incremental deliverables, characterized by a continuous

integration of changes (Dybå et al. 2014, 281). ASD methods such as Scrum (Kniberg 2015), eXtreme

Programming (Beck 19994), and Kanban (Huang and Kusiak 1996) are some of the most practiced

methods to date, and are practiced by innumerous companies worldwide in their work towards creating

innovative digital services in a plethora of different industries.

For companies to success in the agile work practices, they have to find ways to approach and regulate

their teams’ degree of autonomy accordingly with the environmental dynamism. Looking at team

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

9

autonomy in the context of ASD, it is reported as key in order to achieve agility (Lee and Xia 2010).

Autonomous teams, often referred to as self-organizing teams, empowered teams, or in this dissertation

just as teams, is a central part of working agile towards software development, and teams are

approaching ASD through a higher level of self-driven work (Moe et al. 2008, 76). Guzzo and Dickson

(1996) explains autonomous teams as employees who often performs interdependent jobs, are identified

and identifiable as social unit in an organization, and are given authority and responsibility for many

aspects of their work. Due to their high degree of autonomy, independence, leadership, dedication, and

collocation, they are argued to often be better suited for innovation and new product development

(Patanakul et al. 2012, 734).

The teams are often composed of team members coming from different work practices, and usually

consists of one product manager, one tech lead, and developers. However, there are several other roles

companies often include in these teams, such as testing engineers, engineering managers, UX designers,

and agile coaches. Their responsibilities can be highly technical, or more human-process-centric, or

both. The possibilities of taem compositions are many, and as a result, these teams has the ability to

react and adapt quickly in dynamic environments, without the disruption from higher levels in the

organization, such as from reviews or resource bureaucracy (Patanakul et al. 2012, 734).

2.2 Technical debt
Technical debt (TD) is a concept used by both scholars and practitioners in which refers to sub-optimal

technical solutions expressed in code (Rolland and Lyytinen 2021, 6723). Even though TD has gotten

significant attention in IS research within the last two decades, the concept was first introduced by Ward

Cunningham in 1992 to communicate consequences emerging from poorly developed software to non-

technical product stakeholders. He stated in his article that “Shipping first-time code is like going into

debt. A little debt speeds development so long as it is paid back promptly with a rewrite. Objects make

the cost of this transaction tolerable. The danger occurs when the debt is not repaid. Every minute spent

on not-quite-right code counts as interest on that debt” (Cunningham 1992, 30). The word “debt,”

borrowed form financial terminology, is a metaphor used to symbolize the relationship short-term

benefits from inadequate software development maintenance tasks, and its consequential long-term

costs (Guo and Seaman 2011, 31).

TD was earlier perceived as a metaphor for bad code and compromises on code level of software

development but has throughout the last decade been refined and extended within research in order to

describe a plethora of other variations of debts related to hindering deployment, selling, or evolving

anything software development related (Cunningham 1992; Kruchten et al. 2012, 18; Tom et al. 2013;

Yli-Huumo 2016, 196). The metaphor describes a situation where software developers accept

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

10

compromises in one dimension (e.g., maintenance in backend-code) in order to meet an urgent need in

another dimension (e.g., delivery deadline) (Cunningham 1992). Looking at existing research on TD,

the metaphor has also shown its presence in several forms, where some of the most common forms of

TD are requirements (Brown et al. 2010), design (Zazworka et al. 2011), architectural (Nord et al. 2012;

Martini et al. 2012), process (Lim et al. 2012), documentation (Kruchten et al. 2012), and people debt

(Kruchten et al. 2012). These all share the same demonstrational effect of “cutting corners” in different

stages in a software development process. For example, when developers are in a hurry, they can end

up writing code of lower quality unintentionally due to lack of experience. Therefore, by delaying certain

maintenance tasks or less carefully, the developer can focus more on functionality rather than the quality

of code. This enables teams to deliver their product quicker to customers, which benefits them in the

fast-paced market. However, it will result in the team having to repay the debt they have accumulated

in the future, which can be higher costs due to their code being more complex and less understandable

(Guo and Seaman 2011, 31).

Martini et al. (2014, 87) present several ways that TD can be accumulated in their literature. Even though

it can be overwhelming with a walkthrough of all of them, it can be beneficial to understand a few of

them to understand its emergence. The most prevalent TD accumulation factors entail different business

factors. One of the most typical ways is the uncertainty of use cases at the beginning of ASD projects,

where teams often define designs for their products that do not consider potential variability. Other

business factors accumulating TD can be time pressure with its deadlines and its penalties. Martini et

al. (2014, 87) exemplified this as being time constraints in contracts where delayed product delivery can

result in penalties, making teams paying less attention to managing TD. Another typical case of TD

accumulation is through design and architecture documentation, where architectural requirements are

not well defined in the documentation. This can cause misinterpretations made by the software

developers deploying code and making it not match these defined requirements to the system (88). This

type of accumulated TD can also be threatening refactoring activities and their estimation.

Despite TD’s often negative perception, creating TD can also be used strategically if done correctly.

Caused by TD’s function of time-saving, many teams choose to use TD as a strategy to transform from

a highly beneficial ASD strategy into a counter-productive way of value-delivery if the accumulated

debt is too high. Therefore, one could argue that product managers need to find ways to balance the

ambidexterity of handling incurring TD and facilitate further innovative iterations of ASD (Guo and

Seaman 2011, 31). Despite “debt” meaning something one has to pay in the long-term of a project in

financial contexts, debt in software development causing no defects or harms in the system will not do

anything else than saving software developers’ time as they are developing (Guo and Seaman 2011, 31).

By producing smaller amounts of debt, teams can speed up their development processes in the short

term (34). Also, if teams aim to produce a system or a module not needing future updates and

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

11

maintenance, choosing to produce quicker codes for prioritizing functionality in front of quality and

design can be highly beneficial without any long-term consequences (31). Therefore, many teams use

TD as a common strategy for shortening development processes and create faster deliveries. It can be

beneficial if the teams know that the TD will not affect their project in a long-term perspective.

Unfortunately, product owners rarely have this knowledge beforehand, and TD can therefore act as a

crucial penalty for finding shortcuts in software development processes (31). Literature seems to agree

that creating TD is never seen as an optimal solution for anything (Yli-Huumo 2016, 197). Therefore,

teams must be sure that they will be able to repay it for the strategy to be beneficial, and know how to

manage their TD processes.

2.3 Technical Debt Management
Technical debt management (TDM) can be explained as ways to manage, prevent, track, measure, and

reduce technical debt (Yli-Huumo et al. 2016, 197). TDM can be conducted in many ways, and the

concept has gained a raised degree of attention within IS research. Generally, research seems to show

clear indications of TDM providing teams with several benefits. For example, Guo et al. (2011) found

that not carefully analyzing identified TD items could aggravate the harmful effects of TD. However, a

study conducted by dos Santos et al. (2013, 10) identified that TD monetization and representation

worked as motivational factors for teams. In addition, Martini et al. (2016, 165) also found a set of

benefits of actively tracking and managing TD in software projects, where having a dedicated TD

backlog provided teams with long-term perspectives on their development process as a whole, and not

a short-term as only having a feature backlog would provide.

2.3.1 TDM activities

Li et al. (2015, 204) found that TDM’s current state-of-the-art seems to identify eight different activities

present in TDM research, as well as in practice in software engineering practice and autonomous teams:

(1) identification, (2) measurement, (3) prioritization, (4) prevention, (5) monitoring, (6) repayment, (7)

documentation, and (8) communication. An overview of them is presented in table 1, and each TDM

activity is more elaborately explained in the following paragraphs.

Overview of TDM activities

TD identification entails detecting TD from intentional or unintentional technical decisions through

techniques, such as testing code coverage.

TD measurement quantifies the benefit and cost of identified TD in software projects. This can

happen through estimation techniques.

TD prioritization ranks known TD accordingly after defined rules and techniques used for ranking.

Here, the purpose is to investigate which of the identified TDs should be repaid sooner than others.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

12

TD prevention is a set of actions or techniques used to hinder the accumulation of TD in a software

system.

TD monitoring entails visualizing TD and observe its cost and benefit over a time-span.

TD repayment refers to techniques in which has as purpose to resolve accumulated TD, for example

through refactoring.

TD documentation is used as an activity in TDM that represents TD in a unified manner, addressing

potential challenges of relevant stakeholders.

TD communication regards making TD visible to stakeholders in order to discuss and manage them

further.

Table 1. Overview of TDM activities suggested by Li et al. (2015)

TD identification entails detecting TD in code through using techniques or tools. Research shows that

the activity happens differently in teams. In some teams, TD identification has earlier been conducted

through structured processes. Findings seem to show the use of both dynamic code analysis techniques,

such as unit testing and code coverage tests, and dynamic code analysis techniques, such as investigating

code complexity, code duplication, and design properties (Gat and Heintz 2011). Several tools have also

been created to actively identify TD, whereas the open-source application The Sonar Tool has been used

by companies in order to get indications of TD in their codebase (SonarSource 2021). However, research

shows that identification also is conducted manually by developers inspecting code (Yli-Huumo et al.

2016). Research has investigated whether using tools for identifying TD is better than human elicited

TD identification. Results seem to show tools being helpful in identifying defect- and code-related TD.

In contrast, human elicited identification works better for many other types of TD caused by its increased

accuracy and contextual understanding, which is challenging to get from analysis tools (Zazworka et al.

2013).

TD measurement entails quantifying the benefit and cost of identified TD through estimation techniques.

Measuring TD can be conducted in a number of ways, where one of the most common methods are

measurement conducted through informal discussions based on a hunch and simple data. Here, the ways

of measuring TD can range from basing measurement on simple data gathered from management tools,

for example, looking at the number of TD-related issues in Jira (Yli-Huumo et al. 2016). Other teams

has also conducted measurement through data analyses tools, such as SonarQube (Yli-Huumo et al.

2016; SonarSource 2021) in order to gain various data, and use this to quantify their TD-issues based

on this data. However, research seems to identify this as a challenging aspect of TDM caused by the

enormous differences in sizes of TD-issues. As Kruchten et al. (2012) points out, TD could be smaller

bugs as well as architectural and structural issues.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

13

TD prioritization refers to ranking identified TD based on different factors to understand which TD-

issues should be repaid sooner than others. TD is viewed by many as having an equal or higher severity

level compared to new feature tasks (Bavani 2012; Codabux and Williams 2013). There are several

ways of conducting TD prioritization. Prioritization often happens using tools or by discussing it with

the team. The decisions in discussed TD prioritization is often based on a hunch, or by the team

prioritizing based on discussing the TD-issue’s potential impact factors, such as severity level, customer

satisfaction, and surface impact (Yli-Huumo et a. 2016; Ramasubbu et al. 2015). Other teams have

practiced prioritization based on cost-benefit analyses of TD in order to prioritize their TD (Zazworka

et al. 2011). Research has also found that some teams conduct TD prioritization based on technical

calculations, such as by conducting test coverages in order to quantify the TD and thereafter use this to

understand the TD-issue’s severity level (Seaman et al. 2012).

TD prevention entails actions practiced by the team for avoiding TD accumulation. This can be

conducted through numerous practices to implement into development routines. For example, some of

the most common and easiest ways of executing TD prevention is by teams having coding standards

and code reviews throughout their development process (Yli-Huumo et al. 2016). This entails developers

more cautious of maintaining quality in the code they write, and brings several perspectives on the code

being deployed. Test automation is another common prevention strategy and has proven to reduce TD

accumulation (Bavani 2012; Gat and Heintz 2011, Codabux and Williams 2013). By automating tests

entailing checking code coverage, developers can easily search for indication of bad code and, after that,

effectively go back and fix it. However, teams must understand and execute these test automation

processes correctly, and the team should collaborate in the designs of test automation scripts (Bavani

2012). Behutiye et al. (2016) also found that many teams practice several programming practices as

prevention practices. These practices range from pair programming, test-driven development, and

continuous integration (Stolberg 2006; Birkeland 2010, Nord et al. 2012). Through these practices,

developers can also better their communication and develop an understanding of TD and its required

management.

TD monitoring is all about visualizing TD to present its cost and benefits over a time span, and can help

the team effectively with maintaining control over their TDs evolution, as well as to communicate its

evolution to other stakeholders. There are several ways this can be conducted, whereas some examples

are having track lists of architectural and design decisions in the backlog (Abrahamsson et al. 2010;

Bellomo et al. 2013), a TD visualization board (Nord et al. 2012), pie and bar charts (Power 2013), or

use TD visualization tools to detect code violations (Hanssen et al. 2010). These ways of visualizing TD

will assist teams with identifying, tracking, and manage their TD in a more organized way.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

14

It seems to be popular in TDM research and could be reasoned by TD monitoring working as

motivational factors for teams (Santos et al. 2013, 10). Guo et al. (2011, 531) found that not carefully

analyzing identified TD items could aggravate the harmful effects of TD. However, by monitoring

identified TD-issues, findings seemed to lower their negative impact.

TD repayment is what kinds of techniques teams use in order to remove their TD. Research suggests

that refactoring and rewriting code are the most common ways for TD repayment (Pérez et al. 2020;

Codabux and Williams 2013). Despite these practices seeming like straightforward practices to conduct,

it requires developers to be of a higher skill level, and teams can often not afford to use all their time

focusing on refactoring code (Yli-Huumo et al. 2016). When it comes to the execution of TD repayment

in development processes, research seems to show that it often is conducted by developers either (1)

during TD’s evolution or (2) by teams assigning weekly/monthly percentages of their time dedicated to

repayment (Digkas et al. 2018; Martini et al. 2016). However, most teams seems to not follow assigned

percentages for repaying their TD, and mostly conducts it as it is found in the code base. (Ernst et al.

