This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

Automated Blackbox and Whitebox Testing of
RESTful APIs with EvoMaster

Andrea Arcuri
Kristiania University College and Oslo Metropolitan University

July 15, 2020

1 Abstract/Intro

RESTful APIs are very popular in industry, especially when developing enterprise
systems using a microservice architecture. Testing such APIs is challenging,
as tests will be composed of not only HT'TP calls, but also settings of the
environment, like databases. Different blackbox testing techniques have been
shown to easily find real faults in many RESTful APIs, with very little human
effort from software engineers. However, whiteboz techniques could lead to much
better results, although having an up-front cost for the engineers. In this paper,
we report on the use of the open-source tool EVOMASTER, on eight RESTful
APIs. We show how EVOMASTER can be used to automatically generate test
cases that can find several bugs, even when using a naive blackbox approach.
When enhancing the search with whitebox information, significantly better
results are achieved. However, there are several challenges that need to be taken
into account when an engineer wants to use a tool such as EVOMASTER to test
their projects.

2 RESTful APIs

A RESTful API is a web service that exposes functionalities over a network,
communicating over HTTP. Many companies use RESTful APIs to expose their
services, like Twitter, Google, Amazon, etc. Furthermore, to avoid all the
downsides of monolithic applications, modern enterprise applications are built
using a microservice architecture [1], where web services like RESTful APIs
play a major role.

A RESTful API will define a series of resources that are identified with URIs.
Such resources can then be manipulated with actions based on the semantics
of HTTP verbs, like GET, POST, DELETE and PUT. During the handling of a
HTTP request, the API might need to read/write data from a database, and
communicate with other web services.

Testing a RESTful API is challenging. Not only one needs to craft HTTP
messages for the different endpoints, but also choose the right query parameters
(i.e., the “?” key-value pairs in the URL), URL path-element parameters and
body payload messages (e.g., JSON/XML payloads in POST/PUT requests). The

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

response to a GET might depend on the state of the database, which might need
to be properly set by previous POST/PUT requests.

To be able to automatically test a RESTful API, there is the need to know
what the URIs of the available resources are, and what the types and names
of all parameters and HTTP body payloads are. Sending random bit-strings
to a listening TCP socket would likely lead to either invalid HTTP messages,
or messages related to resources that do not exist on the server (i.e., resulting
in returned 404 HTTP Not-Found status codes). For documentation, it is a
common practice to provide a schema of what is available in a RESTful APIL.
There are different formats to specify the schema of a RESTful API, where
OpenAPI/Swagger seems to be the most popular. For example, APIs.guru
currently lists more than 500 public APIs with available schemas. Although
schemas can be written manually, there are also tools that can automatically
generate them based on the source code of the API.

3 Automated Testing

Manual testing of RESTful APIs is a common practice in industry (e.g., with
tools such as Postman and REST-Assured). However, given a schema written in
OpenAPI/Swagger, test cases can be autonatically generated by tools crafting
and executing valid HT'TP calls. This would be very valuable, as writing test
cases manually can be expensive and error-prone [2]. An automated testing tool
would just need to open a TCP connection toward an up-and-running RESTful
API, and then send valid HTTP messages based on the information obtained
from the schema (e.g., which are the available endpoints, and what parameters
they do require).

When using only information from the schema and no access to the source
code, this type of testing can be considered as blackbox. Different ‘‘coverage
criteria” can be defined on the schema of an API [3], like for example trying
to cover different HTTP status codes on each endpoint. This type of blackbox
testing can be quite effective at finding faults. For example, Atlidakis et al. [4]
reported on the blackbox testing of the RESTful API of GitLab, finding 28 faults
in it. Ed-Douibi et al. [5] found faults in 37 out 91 public APIs they applied
blackbox testing on. Similarly, Segura et al. [6] found 11 faults in the APIs of
Spotify and YouTube.

However, ‘“‘the limitations of blackbox random testing are well-known. For
instance, the then branch of the conditional statement ‘i f(z==10) then’’ has
only one in 232 chances of being exercised if « is a randomly chosen 32-bit input
value. This intuitively explains why random testing usually provides low code
coverage” [7]. On the other hand, whitebox techniques can overcome these
limitations, by analyzing the source code of the API. Different techniques like
Dynamic Symbolic Execution [8] and Search-Based Software Testing [9] have
been shown to be highly successful at generating high coverage test cases, in
many different testing contexts.