2015).

TD documentation entails how teams represent their TD in a documented format. Teams often seem

conduct this using a backlog management tool, such as Jira (Yli-Huumo et al. 2016, 211). However,

teams can use such management tools to different extents for TDM. In some teams, it seems as if TD is

documented just like regular features are documented in the backlog. Here, teams often does not practice

any structured processes, and developers often only document TD-issues they perceive as important

(Codabux and Williams 2013, 13). However, other teams also has seemed to use their backlog

management tool more extensively, and follows defined protocols for documenting their TD in separate

TD backlogs. Research seem to show clear advantages of having highly structured processes for

documenting TD, caused by its ability to provide teams with clearer long-term understandings of their

development processes, as well as avoidance of neglecting undocumented TD in which could later

evolve into significant faults in the codebase (Codabux and Williams 2013, 13; Stettina et al. 2011, 164).

TD communication entails how TD is communicated and visible to internal and external stakeholders in

a way for it to be further discussed and managed. This activity seems to be a popular topic within TDM

research caused by its crucialness in development processes (Li et al. 2015). TDM communication is

mostly conducted by teams through informal meetings or conversations, or by setting up TD-dedicated

meetings or having it as a discussed topic in meetings (Yli-Huumo et al. 2016, 210). This is argued to

provide teams with better control over their accumulated TD, and will also make sure that all team

members and business stakeholders are a jour with their TDM (Klinger et al. 2011, 35). However,

research has also highlighted a communication gap between developers and non-technical stakeholders

as a significant challenge in TDM (Yli-Huumo et al. 2014; Klinger et al. 2011, 35). TD-related issues

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

15

has shown to not translate well to non-technical stakeholders, and consequently could result in teams

not getting adequate time and resources for repaying their TD (Yli-Huumo et al. 2014). Therefore,

arranging weekly meetings for communicating TD is a helpful means for product managers to receive

clearer feedback from developers and give the team a clearer image of how they should prioritize TD

(Martini et al. 2016, 165).

2.3.2 Challenges related to TDM
Despite literature mostly projecting TDM as beneficial for teams to practice, research has also identified

several challenges with both practicing and implementing it. For example, Martini et al. (2016, 165)

found that implementing a new TDM method requires substantial amounts of effort and resources in

order to organize and collect all existing TD. Despite it being a one-time situation of collecting TD

items, several of the researched teams did not have enough space in their budget to implement it. In

addition to taking up substantial amounts of resources, some has also found that working with TDM can

create more work top of the existing development work (Yli-Huumo et al. 2016, 213). Hence, many

teams find it challenging to warrant the need for it and its beneficial purpose. Besides challenges related

to cost and time-consumption, research has also shun light on developers experiencing that TD

repayment and TD prioritization became more bothersome caused by product managers not having the

same perspective of TD items’ risks and benefits, and not being able to calculate risk/impact accurately

on all items (165). Power (2013) has tried to summarize challenges related to TDM, and identified seven

common challenges: (1) developing a common understanding of technical debt, (2) neglection of

technical debt over several releases, (3) understanding the cost of delay, (4) visualizing technical debt,

(5) quantifying technical debt, (6) tracking technical debt, and (7) understanding technical debt as a root

cause of challenges.

Current literature suggests some tools and processes that can be used in order to manage TD (Martini et

al. 2014, 57). However, these have been shown to be challenging to implement, caused by product

managers and developers not knowing how to estimate and identify accumulated TD, how it can change,

and what consequences it will have in the future (Li et al. 2015). In addition, several studies seems to

show that tools for practicing TDM are limited, and seems to be a common reason for several teams to

not practice TDM (Yli-Huumo et al. 2016, 212; Ernst et al. 2015, 56).

In addition to challenges regarding the practice and implementation of TDM, research also seems to

show indications on TDM being limited in practice. Martini et al. (2016, 163) found that teams averagely

spend 25% of their development time on TDM. However, looking at a study on TDM conducted by

Ernst et al. (2015, 56), they investigated 1,831 software ASD practitioners’ relationship to TDM and

found that 65% of the participants had no defined TDM practices - and of the remaining 35%, only 25%

of them managed TD at team level.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

16

2.4 TDM framework
Several researchers have created frameworks for investigating teams’ performance in software

development. However, empirically tested TDM frameworks severely lacks. However, Yli-Huumo et

al. (2016) conducted a case study on autonomous teams and their approach to TDM, and found

similarities in their findings compared to earlier maturity frameworks used in software engineering

research. Paulk et al.’s (1993) Capability Maturity Model (CMM) has worked as a framework used by

software engineering practitioners for decades to understand and improve software development in

organizations through a systematic classification system with suggested sets of recommended practices

in different process areas. Paulk et al. (1993, 19) point out that the CMM “guides developers to gain

control of their development and maintenance processes, and how to evolve toward a culture of software

engineering and management excellence.” The model is designed to help practitioners select

improvement strategies by investigating their team’s maturity level. Paulk et al. (1993, 19) further point

out that to use the framework, one must understand the difference between immature teams and mature

teams. Immature teams refer to teams conducting software development activities being generally

improvised, without any enforcement. Mature teams refer to teams having a stronger ability to manage

development and maintenance, where managers accurately communicated the development process to

different stakeholders, while development activities are carried out according to a planned process (19).

The implementation of CMM has gotten attention in research, and there exist several examples of CMM-

implementation generating better team performance and higher time efficiency in software development

(Astakhova et al. 2016; Osipov et al. 2015). In addition, other research seems to indicate that CMM

implementation indeed improved the development process performance in terms of quality management

(Titov et a. 2016, 4). Caused by the CMM’s empirical validation from practitioners within software

development and raised attention in research, the CMM has undergone several iterations of

improvements, and several researchers have used it as a guiding star for creating new standardized

frameworks towards maturity within different fields of software engineering, whereas the Test Maturity

Model Integration (TMMI) for improvement of software testing practices (Garousi and Veenendaal

2021, 1), and the People Capability Maturity Model (PCMM) for successfully addressing critical people

in an organization (Curtis et al. 2009, vi).

When Yli-Huumo et al. (2016) conducted an empirical study on teams’ TDM and measured their degree

of practice in Li et al.’s (2015) suggested TDM activities, they found that the teams practiced TDM at

various levels and found similarities in their findings with the CMM’s maturity levels. Some teams had

no defined strategy for managing and reducing TD, while others had more organized processes for

reducing, monitoring, measuring, and managing their TD. They, therefore, applied these findings to

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

17

create a similar maturity model addressing teams’ TDM maturity. As a result, the TDM framework was

created (see table 2). By categorizing the identified TDM activities into three different maturity levels,

the framework shows a team’s abilities in each TDM activity.

Table 2: TDM framework

Yli-Huumo et al. (2016, 196) explain that the TDM framework was created to create a generalized

framework for companies to use to understand their current state of TDM practice and improve them.

The TDM framework addresses five core elements: TDM activities, TDM levels, TDM stakeholders,

TDM responsibilities, and TDM approaches (Yli-Huumo 2016, 209). Li et al.’s (2015) TDM activities

are listed in the first row of the framework, creating eight different columns.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

18

The TDM framework presents three maturity levels: unorganized, received, and organized. At level 1,

the lowest-ranked maturity level is the unorganized maturity level. This refers to teams who are not

putting effort into a TDM activity or when the focus of practicing it is minimal. This includes teams

only conducting practices whenever they have to, if at all, in order to address the TDM activity. At level

2, the mid-ranked maturity level is the received maturity level. This refers to teams practicing the TDM-

activity to a certain degree and when the team has acknowledged the value of practicing it. This could

entail teams conducting TDM practices occasionally, often if it fits within their current time constraints.

At level 3, the highest-ranked maturity level is the organized maturity level. This refers to teams who

continuously practice the TDM activity and have recognized it as an essential part of their development

process. These teams seem to have an active relationship towards the TDM activity and often dedicate

parts of their development processes to conduct them.

The framework also presents TDM responsibilities and TDM practices/tools. In TDM responsibilities,

Yli-Huumo et al. (2016) identified three primary responsibilities: most often seemed responsible for

different TDM activities: The development team, software architects, and team managers. In addition,

they also identified a responsibility closely related to TDM, which were business stakeholders. The

business stakeholder is, however, mostly related to TD communication. Also, TDM practices/tools

represent sets of identified approaches teams or individuals could use to practice specific TDM

activities.

Yli-Huumo et al. (2016, 210) point out that the TDM framework can help companies evaluate and

improve their internal and external TDM processes and improve these processes. However, the TDM

framework lacks empirical validation. Yli-Huumo et al. (2016) emphasize that the framework has not

been tested in a way that validates its use for improving TDM processes. This could therefore mean that

teams practicing less TD monitoring and prioritization could still have less accumulated TD than teams

spending more resources into doing so. Therefore, one could stress the need to empirically test the TDM

framework to develop a better understanding of if the framework could be used the same way as CMMs

for understanding and improving software development processes.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

19

3.0 Research design
As mentioned in the introduction, this study aims to provide software development practitioners with

insights into how technology companies work towards handling TD to develop a better understanding.

In order to discuss the chosen research question, it thus seemed relevant to choose a qualitative study

for answering the research question and conduct an exploratory multiple-case study. This chapter will

further elaborate on the choice of research design, development of research instrument, description of

the data collection and data analysis process, and present a case description of the case company.

3.1 Multiple-case study
This study intends to investigate teams and understand how they work towards TDM, which made the

choice of using a case study an appropriate decision. Case studies are traditionally used in social science

in order to study individuals or groups, focusing on factors, issues, politics, processes, and relationships

generating “messiness in this world” (Oates 2006, 142). The research design lets the researcher test,

validate, and develop theories (Anderson 1983; Kidder 1982; Eisenhardt and Graebner 2007), and are

often used in order to understand the “what,” “why,” and “how” in research (Yin 2014, 3-11). Runeson

and Höst (2009, 135) explain that case studies have a flexible design, meaning that parameters in the

interview guide may be changed throughout the data collection process if needed, as opposed to

quantitative research designs having a fixed research design. In addition, practitioners have emphasized

that practicing case studies is a suitable research design for IS- and software engineering research caused

by its ability to study a phenomenon in their natural contexts (Runeson and Höst 2009, 131).

There are two basic types of case study designs for explanatory purposes in research: single- and

multiple-case study design (Yin 1981, 100). In research conducting a single-case design, one can

investigate a phenomenon and test theories on individuals from a specific context. This could be to study

team members of a team, working towards the same case. However, a multiple-case design is conducted

by concluding a group of cases. This is argued to be appropriate when a phenomenon exists in several

situations, and the researcher wants to find more generalized results rather than case-specific results

(Tellis 1997). The results from each interviewed individual may differ, but the findings are supposed to

provide a basis for validating results. Case studies also often get classified into three different case study

types serving different purposes: exploratory, descriptive, and explanatory (Robson 2002). Table 3

summarizes the classifications with brief descriptions.

Exploratory Finding out what is happening, seeking new insights, and generating ideas and

hypotheses for new research.

Descriptive Portraying a situation or phenomenon

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

20

Explanatory Seeking explanations for certain situations or problems, mostly but not necessary

in the form of a causal relationship.

Table 3. Overview of case study classifications

Withal, Runeson and Höst (2009, 135) explain that case studies were primarily found in the form of the

exploratory classification, “focusing on finding out what is happening, seeking insightful data, and

generating new hypotheses for future research.” The study intends to investigate how teams in a chosen

tech company are handling TDM and figure out how this could be approved. However, research

surrounding those topics and validating suggested frameworks and theories are inadequate. In addition,

the literature emphasizes a need for additional empirical studies on TDM to increase the knowledge of

TD (Nielsen et al. 2020, 12). Oates (2006) emphasizes that in research areas containing limited amounts

of literature, explorative studies are recommended as a research strategy. Therefore, choosing to practice

an exploratory approach towards researching individuals in their natural context could be argued to be

done to obtain a better understanding and develop suggestions for future research. Appropriately, I chose

an exploratory multiple-case study as the research design for this study.

When it comes to the practical features of the study, it is a distinct technical situation, whereas several

variables are considered, and there are several sources of information the researchers can investigate

(Yin 2014, 16). The data is usually collected through interviews and is often combined with

supplementary data from archival documentation, observations, and physical artifacts (Oates 2006,

142). As this paper aims to answer a research question entailing a topic that the chosen company is

strongly affected by, a case study approach will be beneficial as the company I am investigating is

constantly dealing with TD in their development processes. In addition, the company contains multiple

stakeholders of interest, with their own important contextual conditions. By, therefore, choosing a case

study as the way of researching and answering the formulated research question, the researcher will gain

a better illustration of the circumstances and context which teams in the company are a part of, as well

as obtaining good and broad knowledge from the team members (Cousin 2005).

Choosing a case study may bring challenges. These types of studies are criticized by research for not

generating results that can get generalized outside the specific researched context. This means that the

findings from this study may not be relevant for other similar cases caused by its context. However,

some literature seems to bring contradicting arguments. Walsham (1995, 79) suggests the following

ways case studies can generate generalized outcomes. Case studies can generate (1) conceptualizations,

where new ideas or notions emerge from the analysis, (2) theories, which can get translated into

conceptual frameworks, (3) implications, in which in this case can be directly practiced by other

companies, and (4) richer insights, where new understandings about situations are generated.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

21

3.2 Construction of research instrument
Yin (2014) points out that a crucial strategy for conducting case studies is to follow the theoretical

propositions that the hypotheses lean on. Since the study uses Yli-Huumo et al.’s (2016) TDM

framework addressing Li et al.’s (2015) TDM activities as the theoretical framework, it thus seemed

rational to use these theories as a point of departure when constructing the interview questions for this

study. Therefore, the research instrument had a structure constructed out of the TDM framework to

measure the teams’ performance within TDM activities. In addition, I also wanted insights into the

respondents’ understanding of TD as a concept and their thoughts on their satisfaction with how they

are handling it as of now, and their motivation towards TDM. The research instrument, therefore, had

the following structure: (1) Introduction to research project, (2) TD understanding, (3) TDM activities,

(4) TDM motivation.

The questions in the research instrument got constructed with efficiency in focus. In order to gain

maximum data from each question, the research instrument for this study, therefore, took inspiration

from McNamara’s (2009) recommendations when designing efficient qualitative interview questions:

(1) the questions should be open-ended, where the interviewees should be able to answer the questions

however they want to, (2) the questions should come from a neutral point of view, and (3) avoid using

the word “why” in the question formulation.

The research instrument is found in Appendix B.

3.3 Data collection
As earlier mentioned, the main data source in case studies comes from interviews and is often supplied

with additional data from formal documentation, observations, and physical artifacts (Oates 2006, 142).

In this study, the main data source was through semi-structured interviews. The reason for choosing

semi-structured interviews as the interview method was because of limited knowledge about the case

company and their teams beforehand, making it challenging to curate a fixed set of questions. I,

therefore, found the need for the interview method to be flexible at the core. Runeson and Höst (2009,

145) explain that semi-structured interviews can be designed in a way where questions are planned but

not necessarily asked in a fixed order. In addition, the method allows the researcher to improvise and

explore the studied object without having to stay within fixed boundaries. Thus, I conducted semi-

structured interviews in which fulfilled my wish to explore TDM more freely.

The data collection was performed over two months, and I interviewed eight individuals in total. Each

interview lasted for approximately 30-50 minutes, which resulted in a substantial amount of material

being transcripted and analyzed. After the interviews were conducted, the transcriptions were sent to the

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

22

interviewees in order for them to be able to provide feedback in case of being unclear with their

answering, misunderstandings, or if they wanted to fill in with more input. An overview of all the

interviewed participants is listed in table 4 below. Five different roles were interviewed, caused by my

wish to collect data from different perspectives, representing teams as a whole and not from one specific

work practice.

Team Role Duration

A Product manager 40m 10s

B Tech lead 53m 32s

C Test automation engineer 52m 42s

D Engineering manager 50m 12s

E Developer 30m 32s

F Tech lead 31m 09s

G Product manager 33m 16s

H Tech lead 30m 29s

Table 4. Overview of interviews.

3.3.1 Transcription of video recordings, coding, and data analysis

Researchers emphasize that case study interviews should be recorded in a suitable audio or video format

(Runeson and Höst 2009, 146). In order for me to focus on the interview, I captured video recordings of

the interviews. The video recordings were transcribed directly after the interviews were conducted in

order for me to process the data that was collected and reflect upon if the questions gave me the data I

desired. When the video recordings were completely transcribed, the data analysis took place in order

for me to render the data and organize it respectively to my theoretical framework. The main objective

of conducting the data analysis is to pull conclusions from data and derive clear chains of evidence

(Runeson and Höst 2009, 150). This was done by practicing the “pen-and-paper” approach, where

printing out the transcriptions and coding the data began. Coding gives certain parts of the texts a

representation of themes, areas, constructs, etc. During the iterative process of coding data, smaller sets

of generalizations get formulated and develop a knowledge map (Runeson and Höst 2009, 151).

After the data was coded, the data analysis was carried out as a parallel process. The data analysis took

a point of departure from relying on theoretical propositions that led to the multiple-case study being

conducted. Yin (2014, 134) explains that this data analysis strategy helps the researcher shape the data

collection plan. The theoretical proposition organizes the entire analysis and helps the researcher to

easier point out relevant contextual conditions to be described and explanations to be further examined.

By therefore using the TDM framework and its TDM activities as the theoretical proposition, the

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

23

findings were categorized within its eight TDM activities to create a systematic mapping of each case.

After that, the cases went through a cross-analysis, comparing the findings within each category to draw

suggested conclusions based on these. The data collection process is illustrated in figure 1.

Figure 1. Data collection process

3.4 Validity and reliability
When conducting research, one must be aware of potential pitfalls to avoid and consider when designing

a research strategy to ensure a good overall quality of the study (Yin 2014). It is therefore essential to

ensure a degree of validity in the research design, which can warrant the researcher and reader with a

warranty of trust in the research, as well as providing finding that is true and does not come from a place

of the researcher’s subjectivity (Runeson and Höst 2008). There are several ways of addressing validity

in research, but Runeson and Höst (2008) suggest four classifications one should consider in software

engineering research. These are followingly briefly presented, together with how this study addresses

each aspect of validity:

Construct validity entails whether the researcher and the research object have a common perception and

understanding of what is being studied. For example, this could be if the interviewed individual did not

know what type of TD the research focused on investigating. This was handled by (1) informing the

purpose of the research project and relevant concepts in an information letter provided to the respondents

beforehand and (2) clarifying the scope of TD and the research project at the start of each interview.

Internal validity is the concern of when causal relations are studied. When one factor affects another,

the other factor is often affected by a third factor. Moreover, when the researcher is unaware of the third

factor, this could threaten the project’s validity. Since this study bases its data collection on semi-

structured interviews, it was easier for the researcher to ask additional questions whenever there was

felt a need for better and more fulfilling answers from the respondents. In addition, the respondents did

allow me to contact them in later instances if I had additional questions.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

24

External validity entails to what extent the findings could be generalized and of interest by external

individuals not involved in the research project. Case studies often try to generate analytical

generalizations (Runeson and Höst 2008, 154). However, caused by their qualitative nature, the findings

often provide in-depth data gathered from specific contexts, which could be a challenge to the external

validity of the project. Therefore, the conclusion is written with a sense of humbleness and avoidance

for generalizing the results. In addition, the findings from this study will be thoroughly discussed

supported by previous generalized research.

Reliability involves to what extent the data and analysis are dependent on the researcher. If another

researcher would sit with the same data material and information as me, they should be able to come to

similar conclusions. One limitation here is that conducting semi-structured interviews generally can

result in different data being collected caused by new and changing questions. However, this study

addressed this through transparency in the method practiced in this study and by describing the data

collection process and briefly describing how the data was analyzed. The used research instrument is

also attached, so that other researchers can evaluate the questions asked in the interviews.

3.5 Case description
The case study was performed in one of Norway's largest tech companies within financial technology,

housing hundreds of employees and delivering services in payment solutions. The company started its

venture in the mid-2010s as a startup under another company and grew with tremendous speed. Their

initial product reached its first million users a year later and a few years later became an independent

company housing hundreds of employees and leading within the fintech industry. In recent years, the

company has gotten significant attention both nationally and internationally, and caused by the success,

has also expanded their services, and multiplied their product line into a library of products for both

public and B2B.

Taking a point of departure from agile practices, the teams in the company work in iterative development

cycles and has a Scrum-ish approach to their development model. Caused by their multitude of products

and services, their company houses several autonomous teams who are the company's workforce and

has sections they are responsible for developing and running. The teams are composed of 3-10 members,

with a team composed of a product owner, tech lead, and developers. In addition, some of the teams

also have test automation engineers, engineering managers, UX designers, and agile coaches based on

their current needs for extra support.

As the company has worked heavily with software development for over five years with their extensive

product library, they experience significant amounts of accumulated TD in their projects. With products

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

25

constantly evolving, the product complexity increases simultaneously. The products keep going through

iterative development cycles, and with new code added, the older ones keep building up as TD.

Furthermore, since the company's staff has been exchanged throughout the years, several codebases lack

documentation. This has resulted in significant amounts of legacy code, which also was developed in a

way that has now become TD. As a result, TD has affected several factors, such as speed of innovation,

errors in the codebase, and lack of team motivation. Since their product is today used by millions of

users, the case company must ensure constant run-time. In fear of the TD turning the company into a

"house of cards," the company has therefore found a need to better understand their current ways of

managing TD and a need to improve their processes towards TDM.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

26

4.0 Results and analysis
In this section, the findings are presented. The findings were gathered from eight interviews with eight

different respondents coming from their own individual team within the case company. Firstly, the

chapter presents a summary of the findings. Secondly, the findings are more elaborately presented in

the following subchapter, presenting relevant citations and findings from the cross-analysis conducted

on each different TDM activity.

4.1 Summary of findings
In order to get a better overview of the findings gathered from the respondents, the findings are

summarized in table 5 as well as in the following paragraphs within this subchapter.

Team /
TDM activity

Team A Team B Team C Team D Team E Team F Team G Team H

TD
identification

Developers
identifying
manually
throughout
development
process.

Developers
identifying
manually
throughout
developmen
t process.

Developers
identifying
manually
through
normal
development
. Also
identified
when errors
occur in
Splunk and
Dynatrace
dashboards.

Developers
identifying
manually
throughout
normal
development
based on
current time
constraints.
Also
through
errors in
Grafana
Dashboards
and Splunk.

Developers
identifying
manually
throughout
normal
development
. Also by
weekly
assigned
developer,
who’s
responsibilit
y is to
identify and
handle TD.

Developers
identifying
manually
throughout
normal
development
.

Developers
identifying
manually
throughout
normal
development
. Also
through
automated
tests for
identifying
bugs and
TD, Also
through
errors in
Splunk.

Developers
identifying
manually
throughout
normal
development
.

TD monitoring No
monitoring.

No
monitoring.

Dynatrace,
and other
graphs/chart
s for
continuous
monitoring.

Jira-issues
for
monitoring
occasionally
.

No
monitoring.

Jira-issues
for
monitoring
occasionally
.

No
monitoring.

No
monitoring.

TD
measurement

No
measuring.

Product
manager
occasionally
measured
using simple
data based
on hunch.

Developers
measured
occasionally
using simple
data based
on hunch.

Team
measured
occasionally
using simple
data based
on hunch.

No
measuring.

Developers
measured
occasionally
using simple
data based
on hunch.

Team
measured
occasionally
using simple
data based
on hunch.

No
measuring.

TD
documentation
/
representation

Some
documented
in Jira. No
separate
backlog.

Some
documented
in Jira and
Confluence.
No separate
backlog.

Some
documented
in Jira,
Confluence,
and GitHub.
No separate
backlog.

Documented
in Jira and
tagged as a
TD-item for
structured
overview.

Some
documented
in Jira and
Confluence.
No separate
backlog.

Some
documented
in Jira. No
separate
backlog.

Some
documented
in Jira. No
separate
backlog.

Some
documented
in Jira. No
separate
backlog.

TD
prioritization

Team
prioritized
without
defined
process.
Based on
criticality.

Product
manager
mostly
prioritizes
based on
hunch.
Occasional
workshops
where the
team
prioritizes
based on
criticality.

Team
prioritized
without
defined
process,
based on
surface
impact and
security
issues.

Product
manager,
tech lead
and tech
management
prioritized
without
defined
process.
Usually
based on
hunch

Product
manager and
engineering
manager
prioritized
usually
based on
urgency and
security
implications
.

Team
prioritized
based on
customer
value and
surface
impact.

Product
manager and
tech lead
prioritized
based on
customer
value.
Conducts
impact
mapping
with the
team.

Team
prioritized
without
defined
process.
Based on
hunch.

TD repayment TD-items
from
backlog.

TD-items
from
backlog.

TD-items
from
backlog.

TD-items
from
backlog.

TD-items
from
backlog.

TD-items
from
backlog.

Mostly no
repayment.
Weekly

25% as
monthly
assigned

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

27

Refactoring
and
rewriting of
code based
on current
need.

Refactoring
and
rewriting of
code based
on current
need.

Refactoring
and
rewriting of
code based
on current
need.

Refactoring
and
rewriting of
code based
on current
need.

Refactoring
and
rewriting of
code based
on current
need.
weekly
assigned
developer to
identify and
repay TD.

Refactoring
and
rewriting of
code based
on current
need.

assigned
developer to
identify and
manage TD.

percentage
of
repayment.
Refactoring
and
repayment
of code
continuously
through
development
.

TD prevention Minimal
coding
guidelines.

Minimal
programmin
g practices.
Ran tests
and
continuous
integration.
Not always
practiced.

Programmin
g practices.
Ran tests
and
continuous
integration
continuously
.

Code
reviews, and
programmin
g practices.
Ran tests
and
continuous
integration
continuously
.

Code
reviews, and
programmin
g practices.

Coding
guidelines,
and
programmin
g practices.
Not always
practiced.

Coding
guidelines,
code
reviews, and
programmin
g practices.

Coding
guidelines,
code
reviews, and
programmin
g practices.

TD
communicatio
n

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.
Some
challenges
to
communicat
e TD to
company
management
.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.
Sometimes
communicat
ed outside
with
relevant
stakeholders
.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.
Sometimes
communicat
ed outside
with
relevant
stakeholders
.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.
Challenges
with
communicat
ing TD to
company
management
.

Team
actively
communicat
ed TD
within and
outside team
boundaries
via informal
and formal
meetings.

Table 5. Summary of findings.