Surprisingly, despite the practical importance of automated test case gen-
eration for RESTful APIs, to the best of our knowledge, only our open-source
EVOMASTER [10, 11] tool does whitebox testing of RESTful APIs. In this paper,
we extended it to support blackbox testing as well, and study what results can
be achieved when using these two different modes. Furthermore, we show what

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

impacts those two different modes have on the usability of such test generation
tools.

For whitebox testing, EVOMASTER uses the MIO [12] evolutionary algorithm
(which is a search algorithm specialized for test suite generation, where there
are many objectives to optimize for). The fitness function is based on several
metrics, such as line coverage, branch coverage, HT'TP status coverage and
detected faults. Search-based software testing uses several white-box heuristics
(by instrumenting the SUTSs) to help solving the constraints in the predicates of
the source code of the SUTS, like for example the so called branch distance [9].
Furthermore, several advanced techniques such as testability transformations
are used in EVOMASTER [13] to exploit whitebox information from the SUT
(e.g., to check when test inputs are matched against regular expressions or used
to instantiate date objects) to achieve higher code coverage.

During the evolutionary search, EVOMASTER does direct HTTP calls toward
the SUT to evaluate the fitness of the evolved test cases. At the end of the
search, the outputs of the tool are test suite files (e.g., in JUnit format).

As an automated oracle (i.e., an automated way to detect if the output
of a test is faulty), EVOMASTER checks for 500 status code in the HTTP
responses, for each API endpoint. As the same endpoint can fail in different
ways, EVOMASTER keeps track of the last executed statement in the business
logic of the API. In this way, EVOMASTER can distinguish between two (or
more) different faults resulting in a 500 for the same endpoint.

For blackbox testing, EVOMASTER relies on random testing, where we aim
at maximizing the HTTP status coverage. In other words, we want to have test
cases that can exercise every single endpoint in different ways, whether it is a
success call (i.e., status code 2xx), a server failure (i.e., status code 5xx) or user
error (i.e., status code 4xx). The generated random inputs are still valid, as
sampled according to the grammar defined by the OpenAPI/Swagger schema of
the SUT. The sampling of a new test case in this random testing is exactly the
same as the sampling of a new random individual when using an evolutionary
algorithm such as MIO [12].

4 Experiments

4.1 Setup

For the experiments, we selected the same SUTSs used in our previous work [11].
However, besides open-source APIs, we also added an industrial SUT from
one of our industrial partners. Table 1 provides some statistics on such SUTs,
where the industrial API is simply referred with the label industrial. We
provide the source-code of all these APIs (but the industrial) on GitHub at
https://github.com/EMResearch/EMB.

We ran EVOMASTER on all those APIs in two modes: blackboz (BB) and
whitebox (WB). Each experiment was repeated 10 times, to take into account
the randomness of the algorithms. Given eight SUTSs, this led to a total of
8 x 2 x 10 = 160 runs of EVOMASTER. The stopping criterion was 1 million
HTTP calls per run.

Depending on the API and the hardware, this took roughly up to 10 hours
per run. Using a fixed amount of HT'TP calls as stopping criterion would allow

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

Table 1: RESTful APIs used in the empirical study. We report the number of
Java/Kotlin classes, lines of code (LOC), and number of HTTP endpoints.

Name Classes LOC Endpoints
catwatch 69 5442 13
features-service 23 1247 18
industrial 75 5687 20
proxyprint 68 7534 74
rest-ncs 9 602 6
rest-news 10 718 7
rest-scs 13 862 11
scout-api 75 7479 49
Total 342 29634 198

Table 2: Results of the experiments, for both the blackbox (BB) and whitebox
(WB) configurations. We report the average (out of 10 runs) test suite size
(counted in number of HTTP calls), the average percentage of endpoints for
which we got a successful 2xx HTTP status code, server error 5xx code, the
average number of distinct found faults, and line coverage measured with IntelliJ.