Starting with TD identification, one can see that the teams mainly conducted identification throughout

the normal development process, by developers usually finding them along the way of developing

features, analyzing, or maintaining their codebase. Half of the teams did not seem to use any tools to

specifically identify TD (A, B, F, H), while the other half (B, C, D, G) actively used general monitoring

software where they could get indications of TD occurring in code errors and as well through crash

analyses.

For TD documentation, all teams documented their TD in the Jira to document to different extents. Many

of the teams also used other services like Confluence and GitHub to document more comprehensive

TD-issues. However, most of the teams did not have any mandatory processes they had to follow to

document their TD. However, one team (D) had a system for categorizing TD-issues by tagging Jira-

issues to filter out a separate backlog for tracking their TD.

TD monitoring mainly was not practiced in the case company, except for some teams (D, F) did have

their way of monitoring TD from simple data, such as monitoring the number of TD-related Jira-issues,

and monitored it occasionally based on their current needs. However, one team did seem to track their

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

28

TD continuously throughout the development process and had a dashboard, charts, and graphs

visualizing TD with its various metrics.

TD measurement was mostly not highly practiced, and some teams did not conduct it (A, E, H). None

of the teams had a defined process towards measuring their TD, but some of them did measure their TD

individually or in discussions, mostly basing their decisions on a hunch. Some of the teams (B, D, F)

occasionally would bring up TD to discussion and measure them using T-shirt sizes as labels in the

backlog. One of the teams (C) also used simple data from the Jira-backlog as information for measuring

TD, where the developers could use the number of TD-issues as data for measurement.

All teams conducted TD prioritization in one way or another. Most teams seemed to conduct

prioritization as a normal part of their development process and did not use any specific models for

prioritization (A, C, D, E, F, H). The teams based their decisions on a hunch and estimations. In addition,

some of the teams would also prioritize TD based on different impact factors it could have, such as

criticality, surface impact, or customer value. However, some teams also conducted prioritization

through more structured processes and conducted workshops and impact mapping sessions with the

team (B, G).

TD repayment was mostly conducted by refactoring or rewriting the code by the teams. Most teams (B,

C, D, E, and F) practiced repayment occasionally as a normal part of their development process and

without any strategies towards dedicating time to repayment. Also, some of the teams (E and G)

practiced assigning one developer to repay TD in their codebase as their responsibility for a week.

However, one team (H) did have a more structured approach towards repayment, had a certain

percentage of their work assigned to repay TD.

Most teams actively conducted TD prevention. Most teams conducted code reviews and had coding

guidelines the developers had to follow to prevent TD continuously throughout their development

processes. In addition, it was identified that most other teams (C, D, E, F, G) prevented TD by practicing

different programming practices, such as pair-programming and mob-programming, as a part of their

normal development process, whereas the respondents seemed to show indications on this being a

trusted and efficient practice for TD prevention.

TD communication was highly practiced in the case company. All respondents seemed to show clear

indications on communication to be optimal within the team boundaries, and most teams seemed to have

a good relationship towards communicating TD outside team boundaries to other stakeholders. Some

teams (D and G) seemed to show signs of communicating TD outside the team as challenging and related

this challenge to relate to the teams’ motivation to work with TD.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

29

4.2 TDM activities
In order to create a system for understanding the case company’s results within the TDM activities

together with their rated TDM maturity level, table 6 provides an overview of the team evaulation in the

TDM-framework. The grey colored boxes illustrate which TDM maturity level each TDM activity the

findings most prominently projected. By looking at the table, one can see that the case company seems

to mainly reflects a received level of maturity. However, the case company also has TDM activities

placed within the other TDM maturity levels, organized and unorganized. The findings will be further

explained in the rest of this chapter, highlighting remarkable findings and citations. The findings are

presented activity by activity and are categorized according to their maturity levels in order to develop

a generalized result from the case company’s performance in TDM activities.

TDM activity/

TDM maturity

level

Repayment Prevention Documentation Identification Measurement Monitoring Communication Prioritization

Organized H C, D, E, G, H D B, C, D, G C A, B, C, D, E, F,

G, H

B, G

Received A, B, C, D, E,

F

A, B, F A, B, C, E, F,

G, H

A, E, F, H B, C, D, F, G D, F A, C, D, E, F,

H

Unorganized

G A, E, H A, B, E, G, H

Table 6. TDM-framework and team evaluation.

4.2.1 Level 1 – Unorganized
TD monitoring

Most teams did not conduct TD monitoring in their development processes, and only three teams (C, D,

F) seemed to conduct TD monitoring. Team C used tools, such as Dynatrace and Splunk, to track TD

and charts and tables showing TD’s evolution over time and used these to monitor their TD continuously

throughout their development processes. This would give insights to the application team and tell

developers if it runs as it should. Two of the teams (D, F) also occasionally used Jira as a tool for

monitoring.

“You could say that I’ve used Jira recently. If you’re disappointed about creating bugs, and like

calling them TD, you could do that and sat that’s a way of monitoring TD. Then we can keep

track if its growing or not.”

Jira would provide the team with simple data for monitoring if their identified TD would grow or reduce

over time. In addition, the Jira-backlog worked as a tool for both the team and tech management to

maintain some monitoring of how much time the team/teams would spend on TD compared to time

spent on developing new functionality.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

30

However, the rest of the teams did not conduct any TD measurement. These teams mostly based their

reasoning being no apparent need for measuring their TD, as well as too high maintenance costs of

conducting it:

“We probably could create a system for it, but I don’t really feel the need of doing so, other than

other than for reporting instances. Other than that, I feel like it would be to implement

bureaucratic processes to things that maybe is unneeded. TD is always on top of our minds, and

that creating a framework for presenting that we have solved a 10% of our technical debt would

be unnecessary”

Monitoring was not a part of their development practices. Despite some teams emphasizing no need for

conducting TD monitoring, some of the same teams did express that they saw the value of monitoring

TD in Jira properly. The teams in the case company earlier had agile coaches coming to teams and helps

the team to ensure velocity and good flows in their development process. The respondent from team G

explained that creating a more defined system for labeling and categorizing Jira-issues with TD to keep

track of how much they had of TD compared to other tasks was helpful. The respondent from Team H

also expressed that he/she wished his team used Jira more actively and categorized each issue in order

to easier create a system for TD monitoring based on simple data:

“I don’t think it would make a big difference to visualize it through monitoring software. I think

it would only become lots of maintenance work. But if we could visualize it, not by creating

charts, but by categorizing Jira-issues as TD, and had better control of how much we had of it.

I think we would benefit from having a clearer strategy on that bit.”

4.2.2 Level 2 – Received
TD measurement

Most teams seemed to practice TD measurement, but more as an optional practice within the team based

on their current needs. The measurement was mostly based on simple data, such as the number of TD-

related backlog issues.

The teams also seemed to have different approaches for measuring TD. In teams B, D, and F, they would

usually discuss identified TD over informal conversations or meetings and base their measurement on

hunch and T-shirt sizes. Team C also conducted TD measurement based on which factors TD-items

potentially could impact. The longer the list of things it could affect, the bigger the TD-item would

believe to be.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

31

“[…] it’s based on how many products we have. And how many of these different things in a

checklist that ticks of in the security threats, or lack of documentation, or not being able to scale

as much, or not being able to use it to build other products. And if that list is long, I guess that

is TD measurement”

In team G, the product manager usually brings up their targeted customer segment’s pains, and the team

tries to suggest solutions. Then, the team discusses their TD-issues as they are identified and measures

them based on a hunch. However, the respondent further explained that measuring TD would be helpful

in some cases, caused by stakeholders needing time estimates for when they would complete their

projects, but that it sometimes can be impossible to measure the size of TD-issues they discover. Caused

by the vast amount of TD coming from legacy code, the team would often find it challenging to measure

TD caused by them never knowing what they would find:

“[…] as I experience it, the TD often encompasses the huge monolith of TD rooting from old

codebases, and caused by its significance, it can be very challenging to estimate and measure

because we don’t know what we will find.”

The respondent from team F also expressed that they did practice TD measurement but that they did not

believe in conducting measurement and estimation as a mandatory practice:

“We try to avoid estimations. We could size the tasks with small, medium, large. But we don’t

estimate on a detailed oriented level, or conduct planning poker or stuff like that. We don’t want

to focus on the size of something that gets out, but instead the value it could create. […] One

can often get locked within time frames - and I’ve never been a fan of estimating anyway.

Some teams (A, E, H) did not practice TD measurement and did not view it as a necessary or valuable

practice for them. This mostly seemed to be reasoned by the feeling of implementing time-consuming

processes into something that should be naturally based on a hunch by the team. In addition, some of

the respondent emphasized that it was more helpful for them to instead create short-term goals and

divide bigger TD-items into smaller tasks in order for it to be more fathomable for developers to handle:

“The simple answer is that we don’t measure TD. But we could usually tell if a task would take

one week, or a month. But we don’t have any way of measuring it. That’s why we want to focus

on dividing it into smaller tasks, and repay it along the way”.

TD documentation

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

32

TD documentation was practiced among all teams. Seven out of eight teams seemed to document their

TD and had some control over their identified TD in the product backlog. Most teams did not seem to

have a structured way of documenting it, and some of the respondents further stated that they did not

see a need for having highly structured documentation protocols:

"TD isn't something one always has to handle. […] As long as it doesn't create problems now,

it's an acceptable risk."

Most teams seemed to follow the same optional protocol of documenting TD. Whenever a developer

would identify TD in their codebase, he/she would document it as a Jira-issue in the main product

backlog and treat it like any other software feature. All teams seemed to use Jira as their primary TD

documentation tool, and most teams would tread TD just like any other feature in the backlog-issue. The

TD-issues were usually documented as Jira-issues, subtasks, or epics in the Jira-backlog based on the

TD-items perceived size. Some teams would also use Confluence and GitHub to document TD more

elaborately and supply the documentation with attachments, such as compliance- or risk matrixes.

However, these teams did not have this process of documenting TD as a mandatory practice and only

conducted it vocationally based on their current need.

Having undefined TD documentation practices did seem to bring its concerns. This was caused by

respondents' wish for developers to document TD to not forget it and provide the whole team with a

better overview of their identified and accumulated TD. The respondent from team H stated:

"I wish we had a better way of remembering TD. It's a bit too much in the developers' heads. So

having a better structured way of documenting it would help us to get a better overview of TD

in our backlog in order to understand how much TD we have, and would also help us to prioritize

them and conduct it more methodically."

Only one out of the eight teams seemed to address this concern to some extent in their way of

documenting TD. Their main difference was the teams' emphasis on mandatorily having to document

TD whenever they would identify it and label them with "TD" to get an overview of the team's TD in a

separate TD-backlog. However, most teams did not have mandatory practices when they documented

their TD, and one could therefore argue that the case company reflects this TDM activity as strongly

received.

TD prioritization

TD prioritization also was practiced by the teams, where all teams conducted it one way or another. The

absolute majority of the teams seemed to conduct it based on a hunch, where different roles in each team

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

33

had the responsibility of conducting it. The product manager seemed to be mostly involved in the

prioritization activities (B, D, E, G), and often would share the responsibility with a tech lead or

engineering manager. Also, the tech leads and engineering managers seemed to have the responsibility

of prioritizing in several of the teams (D, E, G), and in some teams (C, F, H) the whole team was included

in the prioritization activities.

The teams mostly conducted their prioritization in a non-process-oriented manner and seemed to have

the activity baked into their normal development processes. In some teams, the prioritization would

happen over unformal conversations, and the decisions were often based on a hunch:

“What we often do, is that whenever we would identify TD, even though I now feel like we

have good control over our TD, we would usually just immediately discuss how critical it is,

and if we should handle it now or if we should wait.”

“We prioritize TD as a part of our regular development process. We don’t sit down and only

discuss TD prioritization. It’s a part of the regular development routine.”

“I would say it would be the tech lead and the product manager discussing “These are the things

we are dealing with now, and these have these consequences. How do we prioritize these?”.

And it really just comes down to balancing time and resources in terms of people. But I think

it’s more of a discussion with the team.”

Discussion would often take place in ad-hoc meetings between the responsible parts or in daily stand-

ups or weekly team syncs where all team members discuss what they have been working on. Some teams

would also conduct TD prioritization based on rough estimations surrounding specific impact factors:

“If the TD has security implications, it automatically has a higher priority. You need to look at

what you’ve got time to do, what is most urgent, and what’s the risk of leaving it.”

“Whatever has the biggest surface area. That would be approached first. And of course there are

factors of how bug the security issues are. These would be the main aspects.”

“We often prioritize based on insights. We are very keen about insights in this company. We

have to talk with the ones who would get affected by TD. This could maybe be done by looking

at measurements of how much something is used. It it’s a function that’s used daily that can be

affected by TD, then we maybe have to look into it more urgently.”

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

34

The teams mostly based their decision on a hunch and considered the many impact factors, ranging from

criticalness, surface impact, security threats, available resources, or customer value. However, two

teams (B, G) shows signs of conducting it in a more process-oriented manner and conducted activities

with the team in order to prioritize TD in which followed more specific models:

“Maybe once or twice a year, we conduct workshops where we try and write down every TD

we could think ok, and run a small risk analysis of it. Then we ask ourselves “Do we need to

handle this TD now?”. And based on that, we prioritize accordingly.”

“It’s mainly me (product manager) who prioritize what tasks that will generate most end-user

value. “Here we have the pain-points, we have to solve this, it will provide big end-user value”.