SUT Size #2xx #5xx Faults Coverage
BB WB BB WB BB WB BB WB BB WB
catwatch 20.0 335.5 46.2% 53.8% 38.5% 46.2% 50 199 25% 3%
features-service 33.4 3815 389% 97.0% 72.2% 77.8% 13.0 21.2 48% 73%
industrial 20.0 2819 5.0% 19.0% 0.0% 95.0% 0.0 26.1 % 17%
proxyprint 195.9 663.5 56.8% 59.5% 37.8% 41.0% 28.0 38.1 42% 49%
rest-ncs 10.0 239.6 100.0% 100.0% 0.0% 0.0% 0.0 0.0 55% 9%
rest-news 11.0 143.0 28.6% 68.6% 14.3% 28.6% 1.0 2.0 5% 80%
rest-scs 11.0 611.5 100.0% 100.0% 0.0% 0.0% 0.0 0.0 58% 91%
scout-api 134.3 636.8 53.1% 7T7.9% 67.3% 67.3% 33.0 54.8 30% 33%

the replication of this study regardless of the hardware involved.

4.2 Results

Table 2 shows the results of these experiments, averaged over 10 runs. However,
to be able to measure code coverage for blackbox testing, we had to manually
modify the generated tests to run the API in the same process of the tests.
As far as we know, this should have had no impact on the reported achieved
coverage. The coverage was then measured using the tools of the IntelliJ IDE.
To make comparisons fair with the whitebox tests (which are self-contained, and
start/stop the APIs automatically by themselves), their coverage was measured
with IntelliJ as well, instead of just relying on the coverage metrics provided by
EVOMASTER. As this process of running tests and collect their coverage results
was manual, we only applied it on the best test suite generated from each of the
10 repetitions. For whitebox testing, the best here is identified as the test suite
with highest aggregated coverage (e.g., lines, branches and HTTP statuses) out
of the 10 generated. For blackbox testing, we only looked at the highest HTTP
coverage for this selection, as blackbox testing does not collect any info on code
coverage.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

On every single API, whitebox testing led to better results. However, the
final test suites are smaller for blackbox testing. Note that the final test suites do
not contain 1 million HTTP calls, as only the tests that contribute to coverage
are retained. Also note that each generated test case might contain a variable
number of HTTP calls (e.g., from 1 to 10).

It is not surprising that a technique aiming at maximizing code coverage
does achieve better coverage. Improvements can be very large, e.g., from 55% to
97% for rest-ncs. Regarding fault finding, the same endpoints can fail in several
different ways due to different faults. This can be seen in Table 2 by looking at
scout-api for example, where the number of endpoints returning a 500 are the
same between blackbox and whitebox, but this latter finds more distinct faults.
In these experiments, more than 150 distinct faults were automatically detected.

The number of endpoints that fail with a bxx are very similar between
whitebox and blackbox testing. This is due to input validation. When provided
with an invalid input, a HTTP endpoint should return a code from the 4xx
family to represent a user’s error. However, most of these endpoints do poor
input validation, where invalid inputs are not discarded. Those invalid inputs
are then likely going to throw exceptions in the code of the API (e.g., null-pointer
exceptions). When a business logic of an endpoint throws an exception, the
HTTP server will not crash, but rather craft a HT'TP response with status code
500.

One surprising result from Table 2 is that it seems that there are more invalid
inputs than valid ones, and so it is easier to find faults than generating valid
inputs. In these cases, even a naive blackbox technique can easily find this kind
of bugs. For many endpoints (75 out of 198, i.e., 37%), it was not possible to
create HTTP calls for which a success 2xx status code was returned. All calls
either returned a 4xx or 5xx error code. Test cases with 2xx status codes do
not directly reveal faults (unless an automated oracle is available to validate the
correctness of the returned results, if any). However, they are still very valuable,
as they can be used for regression testing in a Continuous Integration server
(e.g., Jenkins).

Regarding code coverage, there are cases in which EVOMASTER is still not
particularly effective. For example, compared to a naive blackbox approach,
coverage results for scout-api only improved by 3%, while for prozyprint it
improved by only 7%. In both cases, coverage is less than 50%. Although the use
of whitebox testing more than doubled the code coverage on the industrial API,
such coverage is still lower than 20%. Many whitebox heuristics could be designed
to improve performance (e.g., more advanced testability transformations [13]).
For example, EVOMASTER analyses the interactions with SQL databases, and
use such information to improve the test generation [14]. However, it is clear
that more needs to be done.

One further issue to consider is that the implemented blackbox technique
in EVOMASTER is rather basic. More advanced blackbox techniques could be
designed. Whether such other blackbox techniques could be more effective
than search-based whitebox testing is a technical possibility. However, one of
the major strengths of search algorithms is their adaptability and handling of
multiple objectives [9]. Such other blackbox techniques could be integrated and
enhanced in an evolutionary search, as yet another objective to optimize for.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

5 Usability

Although the experiments in this paper show that whitebox testing led to better
results (i.e., higher code coverage and higher number of detected faults), there
are still practical benefits for blackbox testing:

e The API could be written in any programming language, e.g., Java, Python,
Go and C#. On the other hand, a whitebox approach could only be applied
to programming languages that the tool would support.

e The API can be run on a remote machine, without the need of access to
source code or executables.

e For an engineer, starting to use a blackbox test generation tool on their
API could just take a couple of minutes, as it is just a matter of providing
the URL of the API, and the information of where its schema is located.

This last point is critical for usability. To be able to use EVOMASTER in
whitebox mode, engineers need to write a configuration driver [10, 11]. These
are small classes used to specify how to start, stop and reset the API (e.g., delete
all data in the used databases, for which EVOMASTER provides easy to use
support functions). The whitebox code analyses and instrumentations are then
done automatically when the API starts. Although the amount of code needed
to be written is small, it is still a non-zero manual cost. A practitioner might not
want to try out a tool coming from academia if it requires an up-front cost. At
any rate, the ability to start, stop and reset the SUT is essential if the generated
tests are then to be used for regression testing. Tests should not fail based on
the order of their execution, or based on the state of the database (if any), or
simply fail because the SUT is currently not up and running.

Blackbox testing enables the generation of test cases with near-to-zero manual
cost (i.e., just download a testing tool and give the API schema as input). This
blackbox testing will give worse results (i.e., lower coverage and fewer faults
detected compared to a whitebox approach, and the generated tests would not
be viable for regression testing), but they would come for “free”. And such
initial results, if positive, might be enough to convince the engineers to write the
drivers. Furthermore, if an engineer is working on an API with some already
existing end-to-end tests, it is likely that all the code to start/stop/reset the
API is already available.

When testing a web/enterprise application via its GUI, a blackbox approach
can be very useful, because any user can do it, as long as it is just a matter of
clicking buttons and filling text forms. These testers do not necessarily have to
be engineers with strong coding skills, or any coding skill at all (of course, you
still want to have QA professionals, if possible). Having someone else to test
a system besides its developers is a common and useful practice. On the other
end, testing a RESTful API requires knowledge of HT'TP, and at least some
minimal coding skills, as you need some sort of scripting to make the HT'TP calls
and create the proper JSON/XML body payloads for the POST/PUT requests.
It is reasonable to assume that, in many cases, it ends up to the developers
themselves to do the testing of their APIs. In such cases, there is no particular
limitation that prevents the use of whitebox techniques when testing single APIs
in isolation.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

6 Test Automation Challenges

Tools such as EVOMASTER can already be used in practice to find bugs in
existing RESTful APIs. But there are still open challenges that need to be
addressed to make such types of tools common among practitioners [2]. The
main ones are the handling of the environment of such APIs, like databases and
external services, and how to design effective automated oracles.

6.1 Databases

If a RESTful API is connected to a database, actions like POST and PUT could
modify the state of such database. Furthermore, to be able to properly function,
such databases must be up and running when the SUT is tested.

For a blackbox testing of a remote web service, this is a major challenge. If
one does not have control over the database, there would be no guarantee on
its content, which could be different and changed at any time. Furthermore,
tests could become flaky, i.e., running the same test again could lead to different
results, if those results depend somehow on the state of the database.