Then the tech lead would sit and prioritize how much TD we have left. So it’s mostly me and

the tech lead who agrees on what should be prioritized based on these findings. Usually end-

user value is prioritized, but sometimes TD would come first. Thereafter, we present it to the

rest of the team, and discuss whether these decisions further, and also conduct impact mapping,

and look at how much work something gives, vs. how much end-user value it generates. And

then we prioritize based on that. We usually base the decisions on hunch.”

However, most teams seemed to base their prioritizations on hunches and estimations. Caused by most

teams practicing this occasionally and not using any specific models or approaches for TD prioritization,

they were categorized as received.

TD repayment

In TD repayment, most of the teams conducted the TDM activity. In six out of eight instances (A, B, C,

D, E, F), the teams seemed to repay their TD as a part of their normal development routines. All the

teams who conducted the TDM activity repaid their TD by rewriting or refactoring code. Whenever a

developer would identify TD in the code, it would either get repaid immediately or documented in the

Jira-backlog for the developers to repay when needed and fit within their current time constraints.

“I don’t even know if we do it intentionally now, but if you’re in a bit of code that has TD, you

fix it along the way. And you build it into the time estimates. Of course, it it’s a huge TD, you

can’t do it along the way, but it its for smaller things, you definitely do it along the way.”

“It’s really just in the daily work routines. I’m a fan of refactoring as I go, instead of collecting

bunches of TD and take it all in one go.”

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

35

Some team (G, E) also practiced more creative approaches and weekly assigned developers as a “janitor”

or “hero of the week.” Their responsibility entailed investigating identified errors and repay TD as they

found them, in addition to repay smaller TD-issues in the backlog that other developers already

documented.

Most teams did not have a certain percentage of their development time assigned to repay TD. This

further got reasoned by them wanting to eliminate TD “as they go” and whenever it was needed, rather

than collecting bunches of it and then dedicate a certain amount of their planned work percentage to

repay it. However, one team (H) did have a more structured approach to TD repayment and had as a

general rule to assign 25% of their development work towards repaying TD:

“Overall we have a goal of using 25% of our time on TD or maintenance. It’s more of a statement

towards the developers for them to know that they can use that much of their time on TD in their

work, and not put all men on deck at the same time. We should use that much time on it.”

Some respondents (A, B) expressed a wish for their team to spend more time repaying TD caused by

experiencing that developers would usually spend more time working with new features and not as much

TD. However, most respondents explained it as unneeded in their TDM approach and experienced their

flexible way of repaying TD throughout the process as a well-functioning approach as of now.

“I think it’s difficult to say that “now you’re going to use 25% of your development time on TD

repayment”. Personally, I don’t believe in working with assigned percentages. I would rather

make the team build a culture for repaying TD whenever it comes. If you identify refactoring

needs, take it as you go and don’t neglect it.” (E)

One team (G) did not conduct TD repayment, caused by the team not owning any parts of the codebase

they built upon:

“We don’t own any technical components in the application. And therefore we don’t own the

company’s TD either. In our work, we pull out code, and build upon it.”

All in all, most teams seemed to practice TD repayment, however, mostly in an unstructured way and

mostly based on their current needs. Some teams did conduct repayment more structured by assigning

25% of their development work to repay TD. Another team did not practice TD at all based on them not

having a responsibility to repay the TD they identified. The teams, therefore, got categorized as having

a received maturity level in the TDM-framework.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

36

4.2.3 Level 3 – Organized
TD identification

Four teams got categorized as having an organized maturity level, while the other half got categorized

as having a received maturity level. All teams conducted identification throughout their development

processes and had this TDM activity baked into their development routines. The teams explained that

the identification usually happened when developers would embark on new tasks from the product

backlog or maintain their codebase and then discover errors in the code. The process got explained as a

natural process for most teams, and many considered it as a normal part of their development work:

“Most often, it’s developers discovering that “Here’s something that should be here”. And then

it’s often brought up for discussion in the morning stand-up.”

However, four of the teams (B, C, D, G) also expressed that they used tools to continuously identify

TD, in addition to manually inspect the code. They continuously conducted crash- and security analyses

of the code and others utilized dashboard-solutions, such as Grafana Dashboards or Splunk, that would

indicate TD in their codebase by sending error messages whenever incidents happened, and the teams

experienced these as helpful in their daily work:

“Either the developer just knows about it because he consciously made the decision and you

know it lives in your soul and it eats away at you. In addition, quite a few times when you get a

good dashboard for every application you have built, and you start to get obsessed over that,

and you see the API-response time, and sometimes you see a blip, and you’re like “what’s that

blip? I don’t like that.”, and you dig into it, and you realize that something bad is happening

there. And that could very often be TD.”

However, the other half of the teams (A, E, F, H) did not use any tools for identifying TD, caused mainly

by the respondents not being familiar with tools for conducting it. In addition, some of the developers

explained that they usually would know where their TD would be located, and therefore did not use any

tools for conducting it yet. A respondent from team B mentioned stated that:

“We don’t have tools for identifying TD. And we don’t run test coverages. But we have as a

rule-of-thumb that all legacy code is TD.”

Caused by the case company’s history of starting as an internal project within a bigger company, most

of the respondents seemed to experience that most TD came from legacy code, created by developers

not working in the firm any longer. Some of the respondents, therefore, explained that they often would

consider all legacy code as TD, and that the developers therefore would already be familiar with what

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

37

TD they had in the codebase. However, many respondents did perceive TD identification as a valuable

practice in the teams, and some also expressed a wish for better ways of identifying TD and remembering

it:

“Having a more defined and structured way of identifying it would be better. Because

developers would know their own identified TD. But that wouldn’t be communicated to product

managers, and the ones estimating stuff.”

TD prevention

In TD prevention, all teams conducted it in one way or another. Three out of eight teams (A, B, F)

seemed to conduct in occasionally throughout their development processes and mostly based their

practice on optional prevention practices. The mostly used prevention practice in the teams seemed to

be coding guidelines they followed continuously through their development processes, which set

standards towards how they wrote code in order to prevent TD accumulating. These could be different

standards the developers were recommended to follow when they wrote code and often had in the back

of their minds while working:

“An easy principle we follow is to leave the code in a better shape than what it was in. Another

we try and follow is to avoid developing hacks in the code. I think that hacks in the code are one

of the main reasons from TD accumulation.” (A)

Another practice they seemed to use to prevent TD was running occasional tests and practiced

continuous integration throughout the development process to maintain a certain degree of control of

their codebase and had this as a way of preventing TD from accumulating. In addition, different

programming practices, such as pair-programming and mob-programming, was occasionally practiced

by some teams, where several developers would collaborate on the same code development in order to

(1) get different perspectives on the same work and (2) avoid development making short-cuts in the code

to ensure quality. The teams seemed to show indications that they understand the value these practices

give but also to express that it is experienced as cumbersome:

“We sometimes run tests and conduct continuous integration. We sometimes do pair-

programming, especially nowadays with remote working. I do see its purpose, but I’m very bad

at practicing it because it’s very time consuming. And when I work, I’m very often like “I know

how to write this”, and won’t bother pair-programming it.” (B)

However, most teams (C, D, E, G, H) seemed to conduct TD prevention in a more well-structured

mandatory manner, practicing it continuously throughout the development processes and using different

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

38

methodologies to conduct it. These teams seemed to practice the same kinds of practices as the teams

practicing TD prevention, more based on current needs, but in a more structured, continuous, and

mandatory manner. These teams also had a shared interest in practicing TD prevention through

collaborative practices. In addition, some of these teams conducted agile practices, such as planning

sessions, product demos, and post mortems. They emphasized the importance of knowledge sharing

within the team in order to prevent TD and experienced these as “high leverage activities”:

“The best things to do is to just be on top of each other. Do code reviews, planning sessions,

pair programming, mob programming. All these things contribute to preventing TD. The really

interesting thing is that when doing these things, the entire team will probably not make that

same mistake again. And that’s a high leverage activity!”

All in all, the teams seemed to mostly reflect a relatively high degree of practice in TD prevention, and

most teams stressed the practices’ importance for quality insurance in software development. Despite

not all teams actively performing the possible approaches to prevent TD, most teams had some

mandatory practices to follow throughout the development process. The teams could therefore be argued

to be categorized as organized in the TDM framework.

TD communication

All teams got categorized as organized in TD communication. This was caused by the teams’ common

emphasis on communicating TD being essential continuously through their development processes and

by the teams viewing this as the recipe for a well-working team dynamic. TD was usually brought up

the topic during informal conversations, daily stand-ups/meet and greets, or by setting up ad-hoc

meetings specifically for discussing TD, and the meetings would always include necessary stakeholders

to discussions relevant for them to be included in:

“We usually communicate TD in Mondays and Fridays where we have available meeting sports

in the calendar for people to bring up whatever’s on their minds. Otherwise, it’s often

communicated externally through a mix of informal conversations and in different forums

across work practices in the company. Product manager forums, tech lead forums, and stuff like

that.”

“I think that good communication is just product and engineering having a good relationship.

When I think I’m on a good team that I’m working in, I feel like it’s just an ongoing conversation

rather than “we need once a week to talk about these things”.”

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

39

All teams also included necessary stakeholders in their communication continuously. It seemed as if the

company management understood TD and teams having to dedicate time and effort to manage it and be

engaged in the communication. However, the findings seemed to reveal that some teams (D, G) could

find it challenging to communicate TD to higher stakeholders, such as the company management coming

from a business perspective:

“Honestly, there’s always been an artform to communicate TD to extremely smart, but not

technical people.”

One of the developers mentioned that they had experienced a notion of friction from the company

management between new product development and feasibility. A respondent further expressed that

communicating TD to external stakeholders could be challenging and unmotivating caused by the

company management not having a proper focus on TD:

“I wish that there was a bigger focus on TD centrally in the company, and that TD had a more

shared lift within tech in order to really communicate the importance of prioritizing TD in

development work. […] They want something new which no one has seen before. And that is a

way for them to increase the company’s amount of TD. So there’s something weird about their

focus. […] If the company management would applaud us for our work with TD in another way

than “Great work you guys” because they felt like they had to, and instead work have said more

sincerely “This is really important for us, thank you!”. That would be much more motivating.”

The respondent did express a wish for a bigger focus on TD centrally in the company and to create a

better understanding of the concept across the whole company. In addition, there seemed to be

indications that this difficulty impacted the team members' motivation. It, therefore, seemed to be an

apparent challenge towards communicating TD to stakeholders not coming from tech divisions within

the company. However, this did not necessarily seem to influence the inclusion of business stakeholders

in their communication threads.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

40

5.0 Discussion
In this section, the findings will be discussed against the TDM framework and previous research on

TDM to answer the research question this study has been based on: How do autonomous teams actively

manage technical debt?

5.1 Discussion of TDM activities

TDM activity/

TDM maturity

level

Repayment Prevention Documentation Identification Measurement Monitoring Communication Prioritization

Organized H C, D, E, G, H D B, C, D, G C A, B, C, D, E, F,

G, H

G, B

Received A, B, C, D, E,

F

A, B, F A, B, C, E, F,

G, H

A, E, F, H B, C, D, F, G D, F A, C, D, E, F,

H

Unorganized

G A, E, H A, B, E, G, H

Duplication of Table 6. Team evaluation in TDM-framework

Looking back at Yli-Huumo et al.’s (2016, 196) explanation of the TDM framework, they created it as

a tool for practitioners to use in order to better understand their current practice of TDM, as well as a

tool in which could guide companies in how to improve them. The findings seemed to show clear

indications on the TDM-framework working as a tool for understanding teams’ level of maturity in

TDM-activities in terms of their organization and management. When studying the teams, one could see

that all teams seemed to reflect clear degrees of organization skills. Some teams had highly structured

ways of conducting TDM continuously where teams followed defined protocols, while other teams

conducted occasionally in more improvised ways, not following a planned process. This accurately

correlates with Paulk et al.’s (1993, 19) explanation of the maturity spectrum teams often is located

within.

Also, looking back at Paulk et al.’s (1993) CMM, this guiding star of a framework has provided

practitioners with both achieving a better understanding and improving development processes in terms

of management, as well as in success. Practitioners have used these frameworks to improve their current

software engineering practices, whereas higher team performance, increased time efficiency, and higher

process performance often have been achieved by increasing their maturity levels (Astakhova et al.

2016; Osipov et al. 2015; Titov et al. 2016, 4). It has seemed to be a relation between maturity levels

and teams’ success, where the two relational factors increase or decrease in accordance with each other.

Based on the data shown in the filled out TDM framework as shown in table 6, one could therefore

believe the TDM framework to act the same way, and argue this to be an easy point of departure for the

companies to use in order to improve their current state of TDM practice.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

41

In some TDM activities, the teams seemed to show clear signs of their ranked TDM maturity level begin

relatable to their perception of TDM successfulness. However, the collected data also seemed to provide

interesting findings, where this relationship seemed to be deviate within certain TDM activities. Caused

by these deviations between the relation of TDM maturity levels and TDM successfulness, one could

therefore wonder if the TDM framework actually could be used by practitioners in order to correctly

understand their current state of TDM practice, as well as to improve and achieve TDM success. The

following parts of this chapter will therefore bring up findings within each TDM activity and discuss

the case company’s execution of TDM activities in order to develop a better understanding of how they

actively manage their TD, as well as to understand whether their identified maturity levels could be used

as an accurate representation of their TDM successfulness.

5.1.1 Organized activities
TD prevention

Starting with TD prevention, most of the case company's teams got categorized as having an organized

maturity level. All teams performed TD prevention in one way or another and had coding guidelines

they followed continuously through their development processes, which set standards for writing code

to prevent TD from accumulating. In addition, some teams ran automated tests of their code to have a

continuous method of inspecting their code base for errors. This has been proven as an effective way of

preventing TD in research, caused by its ability to let developers effectively fix the errors and stop the

TD accumulation (Bavani 2013; Gat and Heintz 2011. Codabux and Williams 2013). Several teams also

practiced different programming practices, such as pair-programming and mob-programming, to

prevent TD. These activities have also been recognized as highly effective practices in TD prevention,

caused by their knowledge-sharing leverage (Stolberg 2006; Nord et al. 2012, 98). The findings revealed

that most teams argued that these activities got experiences as high-leverage activities, and they were

highly satisfied with the value they created for the team, both for preventing TD and increasing the

developers' knowledge. Since the teams got categorized as organized in the TDM framework and

seemed to be satisfied with their TD prevention practices, one could argue that the TDM maturity level

could relate to their TDM success. Therefore, this TD prevention in the TDM framework seemed to

represent the team accurately, both in terms of its management and success.

TD identification

The case company classified as both received and organized in TD identification, where half of the

teams conducted it occasionally throughout their development processes based on current needs, and

the other half conducted it continuously and had automated tests and monitoring indications for TD. The

organized teams experienced this continuous TD identification as helpful for them. However, the

received teams did not practice it continuously, mostly caused by not knowing which tools one could

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

42

use for identifying TD. Therefore, they manually conducted TD identification whenever they would find

it organically in their development work. This seems to correlate with previous research, finding that

teams often find the lack of TDM tools as a challenge (Ernst et al. 2015, 56). Some of the teams

categorized as received also expressed a wish for better ways of conducting identification. Based on this

recognition of value and wish for improvement, one could argue that their maturity level seems to relate

to TDM success. The TDM framework shows that using tools to conduct TDM identification would rate

these teams as organized teams (Yli-Huumo et al. 2016). Also, previous research shows that using tools

for conducting static code analyses is beneficial for detecting bug-related TD (Zazworka et al. 2013).

Therefore, one could argue that the teams categorized as received would have improved their TDM

success if they implemented such practices for TD identification (Zazworka et al. 2013).

TD communication

TD communication got categorized as having an organized maturity level in the case company, and all

teams got categorized within the highest TDM maturity level. The case company seemed to have a

common emphasis on communication being an essential part of their development process, and all teams

had good internal structure TD communication through several sync meetings conducted weekly.

Having a continuous and structured approach to TD communication provides the team with better

control over their TD, and research seems to show consensus in this being a highly beneficial practice

(Klinger et al. 2011). Also, all stakeholders, including business stakeholders, were included in meetings

that were held regarding TD, whenever the team found the need of updating them. However, even

though all teams highly practiced TD communication as organized in the TDM framework, the findings

did reveal teams experiencing challenges regarding communicating TD to non-technical business

stakeholders. This has been recognized as one of the most prominent challenges in TD communication

in previous research (Klinger et al. 2011, 35). Two of the teams expressed that communicating TD to

business stakeholders could be challenging caused by the company management not having a correct

focus on TD and not appreciating the teams' effort to use time on TD enough. In addition, one of the

respondents explained that the wrong focus had a direct impact on the teams' motivation caused by a

lack of appreciation from the company management. Looking at previous research, TD-related issues in

software development do often not translate well between technical and non-technical work practices

caused by a communication gap of different perceptions of TD (Yli-Huumo et al. 2014). It was also

expressed from one respondent that the company management often had different prioritizations in new

feature development vs. improving current features. As a typical result, this gap could potentially

aggravate TD accumulation by business stakeholders not providing teams with adequate time and

resources to repay their TD (Klinger et al. 2011, 38). Therefore, despite the teams proving to practice a

higher TDM maturity level caused by their constant communication of TD to all necessary stakeholders,

it was difficult for the team to benefit from the organized communication. Therefore, one could argue

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

43

that the TDM aspect of communication seems to have several other factors than the organization of

communication one should consider when trying to improve their perceived TDM success.

5.1.2 Received activities

TD prioritization

TD prioritization got categorized as received in the TDM framework. Some teams practiced it through

dedicated prioritization meetings and impact mapping workshops. They viewed these as valuable for

the team to better understand the severity of their TD and correctly prioritize TD-issues. Some teams

also conducted an activity discussing their TD's different impact factors, whereas criticalness, surface

impact, and customer value were often taken into significant consideration. Previous research seems to

identify this as one of the most common ways of practicing TD prioritization, caused by many perceiving

TD as having an equal or higher severity level than new features (Bavani 2012; Codabux and Williams

2013). However, most other teams seemed to conduct their TD prioritization through informal

conversations, briefly in daily standup meetings, or through ad-hoc meetings whenever TD prioritization

was needed. Their decisions were often based on a hunch, and they did not conduct any technical

calculations to quantify their TD severity. Conducting TD prioritization activities in early iterations has

shown its value in previous research and functions as a way of preventing TD from accumulating (Davis

2013). Previous research shows that good ways for teams to practice prioritization could happen through

different technical calculations such as running static test coverages (Seaman et al. 2012). Also,

conducting workshops and cost-benefit analyses of TD seems to be a practice teams have used for

effective and accurate TD prioritization (Seaman et al. 2012; Zazworka et al. 2011). Thus, one could

believe that the teams ranked as received in the TDM framework could benefit from increasing their

maturity level and conduct TD prioritization through more structured methods to improve their TDM

practice.

TD documentation

TD documentation was a relatively optional practice within most teams, and the TDM activity, therefore,

got categorized as having a received maturity level. Most of the teams had no well-structured method

of documenting their TD, and the developers usually treated identified TD-issues as regular product

features. A few developers would also expressed that they did not always see the need of documenting

all TD they would identify and only conducted it whenever they felt a need for it. One respondent

explained that some TD could be perceived as acceptable risks, and therefore based their documentation

decisions on their own interest. This correlates with previous research, proving that developers usually

document the TD they perceive as relevant (Leithbridge et al. 2003, 38). However, these decisions could

often result in developers neglecting TD, which is also identified as one of the most major challenges

with TDM (Codabux and Williams 2013, 14; Power 2013). Many developers also expressed that they

often would remember undocumented TD in the back of their minds. However, previous research also

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

44

has identified this approach as another way of neglecting TD, which could result in it growing into

something potentially damaging to the codebase (Stettina et al. 2011, 164). Still, one team got

categorized as organized and seemed to conduct TD documentation in a more defined manner. They

had a system for filtering out TD-issues in the backlog by tagging the issues in Jira, which let them have

a separate TD backlog whenever they would need to get a better overview of their identified TD.

Previous research shows that having separate TD backlogs provides teams and the case company with

a better long-term understanding of their development process and could help them significantly in

practicing other TDM activities more maturely (Codabux and Williams 2013; 13; Stettina et al. 2011;

164). Also, some respondents expressed a wish for having a better structured way of documenting and

remembering their TD. Therefore, one could argue that the received teams could increase their TDM

maturity level by having a separate TD backlog as a simple step towards further improving their TDM

success in TD documentation.

TD repayment

TD repayment also was rated as having a received maturity level. All teams who conducted repayment

did it by rewriting or refactoring code, which are the most common ways of conducting it in research

(Pérez et al. 2020; Codabux and Williams 2013). Repayment was mostly conducted occasionally and

based on their current need. Whenever a developer would identify TD in the code, it would either get

refactored/rewritten immediately or documented in the Jira-backlog for the developers to repay when

needed and fit within their current time constraints. The respondents explained that they would often

prefer repaying TD "as you go" rather than collecting them and repaying them in bunches. Most teams

did not have a certain percentage of their development time assigned to repay TD. This correlates with

previous literature, showing that most teams choose to repay TD during its evolution and focus their

development work mostly on new features (Digkas et al. 2018, 153; Power 2013). This could be because

developers often choose to prioritize new feature development instead of improving existing ones

(Codabux and Williams 2013, 14). However, most teams expressed that they did not believe in assigning

percentages as an effective TD repayment strategy for their instances. This was caused mainly by them

viewing TD repayment as a regular part of their development routines and saw it as unnatural to have a

specific percentage of their work assigned to repay TD. Overall, the teams seemed to project a satisfied

expression of how they repaid their TD and did not express a need for implementing practices for

improving their current TDM maturity level to achieve an improved success.

TD measurement

TD measurement got rated as having a received maturity level. Most teams seemed not to have a

structured practice of the activity, and it was mostly conducted as an optional practice. Some teams

conducted measurements based on simple data and T-shirt sizes as sizing metrics, while others would

make a list of each TD-issue's potential impact factors and measure the TD-issue based on the length of

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

45

listed impact factors. However, none of the teams seemed to conduct continuous measurement during

their development processes, such as the TDM framework suggests organized teams to do (Yli-Huumo

et al. 2016). Several teams seemed to have received the value of practicing measurement to a certain

extent. However, they did not see the value in having the activity conducted in any more structured way

than they currently did. There seemed to be a common lack of belief in heavily measuring and estimating

the size of TD. Some respondents explained that they avoided estimations caused by the fear of

developers feeling locked within defined time frames of handling their TD. In addition, other

respondents explained it also as impossible to measure their TD, caused by them not knowing how big

the TD could be. In some teams, the TD they identified was mostly bug-related TD, while in other teams,

the TD could often root from a "TD-monolith" of legacy code. As Kruchten et al. (2012) explained, TD

can come from minor bugs as well as fundamental architectural and structural issues. Furthermore,

caused by this measuring uncertainty, one could wonder if implementing TDM practices for improving

their TDM maturity level to be beneficial for the team in terms of success or if it would have the opposite

effect.

5.1.3 Unorganized activities

TD monitoring

TD monitoring was categorized as unorganized in the TDM framework, and previous research shows

that this activity is rarely practiced caused of its time consumption and cost of implementation (Yli-

Huumo et al. 2016). In this study, only three teams practiced TD monitoring to some extent by basing

the practice on simple data from their backlog or using other monitoring software, which are proven

ways to effectively identify, track, and manage TD (Power 2013; Hansen et al. 2010). Only one

respondent acknowledged the activity’s value and expressed a wish for better visualizing their TD for

developers. However, most other respondents expressed it as uninteresting to implement, unnecessary

to conduct, and highly time-consuming. Several respondents explained that this was of minimal interest

when asked whether tools for visualizing TDs evolution were of interest. This came to a surprise, caused

by previous research seemingly viewing TD monitoring as a crucial part of their development routines

and viewing TD monitoring as having a direct influence on lowering the negative impact TD can create

(Guo et al. 2011). Martini et al. (2016, 165) found that not carefully analyzing and tracking identified

TD, adverse effects of TD could get aggravated. In addition, monitoring TD could work as a method to

quantify TD in which works as a tool for better communication and understanding of identified TD

(Klinger 2011, 36). Research seems to be unanimous in TD monitoring’s positive impact on TDM. Then

again, most teams expressed no need to conduct it in their processes, often caused by the fear of making

complicated processes around TDM for the developers to follow. This argument could be supported by

Martini et al.’s (2016, 165) findings of some TDM activities, creating more work on top for developers

to follow to practice the activities. Therefore, one could wonder if achieving a higher TDM maturity

level would be beneficial for the team and improve their processes.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

46

5.2 Reliability of TDM framework
So far, the discussion has provided insights towards how the case company works within each different

TDM activity, and one can see that the TDM framework could work as a framework for better

understanding teams’ current state of practice. The maturity levels accurately represented how much

effort each team spent on each activity. An easy answer to the research question about how autonomous

teams actively manage their TD could therefore be based on these findings. Teams seemed to work

continuously with TD prevention, identification, and communication. They occasionally worked with

TD repayment, documentation, identification, measurement, and prioritization. Also, they worked

minimally with TD monitoring. However, when looking further into the TDM activities discussed

above, the study identified deviations in several activities where the level of maturity did not apply to

the teams’ success. Therefore, one could question whether the TDM framework would provide

practitioners with accurate representations of not only how autonomous teams manage their TD, but

also if they are successful at it.

In TD prevention, identification, prioritization, and documentation, the findings identified that the

teams’ TDM maturity level accurately matched their perceived TDM success. For example, in TD

prevention, most teams conducted mandatory practices to prevent TD from accumulating and performed

these frequently and continuously throughout their development process. In addition, the teams seemed

to have a common expression of these practices being essential and helpful in their work. Therefore, the

team got categorized as organized. Also, looking into TD identification, one could see that the teams

had their ways of conducting TD identification on occasional basis. The teams seemed to find the

practice of identification as valuable in their work, and some respondents also found room for

improvement within this activity in order to further improve their performance within TD identification.

This activity, therefore, got categorized as received. What is present in both these activities is that both

TDM activities seemed to reflect that a lower degree of TDM maturity levels projected lower TDM

success. In contrast, higher TDM maturity levels projected higher TDM success. Therefore, this study

could be argued to prove that Yli-Huumo et al.’s (2016) TDM framework could apply to these four

TDM activities in order to accurately understand a company’s current state of TDM practice, as well as

to use these maturity level as a guiding framework for how to improve teams’ TDM success.