When developers do whitebox testing of their APIs, they can have control
on the databases. For the JVM, there are embedded SQL databases such as
H2 and Derby. If one needs something like Postgres or MySQL, those can be
downloaded/started programmatically via Docker.

Still, even in the case of whitebox testing, there are challenges to address. To
make tests independent, in EVOMASTER we clear the state of the database (just
the data, and not the schema of the tables) at each test execution. We provide
several utility functions (as a published library) for different databases that the
developers can call when implementing the reset method in the EVOMASTER’s
driver. Still, starting from an empty database could pose several challenges when
we need to test a GET endpoint that depends on a complex data setup (which
might require a long sequence of prior POST requests to create the needed data).

To address these challenges, we enhanced EVOMASTER to be able to analyze
the state of the database, intercept and analyze all SQL commands the SUT
does, and also added the generation of test data directly into the database as
part of the generated test cases [14]. This novel approach has shown promising
results [14], but more needs to be done to handle the different edge cases in SQL
databases, and provide better, more efficient heuristics for test generation.

6.2 External Services

A RESTful API could depend on communications with other RESTful APIs.
This is a typical case in microservice architectures [1]. Unfortunately, this
severely complicates the testing of such APIs.

Similarly to the issue with databases, in blackbox testing of a remote API
there would be no control on the used external services. Therefore, tests have
high chance to be flaky. Interactions with such external services would not only
depend on their implementation (which could change), but also on their state
(e.g., they could use their own databases).

This is a major challenge for whitebox testing as well. Even if a developer
had full control on all those external services (e.g., they are all part of the same
microservice system), setting up and start several different web services (which

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

can use their own databases) used by the SUT just to test this latter could be
cumbersome. A common approach [2] in industry is to mock those services, using
for example libraries such as WireMock. This enables to start a HTTP server
directly from the tests, where the tests can specify what should be returned at
each different type of HTTP incoming request from the SUT (e.g., based on
regex matching of the URLSs of the requests).

Writing this kind of mocks manually can be very time consuming [2]. Gener-
ating the mocks automatically is a major research challenge that needs to be
addressed to be able to test this kind of APIs. Currently, EVOMASTER has no
support for it, but there is ongoing work to address it. All the SUTs in the
empirical study were not directly relying on external web services.

6.3 Automated Oracles

To find bugs, there is the need for an automated oracle that can verify whether
a given output is correct or not. Currently, EVOMASTER checks for 500 error
status messages. As an endpoint could fail in different ways due to different
bugs in different parts of the code, one advantage of whitebox over blackbox
testing here is that we can detect which was the last executed statement in the
SUT before a failure. This can help distinguish between different bugs in the
same endpoints.

As a further oracle, EVOMASTER also checks if the responses of the SUT's are
conforming to the OpenAPI/Swagger schema of the SUT (this was not discussed
in the empirical study, as all those schemas were automatically generated, and
so any mismatch there would had pointed only to bugs in the schema generator
tools, and not the SUT itself). This applies to both whitebox and blackbox
testing.

However, not all bugs lead to a crash in the SUT, or a mismatch with the
schema. Bugs could lead to inconsistent data in the database for example. Or
filtering operations on collections that wrongly return more data than no applied
filter (this is for example the type of automated oracle investigated in [6]). To
make this kind of test generation tools more appealing to developers, there is
the need for more research on designing novel automated oracles to expand the
types of faults that can be automatically detected.

Another relevant issue is that not all faults have the same severity. A wrongly
returned 500 status code due to a faulty input validation can be a problem for a
publicly available service on the internet. This is especially the case when paying
customers might think it is something wrong with the service (and so waste time
in reporting the problem), instead of fixing how they used it (e.g., 4xx responses
can contain info on what the users did wrong). However, it might be less of a
problem for a private API in a small system, where the ‘“users’” might be just
a small team of developers that communicate with each other on a daily base.
Furthermore, crashing (e.g., 500 code) on a ‘“‘valid” input, that should have
been successfully handled (i.e., a 2xx status), is a much more serious bug than
wrongly returning a 500 (server error) instead of a 4xx (user error). But how to
automatically determine if an input was supposed to be ‘‘valid”’? Given a set of
faults found by a test generator tool such as EVOMASTER, there is the need for
a way to automatically classify and rank the severity of those faults. This is a
problem for practitioners, especially if those tools find tens/hundreds of bugs,
and do not have time/resources to investigate/fix all of those bugs.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