However, in TD monitoring, measurement, repayment, and communication, one could begin the doubt

the TDM framework’s ability to “evolve toward a culture of software engineering and management

excellence” in the same way as Paulk et al. (1993, 19) has described their maturity model to do. In these

TDM activities, the case company’s TDM maturity levels seemed to show signs of deviations in TDM

success. For example, in TD repayment, the teams seemed to mostly conduct it based on their current

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

47

needs throughout the development process and did not follow any well-structured process. According

to the TDM framework, these teams were categorized as having a received maturity level. However,

most respondents expressed that they were satisfied with the way they practiced the activity and did not

think of improving their current practice as necessary to accomplish a higher level of success. Unlike in

TD prevention, identification, prioritization, and documentation, these TDM activities did not prove that

a lower degree of TDM maturity level projected lower TDM success and vice versa. The findings

seemed to project that implementing new TDM practices that would rate them higher in the TDM

framework would not provide them with a higher degree of TDM success. Many respondents projected

a common expression of implementing strict processes into their free-flowing development processes

as time-consuming as well as unrealistic to be followed up by all team members in a way that would

benefit them. Also, some respondents feared that implementing more structured processes in TDM

practices would become more work in the developers’ hands rather than generating value.

These deviations seem to correlate with previous findings of TDM practice and its challenges.

Implementing new TDM practices has shown to cause a degrading effect on TDM in some cases, caused

by (1) substantial amounts of effort and resources required in order to implement new tools and

practices, and (2) the creating of more work on top of existing processes for managing TD (Martini et

al. 2016, 165; Yli-Huumo et al. 2016, 213). Still, empirical studies on TDM seem to stress that

implementing TDM practices and tools as highly beneficial. Looking at previous research, one could

therefore question whether respondents acting rejecting towards implementing more structured

processes could be caused by a lack of knowledge in TDM tools and practices to use (Ernst et al. 2015,

56; Martini et al. 2016, 168). However, the findings gathered from TD communication could then again

counter these arguments. Despite the TDM activity getting categorized as highly organized in the TDM

framework, some respondents did not project a higher degree of TDM success caused by challenges in

their communication. Thus, one could question whether the TDM framework is reliable to use for all

teams wanting to understand how teams are managing their TD, as well as whether the framework’s

maturity level is related to teams’ success at them.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

48

6.0 Implications
6.1 Limitations
Aristotle wisely said “The more you know, the more you know you don’t know.” This quote also applies

well to research projects. The deeper you dig into a research process, the more limitations become

apparent. This subchapter will therefore present the most significant limitations of this study.

Caused by the covid-19 pandemic, this case study has been affected and gotten limitations during

conduction. Case studies are supposed to build their empirical saturation based on several sources, such

as interviews, documentation, observations, and informal conversations. However, the pandemic has

made this challenging and resulted in getting limited access to the additional sources. This study’s

findings are therefore based on the conducted interviews, and not on other sources.

Another limitation of this study is that TDM research, and especially on TDM frameworks, is limited. I

did not manage to find other studies in which empirically tested TDM maturity frameworks. In order to

therefore provide the study with richer discussions towards how teams manage their technical debt, it

would therefore have been beneficial to reference other literature than the paper written by the creators

of the TDM framework, Yli-Huumo et al. (2016). This would further robustify the literature review, as

well as increase the validity of this research project. Even though the TDM framework seemed to

perform well to understand autonomous teams, it would not necessarily do the same in other companies.

In addition, the study also has some limitations in terms of data collection and research design. It would

have been beneficial to interview autonomous teams outside the case company in order to gain richer

insights and to gain further validity of findings from using the TDM framework. While the TDM

framework did not apply well in translating maturity levels into TDM success in this study, this would

might not apply for other companies or teams in the same way. Choosing to conduct a multiple-case

study would normally address this limitation because the research design collects data from several

contexts, but since all data is gathered from different contexts within the same case company, the project

would benefit from more representative data coming from other teams and companies.

6.2 Practical implications
There are several practical implications that can be drawn from this study in terms of improving their

current TDM processes, both in terms of management and success.

Starting with management, the study revealed the case company to mainly project a received level of

maturity within TD repayment, documentation, measurement, prioritization, and partial identification.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

49

This means that the company, as of now, generally practice these activities on occasional basis, but

without any clear strategy in when they are conducted. In addition, the case company performed low in

TD monitoring, where most teams ranked as unorganized. The teams invested minimal effort into

conducting this, and had no ways of tracking their TDs evolution. Based on these findings, the case

company could use the mentioned TDM activities as a point of departure, and implement the

recommended practices from the TDM maturity model in order to increase their TDM maturity in terms

of its management and organization. This would provide the teams with more control over their TD and

increase their awareness as a result.

As for improving their current TDM practice in terms of success, the study found that the company

could more safely look further into the TDM activities, proving a relation between TDM maturity level

and TDM success to improve their current practices. In TD identification, prioritization, and

documentation, there was identified room for improvement. Since these activities also got ranked as

having a received maturity level, one could further improve these activities by implementing the

suggested tools and practices as shown in the TDM framework and practice these more frequently rather

than only based on their current need. By making these practices more mandatory and continuously

conducting them, one could believe that their TDM success would improve accordingly.

Also, TD communication could be argued as an important TDM activity for the case company to look

further into. Even though it got categorized as highly mature in the TDM framework, there was

identified a communication gap between the team and case company management. Therefore, one could

argue that the case company should look further into this and look for solutions in order to avoid the

miscommunication to aggravate TD accumulation over time.

6.3 Implications for future research
The TDM framework shares similarities with other CMM frameworks. However, this study identified

a need for the TDM framework to be further empirically tested and iterated on. The TDM framework

worked well as a tool for understanding a case company’s TDM processes, but did not translate too well

for companies to use to improve TDM success. It would be interesting to further investigate the relation

between TDM maturity levels and actual TDM success and dig deeper into each individual TDM activity

in order to develop a better understanding of these challenges. One could, for example, investigate

whether the TDM maturity levels’ relation to success are stronger in some contexts compared to others.

Furthermore, it would also be interesting to address the identified limitations in further research on TDM

and the TDM framework. Caused by the limited number of sources used for data collection in this study,

it would be interesting to see whether the findings from this study would correlate with observations,

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

50

documentation, and other sources. Also, it would be interesting to test the TDM framework in

autonomous teams coming from different companies and different industries in order to develop a better

understanding for how the TDM framework functions in different settings. This would enrich the TDM

framework's reliability and facilitate for other researchers to iterate on the framework's current state in

order to possibly develop a reliable and generalized TDM framework. This all would also contribute to

the scarce field of TDM research in order to develop a better understanding of how teams actively

manages their TD.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

51

7.0 Conclusion
This study has explored and answered the research question, how do autonomous teams actively manage

technical debt? This was done through conducting a multiple-case study on one of Norway's biggest

fintech companies, investigating how eight of their autonomous teams worked towards technical debt

management (TDM) using Yli-Huumo et al.'s (2016) TDM framework. The TDM framework was

created taking inspiration from Paulk et al.'s (1993) capability maturity model (CMM) and Li et al.

(2015) TDM activities.

The findings revealed that autonomous teams practiced TDM activities to different extents. In some

activities, the teams practiced these continuously throughout their development processes and often

would use tools in order to address them. While in other activities, the teams did not seem to have any

structured approach and often improvised practices based on their current need. However, when

summarizing the findings, it was found that the autonomous teams got categorized as performing a

generally received level of maturity in the TDM framework. Most teams practiced TDM activities based

on their current needs and acknowledge the value they can create.

However, the study did identify challenges related to the TDM framework's relation between TDM

maturity level and TDM success. When looking further into whether the TDM framework could work

as a tool for improving current TDM practices, the study identified deviations. Teams seemed to show

clear indications on implementing practices for increasing their TDM maturity level as highly

unnecessary caused by high time-consumption on implementation and practice, as well as a fear of

creating more work around TD than it already is. It can therefore be challenging to understand whether

finding teams as received means that there is room for improvement in TDM or not.

Regardless, the TDM framework did provide valuable data in terms of better understanding how

autonomous teams managed their TD in the context of a Norwegian fintech company. Based on these

findings, the TDM framework has indeed proven to act like a well-functioning device for better

understanding teams' TDM processes. The TDM framework could also be used to a certain extent in

order to improve teams' TDM success, but practitioners could be recommended to consider the identified

deviations between TDM maturity levels and TDM success in some of the activities. We therefore

suggest the TDM framework to be further empirical tested and iterated on for it to work as an accurate

tool for when trying to understand and improve teams’ TDM processes.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

52

References
Abrahamsson, P., M. A. Babar, og P. Kruchten. 2010. «Agility and Architecture: Can They Coexist?»

IEEE Software 27 (2): 16–22. https://doi.org/10.1109/MS.2010.36.

Agile Alliance. 2020. «Manifesto for Agile Software Development». u.å. Opened 13th november 2020.

https://agilemanifesto.org/.

Anderson, P. A. (1983). Decision making by objection and the cuban missile crisis. Administrative

Science Quarterly, 28(2), 201-222.

Astakhova, Nadezhda, Liliya Demidova, and Evgeny Nikulchev. 2016. “Multiobjective Optimization

for the Forecasting Models on the Base of the Strictly Binary Trees.” International Journal of

Advanced Computer Science and Applications 7 (November).

https://doi.org/10.14569/IJACSA.2016.071122.

Bavani, R. 2012. «Distributed Agile, Agile Testing, and Technical Debt». IEEE Software 29 (6): 28–

33. https://doi.org/10.1109/MS.2012.155.

Beck, K. 1999. «Embracing change with extreme programming». Computer 32 (10): 70–77.

https://doi.org/10.1109/2.796139.

Behutiye, W. N., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of technical debt

in the context of agile software development: A systematic literature review. Information and

Software Technology, 82, 139-158.

Bellomo, S., R. L. Nord, og I. Ozkaya. 2013. «A study of enabling factors for rapid fielding combined

practices to balance speed and stability». I 2013 35th International Conference on Software

Engineering (ICSE), 982–91. https://doi.org/10.1109/ICSE.2013.6606648.

Birkeland, J. O. (2010, June). From a timebox tangle to a more flexible flow. In International conference

on agile software development (pp. 325-334). Springer, Berlin, Heidelberg.

Blekinge Institute of Technology, Richard Torkar, Pau Minoves, i2cat Foundation, Janina Garrigós, og

i2cat Foundation. 2011. «Adopting Free/Libre/Open Source Software Practices, Techniques

and Methods for Industrial Use». Journal of the Association for Information Systems 12 (1):

88–122. https://doi.org/10.17705/1jais.00252.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

53

Brown, Nanette, Ipek Ozkaya, Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, Nico Zazworka,

Yuanfang Cai, mfl. 2010. «Managing Technical Debt in Software-Reliant Systems». I

Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research - FoSER

’10, 47. Santa Fe, New Mexico, USA: ACM Press. https://doi.org/10.1145/1882362.1882373.

Codabux, Z., & Williams, B. (2013, May). Managing technical debt: An industrial case study. In 2013

4th International Workshop on Managing Technical Debt (MTD) (pp. 8-15). IEEE.

Cousin, G. (2005). Case Study research. Journal of Geography in Higher Education, 29(3), 421-427.

Cunningham, W. (1992). The WyCash portfolio management system. ACM SIGPLAN OOPS

Messenger, 4(2), 29-30.

Curtis, Bill, Bill Hefley, and Sally Miller. 2009. “People Capability Maturity Model (P-CMM) Version

2.0, Second Edition:” Fort Belvoir, VA: Defense Technical Information Center.

https://doi.org/10.21236/ADA512354.

Davis, N. 2013. «Driving Quality Improvement and Reducing Technical Debt with the Definition of

Done». I 2013 Agile Conference, 164–68. https://doi.org/10.1109/AGILE.2013.21.

Digkas, Georgios, Mircea Lungu, Paris Avgeriou, Alexander Chatzigeorgiou, and Apostolos

Ampatzoglou. 2018. “How Do Developers Fix Issues and Pay Back Technical Debt in the

Apache Ecosystem?” In 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), 153–63.

https://doi.org/10.1109/SANER.2018.8330205.

Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B., 2012. A decade of agile methodologies: Towards

explaining agile software development. Journal of Systems and Software, Special Issue: Agile

Development 85, 1213–1221. https://doi.org/10.1016/j.jss.2012.02.033

dos Santos, P. S. M., Varella, A., Dantas, C. R., & Borges, D. B. (2013, June). Visualizing and managing

technical debt in agile development: An experience report. In International Conference on

Agile Software Development (pp. 121-134). Springer, Berlin, Heidelberg.

Dybå, Tore, Torgeir Dingsøyr, og Nils Brede Moe. 2014. «Agile Project Management». I Software

Project Management in a Changing World, redigert av Günther Ruhe og Claes Wohlin, 277–

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

54

300. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-

55035-5_11.

Eisenhardt, Kathleen M., and Melissa E. Graebner. "Theory Building from Cases: Opportunities and

Challenges." The Academy of Management Journal 50, no. 1 (2007): 25-32. Accessed May 24,

2021. https://doi.org/10.2307/20159839

Ernst, Neil A., Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton. 2015. “Measure It?

Manage It? Ignore It? Software Practitioners and Technical Debt.” In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering, 50–60. Bergamo Italy: ACM.

https://doi.org/10.1145/2786805.2786848.

Fowler, Martin, Kent Beck, og John Brant. u.å. «Refactoring - Improving the Design of Existing Code»,

337. Frank, A., og C. Hartel. 2009. «Feature Teams Collaboratively Building Products from

READY to DONE». I 2009 Agile Conference, 320–25.

https://doi.org/10.1109/AGILE.2009.51.

Garousi, Vahid, and Erik Veenendaal. 2021. “Test Maturity Model Integration (TMMi): Trends of

Worldwide Test Maturity and Certifications.” IEEE Software PP (February).

https://doi.org/10.1109/MS.2021.3061930.