7 Conclusion

In this paper, we have carried out experiments to compare blackbox and whitebox
testing of RESTful APIs, using automated test case generation techniques. When
it comes to code coverage and fault detection, in our experiments whitebox-
based test generation led to significantly better results. However, whitebox
testing comes with a usability cost, as setting it up requires more effort from the
developers than just running a blackbox test generation tool. Therefor, blackbox
testing can still be useful for practitioners that want to try out this kind of test
automation tools, but that do not want to invest resources before seeing some
practical results.

In our empirical study, it was possible to automatically find 150 faults. This
provides further evidence that automated test case generation techniques might
already be of use for practitioners in industry. However, there are still many
research challenges that need to be addressed to achieve a better automation of
testing RESTful APIs, like the automated handling of external services and the
classification of the found faults. This will be needed to spread the use of this
kind of automated test generation techniques among practitioners. Automated
test generation tools have the potential to significantly help practitioners in
assuring the quality and correctness of their implemented systems.

To the best of our knowledge, our EVOMASTER tool is currently the only
whitebox test generation tool for RESTful APIs. EVOMASTER is released as
open-source on GitHub. Website at: www.evomaster.org

Acknowledgment

This work is funded by the Research Council of Norway (project on Evolutionary
Enterprise Testing, grant agreement No 274385).

References

[1] S. Newman, Building Microservices. " O’Reilly Media, Inc.”, 2015.

[2] A. Arcuri, “An experience report on applying software testing academic
results in industry: we need usable automated test generation,” Empirical
Software Engineering (EMSE), pp. 1--23, 2018.

[3] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, ‘“Test coverage criteria for
restful web apis,” in Proceedings of the 10th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation.
ACM, 2019, pp. 15--21.

[4] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in ACM/IEEFE International Conference on Software Engineering
(ICSE). IEEE Press, 2019, pp. 748--758.

[5] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, ‘‘Automatic generation
of test cases for rest apis: A specification-based approach,” in 2018 IEEE
22nd International Enterprise Distributed Object Computing Conference
(EDOC). 1EEE, 2018, pp. 181--190.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.3013820, IEEE
Software

[6] S.Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, ‘“Metamorphic testing
of RESTful web APIs,” IEEE Transactions on Software Engineering (TSE),
2017.

[7] P. Godefroid, ‘“Random testing for security: blackbox vs. whitebox fuzzing,”
in Proceedings of the 2nd international workshop on Random testing: co-
located with the 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2007). ACM, 2007, pp. 1--1.

[8] C. Cadar and K. Sen, ‘“‘Symbolic execution for software testing: three
decades later.” Commun. ACM, vol. 56, no. 2, pp. 82--90, 2013.

[9] M. Harman, Y. Jia, and Y. Zhang, “‘Achievements, open problems and chal-
lenges for search based software testing,” in IEEFE International Conference
on Software Testing, Verification and Validation (ICST). TEEE, 2015, pp.
1--12.

[10] A. Arcuri, “EvoMaster: Evolutionary Multi-context Automated System
Test Generation,” in IEEFE International Conference on Software Testing,
Verification and Validation (ICST). 1EEE, 2018, pp. 394--397.

[11] - , “RESTful API Automated Test Case Generation with EvoMaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, p. 3, 2019.

[12] ------ , “Test suite generation with the Many Independent Objective (MIO)
algorithm,” Information and Software Technology, vol. 104, pp. 195--206,
2018.

[13] A. Arcuri and J. P. Galeotti, “Testability Transformations For Existing
APIs,” in IEEE International Conference on Software Testing, Verification
and Validation (ICST). 1EEE, 2020.

)

[14] ------ , “SQL data generation to enhance Search-Based System Testing,’
in Genetic and Evolutionary Computation Conference (GECCO). ACM,
2019, pp. 1390--1398.

10

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: OsloMet - Oslo Metropolitan University. Downloaded on March 10,2021 at 06:52:29 UTC from IEEE Xplore. Restrictions apply.