Gat, Israel, og John D. Heintz. 2011. «From Assessment to Reduction: How Cutter Consortium Helps

Rein in Millions of Dollars in Technical Debt». I Proceeding of the 2nd Working on Managing

Technical Debt - MTD ’11, 24. Waikiki, Honolulu, HI, USA: ACM Press.

https://doi.org/10.1145/1985362.1985368.

Guo, Yuepu, og Carolyn Seaman. 2011. «A Portfolio Approach to Technical Debt Management». I

Proceeding of the 2nd Working on Managing Technical Debt - MTD ’11, 31. Waikiki,

Honolulu, HI, USA: ACM Press. https://doi.org/10.1145/1985362.1985370.

Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G., Da Silva, F. Q., ... & Siebra, C. (2011,

September). Tracking technical debt—An exploratory case study. In 2011 27th IEEE

international conference on software maintenance (ICSM) (pp. 528-531). IEEE.

Guzzo, Richard A., og Marcus W. Dickson. 1996. «TEAMS IN ORGANIZATIONS: Recent Research

on Performance and Effectiveness». Annual Review of Psychology 47 (1): 307–38.

https://doi.org/10.1146/annurev.psych.47.1.307.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

55

Hanssen, G., A. F. Yamashita, R. Conradi, og L. Moonen. 2010. «Software Entropy in Agile Product

Evolution». I 2010 43rd Hawaii International Conference on System Sciences, 1–10.

https://doi.org/10.1109/HICSS.2010.344.

Huang, Chun-Che, and Andrew Kusiak. 1996. “Overview of Kanban Systems.” International Journal

of Computer Integrated Manufacturing 9 (3): 169–89.

https://doi.org/10.1080/095119296131643.

Humphrey, W. S. (1989). Managing the software process. Addison-Wesley Longman Publishing Co.,

Inc..

Kaiser, Michael, og Guy Royse. 2011. «Selling the Investment to Pay Down Technical Debt: The Code

Christmas Tree». I 2011 Agile Conference, 175–80. https://doi.org/10.1109/AGILE.2011.50.

Kidder, T. (1982). Soul of a new machine. New York: Avon. Presented at the the 40th International

Conference, ACM Press, Gothenburg, Sweden, pp. 75–84.

https://doi.org/10.1145/3183519.3183539

Klinger, Tim, Peri Tarr, Patrick Wagstrom, and Clay Williams. 2011. “An Enterprise Perspective on

Technical Debt.” In Proceeding of the 2nd Working on Managing Technical Debt - MTD ’11,

35. Waikiki, Honolulu, HI, USA: ACM Press. https://doi.org/10.1145/1985362.1985371.

Klotins, E., Unterkalmsteiner, M., Chatzipetrou, P., Gorschek, T., Prikladnicki, R., Tripathi, N.,

Pompermaier, L.B., 2018. Exploration of technical debt in start-ups, in: Proceedings of the

40th International Conference on Software Engineering Software Engineering in Practice -

ICSE- SEIP ’18.

Kniberg, Henrik. u.å. «Scrum and XP from the Trenches», 104.

Kruchten, Philippe, Robert L. Nord, og Ipek Ozkaya. 2012. «Technical Debt: From Metaphor to Theory

and Practice». IEEE Software 29 (6): 18–21. https://doi.org/10.1109/MS.2012.167.

Lee, and Xia. 2010. «Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data

on Software Development Agility». MIS Quarterly 34 (1): 87.

https://doi.org/10.2307/20721416.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

56

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and its

management. Journal of Systems and Software, 101, 193-220.

Lim, E., N. Taksande, og C. Seaman. 2012. «A Balancing Act: What Software Practitioners Have to

Say about Technical Debt». IEEE Software 29 (6): 22–27.

https://doi.org/10.1109/MS.2012.130.

Agile Alliance. 2010. «Manifesto for Agile Software Development». u.å. Åpnet 13. november 2020.

https://agilemanifesto.org/.

Martini, Antonio, Jan Bosch, og Michel Chaudron. 2014. «Architecture Technical Debt: Understanding

Causes and a Qualitative Model». I 2014 40th EUROMICRO Conference on Software

Engineering and Advanced Applications, 85–92. Verona, Italy: IEEE.

https://doi.org/10.1109/SEAA.2014.65.

Martini, A., T. Besker, og J. Bosch. 2016. «The Introduction of Technical Debt Tracking in Large

Companies». I 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), 161–68.

https://doi.org/10.1109/APSEC.2016.032.

McConnel, S. (2007), ‘Technical debt’. Accessed: 2013-04-20. URL:

http://construx.com/10x_Software_Development/Technical_Debt

McNamara, C. (2009). General guidelines for conducting interviews. Retrieved January 11, 2010, from

http://managementhelp.org/evaluatn/intrview.htm

Moe, N. B., T. Dingsøyr, og T. Dybå. 2008. «Understanding Self-Organizing Teams in Agile Software

Development». I 19th Australian Conference on Software Engineering (aswec 2008), 76–85.

https://doi.org/10.1109/ASWEC.2008.4483195.

Moe, Nils Brede, Torgeir Dingsøyr, og Tore Dybå. 2010. «A Teamwork Model for Understanding an

Agile Team: A Case Study of a Scrum Project». Information and Software Technology 52 (5):

480–91. https://doi.org/10.1016/j.infsof.2009.11.004.

Nielsen, Mille Edith, Christian Østergaard Madsen, og Mircea Filip Lungu. 2020. «Technical Debt

Management: A Systematic Literature Review and Research Agenda for Digital

Government». I Electronic Government, redigert av Gabriela Viale Pereira, Marijn Janssen,

Habin Lee, Ida Lindgren, Manuel Pedro Rodríguez Bolívar, Hans Jochen Scholl, og Anneke

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

57

Zuiderwijk, 12219:121–37. Lecture Notes in Computer Science. Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-030-57599-1_10.

Nord, Robert L., Ipek Ozkaya, Philippe Kruchten, og Marco Gonzalez-Rojas. 2012. «In Search of a

Metric for Managing Architectural Technical Debt». I 2012 Joint Working IEEE/IFIP

Conference on Software Architecture and European Conference on Software Architecture,

91–100. Helsinki, Finland: IEEE. https://doi.org/10.1109/WICSA-ECSA.212.17.

Oates, B.J., 2006. Researching information systems and computing. SAGE Publications, London ;

Thousand Oaks, Calif.

Osipov, I. V., Nikulchev, E., Volinsky, A. A., & Prasikova, A. Y. (2015). Study of gamification

effectiveness in online e-learning systems. International Journal of advanced computer

science and applications, 6(2), 71-77.

Pan, Shan L., og Barney Tan. 2011. «Demystifying Case Research: A Structured–Pragmatic–Situational

(SPS) Approach to Conducting Case Studies». Information and Organization 21 (3): 161–76.

https://doi.org/10.1016/j.infoandorg.2011.07.001.

Patanakul, Peerasit, Jiyao Chen, and Gary S. Lynn. 2012. «Autonomous Teams and New Product

Development: Autonomous Teams». Journal of Product Innovation Management 29 (5): 734–

50. https://doi.org/10.1111/j.1540-5885.2012.00934.x.

Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V. Weber. 1993. “Capability Maturity Model, Version

1.1.” IEEE Software 10 (4): 18–27. https://doi.org/10.1109/52.219617.

Pérez, Boris, Camilo Castellanos, Darío Correal, Nicolli Rios, Sávio Freire, Rodrigo Spínola, og

Carolyn Seaman. 2020. «What Are the Practices Used by Software Practitioners on Technical

Debt Payment: Results from an International Family of Surveys». I Proceedings of the 3rd

International Conference on Technical Debt, 103–12. Seoul Republic of Korea: ACM.

https://doi.org/10.1145/3387906.3388632.

Power, K. 2013. «Understanding the impact of technical debt on the capacity and velocity of teams and

organizations: Viewing team and organization capacity as a portfolio of real options». I 2013

4th International Workshop on Managing Technical Debt (MTD), 28–31.

https://doi.org/10.1109/MTD.2013.6608675.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

58

Ramasubbu, Narayan, A. Bharadwaj and G. Tayi. “Software Process Diversity: Conceptualization,

Measurement, and Analysis of Impact on Project Performance.” MIS Q. 39 (2015): 787-807.

https://doi.org/10.25300/MISQ/2015/39.4.3

Runeson, Per, and Martin Höst. 2009. “Guidelines for Conducting and Reporting Case Study Research

in Software Engineering.” Empirical Software Engineering 14 (2): 131–64.

https://doi.org/10.1007/s10664-008-9102-8.

Robson C (2002) Real World Research. Blackwell, (2nd edition)

Rolland, Knut H, and Kalle Lyytinen. n.d. “Managing Tensions between Architectural Debt and Digital

Innovation: The Case of a Financial Organization,” 11.

Seaman, Carolyn, Yuepu Guo, Nico Zazworka, Forrest Shull, Clemente Izurieta, Yuanfang Cai, and

Antonio Vetrò. 2012. “Using Technical Debt Data in Decision Making: Potential Decision

Approaches.” In 2012 Third International Workshop on Managing Technical Debt (MTD),

45–48. https://doi.org/10.1109/MTD.2012.6225999.

Sonar Source. 2021. «Enterprise Edition | SonarSource». u.å. Åpnet 16. mai 2021.

https://www.sonarsource.com/plans-and-

pricing/enterprise/?gclid=CjwKCAjwhYOFBhBkEiwASF3KGUbKAhFmOgP9FFjQVcm68

ocS8iBsLs4Og8wFuUosKCxg9na-8X6RaxoCttYQAvD_BwE.

Stettina, Christoph Johann, and Werner Heijstek. 2011. “Necessary and Neglected?: An Empirical Study

of Internal Documentation in Agile Software Development Teams.” In Proceedings of the

29th ACM International Conference on Design of Communication - SIGDOC ’11, 159. Pisa,

Italy: ACM Press. https://doi.org/10.1145/2038476.2038509.

Stolberg, Sean. u.å. «Enabling Agile Testing through Continuous Integration». I in Agile Conference,

2009. AGILE ’09., 2009, 369–374.

Stray, Viktoria, Nils Brede Moe, og Rashina Hoda. 2018. «Autonomous Agile Teams: Challenges and

Future Directions for Research». I Proceedings of the 19th International Conference on Agile

Software Development Companion - XP ’18, 1–5. Porto, Portugal: ACM Press.

https://doi.org/10.1145/3234152.3234182.

Tellis, W. (1997). Introduction to case study. The qualitative report, 269.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

59

Titov, Sergei, Gregory Bubnov, Maria Guseva, Alexei Lyalin, and Irina Brikoshina. 2016. “Capability

Maturity Models in Engineering Companies: Case Study Analysis.” Edited by E.V. Nikulchev

and E.I. Veremey. ITM Web of Conferences 6: 03002.

https://doi.org/10.1051/itmconf/20160603002.

Tom, Edith, Aybüke Aurum, og Richard Vidgen. 2013. «An Exploration of Technical Debt». Journal

of Systems and Software 86 (6): 1498–1516. https://doi.org/10.1016/j.jss.2012.12.052.

Trist, E. (1981). The evolution of socio-technical systems. Occasional paper, 2(1981), 1981.

Verwijs, Christiaan. 2018. «How to deal with Technical Debt in Scrum». Medium, january.

https://medium.com/the-liberators/how-to-deal-with-technical-debt-in-scrum-f4ec3481eabb.

Walsham, G. (1995). Interpretive case studies in IS research: nature and method. European Journal of

information systems, 4(2), 74-81.

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature

review. MIS quarterly, xiii-xxiii.

Wiklund, K., S. Eldh, D. Sundmark, og K. Lundqvist. 2012. «Technical Debt in Test Automation». I

Verification and Validation 2012 IEEE Fifth International Conference on Software Testing,

887–92. https://doi.org/10.1109/ICST.2012.192.

Xebia. Agile Survey. (2013) http://xebia.com/news/agile-survey2013/

Yli-Huumo, Jesse, Andrey Maglyas, and Kari Smolander. 2014. The Sources and Approaches to

Management of Technical Debt: A Case Study of Two Product Lines in a Middle-Size Finnish

Software Company. https://doi.org/10.1007/978-3-319-13835-0_7.

Yli-Huumo, Jesse, Andrey Maglyas, og Kari Smolander. 2016. «How Do Software Development Teams

Manage Technical Debt? – An Empirical Study». Journal of Systems and Software 120

(oktober): 195–218. https://doi.org/10.1016/j.jss.2016.05.018.

Yin, Robert K. 1981. “The Case Study as a Serious Research Strategy.” Knowledge: Creation, Diffusion,

Utilization, 97–114.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

60

Yin, R. K., 2014. Case Study Research - Design and Methods. 5th ed. London: SAGE Publications Inc..

Zazworka, Nico, Michele A. Shaw, Forrest Shull, og Carolyn Seaman. 2011. «Investigating the Impact

of Design Debt on Software Quality». I Proceeding of the 2nd Working on Managing

Technical Debt - MTD ’11, 17. Waikiki, Honolulu, HI, USA: ACM Press.

https://doi.org/10.1145/1985362.1985366.

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

61

Appendix
Appendix A: Ethical approval and NSD approval

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

62

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

63

Appendix B: Research instrument

5/24/2021 Student number: 703957

How to get away with technical debt: An explorative multiple-case study on autonomous teams and technical debt management

64

