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Abstract

This paper develops a new framework called MASAD (Multi-AgentsSystem
for Anomaly Detection), a hybrid combination of reinforcement learning,
and a multi-agents system to identify abnormal behaviors of microservices in
industrial environment settings. A multi-agent system is implemented using
reinforcement learning, where each agent learns from the given microservice.
Intelligent communication among the different agents is then established to
enhance the learning of each agent by considering the experience of the agents
of the other microservices of the system. The above setting not only allows
to identify local anomalies but global ones from the whole microservices
architecture. To show the effectiveness of the framework as proposed, we
have gone through a thorough experimental analysis on two microservice
architectures (NETFLIX, and LAMP). Results showed that our proposed
framework can understand the behavior of the microservices, and accurately
simulate the different interactions in the microservices. Besides, the approach
outperforms the baseline methods in identifying both the local and global
outliers.
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Local Outliers; Global Outliers.

1. Introduction

Industrial applications are moving towards microservices computing. This
drives to companies immediately carrying industrial settings [1]. In particular
with the emergence of the IoT (Internet of Things), which plays an important
role in addressing challenges of different industrial applications [? 2]. IIoT5

(Industrial Internet of Things) fosters new smart devices and applications as
never seen before. Industry 4.0, medical monitorization, smart agriculture,
and building are few examples of the huge potential number of IIoT appli-
cations will offer to our society. Smart sensors offered by IIoT technologies
has resulted in the creation of large volumes of data varied in time and space.10

Microservices is an architecture, divided into small components, each of
which is a microservice that delivers a small service in the company. Com-
panies such as Amazon, Twitter, and Netflix switched to a microservices
architecture to be self-organizing and cross-functional companies [3]. Mi-15

croservices in IIoT has recently shown a great interest in the data science
community, where the service from the distributed and heterogeneous data
is assured [4]. A useful way of analyzing microservices is by utilizing data
mining and machine learning techniques [5, 6, 7]. Detecting anomalies from
microservices architecture can be noted as a hot research area in IIoT. The20

goal is so anomalous patterns can be properly identified through data gen-
erated in the microservices architecture. However, solutions to microservices
anomaly detection [8, 9, 10] are limited to identify local anomalous behavior
of each microservice, where global anomalous are missing. Also, these solu-
tions tend to lack accuracy, since there is no intelligent mechanism that can25

be used in any distributed analysis process.
Multi-agents systems with reinforcement learning have recently shown

promising application prospects and attracted lots of attention from academia
and industry [11], where it provides an efficient mechanism for interaction
and communication with the different actors in the environment and to learn30

from the previous experiences to achieve better performances. Many of the
works mentioned created reinforcement learning through a multi-agent sys-
tem for commercial building [12]. Other works adopted a multi-agents based
reinforcement learning approach for autonomous driving [13].
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This paper follows the state-of-the-art multi-agents system reinforcement35

learning models, and develop a new framework to identify both local and
global anomalous from the microservices architecture. The main contribu-
tions of this paper are listed as follows,

1. We propose a new multi-agent system for detecting both local and
global anomalous behavior in a distributed and heterogeneous microser-40

vices architecture.

2. We use reinforcement learning to identify the local anomalous behavior
in each microservice of the whole architecture.

3. We propose a new intelligent strategy to enhance the communication
among the different agents, and then merge the local anomalous be-45

havior into global anomalous ones.

4. We analyze the proposed framework on two industrial data, including
NETFLIX, and LAMP. The results reveal the usefulness of our frame-
work compared to the baseline outlier detection solutions.

The rest of this paper is organized as follows: Related work is summarized50

in Section 2. The proposed framework and designed algorithm are discussed
in Section 3. We report our experimental results in Section 4. Section 5
concludes the paper.

2. Related Work

He et al. [8] proposed anomaly detection system in clouds environment55

using microservices. A master-worker architecture is developed, where the
master requests a service to each worker to train the anomaly detection
model based on the graph neural network [14]. Labiadh et al. [9] proposed
a microservice system for identifying energy anomalous patterns by explor-
ing knowledge transfer. It is based on the correlation between the historical60

energy time series data and the unseen target data. The microservice is
composed of several REST APIs, one for training data selection, one for pre-
dictive model learning, one for building data handler, and the last one is for
weather data handler. Jin et al. [10] proposed the robust principal compo-
nent analysis algorithm [15] to identify outliers for microservices architecture.65

The anomalous score of each node is calculated using the invocation chain
anomaly analysis algorithm. It then identifies the anomalous indicators of
each node by combining various single anomaly detection algorithms.
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Wang et al. [16] proposed an ensemble learning approach for capturing
outliers in the microservice environment. The approach used a support vec-70

tor machine and a convolution neural network in each node. Theo et al. [17]
present an end-to-end solution for data analytic in microservice architectures.
It addressed important requirements and challenges of analytic of microser-
vices, with illustration on smart homes [18]. It also provides efficient tools
such as spark to deal with big data-related problems. Berta et al. [19] investi-75

gated the use of data management technologies including anomaly detection
in improving the microservice architectures. It can support more accurate de-
velopment for different IIoT applications. The framework is applied to two
relevant industrial settings such as smart homes and autonomous driving.
Meng et al. [20] proposed a new sequential pattern mining based solution for80

identifying fault diagnosis. The system calls in a microservice architecture
are first retrieved to build the transaction database. The sequential patterns
are then discovered. The deep neural network is finally employed to model
the patterns of system call sequences to diagnose faults by determining the
score between the estimated next system call and the actual next one in the85

specific pattern. Chen et al. [21] introduced an unsupervised anomaly detec-
tion solution using an intelligent operator called matrix sketch. It can identify
anomalies by mining high-dimensional data collected from a microservice ar-
chitecture in real-time. Cui et al. [22] developed an optimization approach
to enhance the detection of abnormal behaviors in the microservice architec-90

ture. A margin synthetic minority oversampling strategy is first performed
in the imbalanced data to ensure efficient data distribution. A recursive
feature elimination-hierarchy strategy is then performed to remove redun-
dant samples recursively based on feature weight similarity. A flexible grid
search algorithm is finally implemented for efficient selection of the different95

hyper-parameters of the learning model. In the context of intelligent agents,
several solutions have been developed for microservice architectures. Rem et
al. [23] considered each agent as a microservice. It developed a template of
the multi-agent system for handling microservices. The proposed template
can be viewed as an uniform interface for addressing industrial challenges.100

Petar et al. [24] developed an autonomous agents for service management
in IoT settings. The microservices are considered as modern agents that
might increase the systems in collaborative environment. Abeer et al. [25]
proposed an autonomous agents for microservices autoscaling with quality of
services conditions. It is composed of two steps, the first step applied the Ku-105

bernetes autoscaling algorithm to derive the microservice resource demand.
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The second step used the intelligent agents with the reinforcement learning
to learn the autoscaling threshold. Arzo et al. [26] suggested a new mutli-
agent system for fully-automated network management. It developed a new
network function which described the atomic decision-making parts of the110

network. These parts identified the virtual network, which are autonomous
and adaptive.

As can be seen from the above short literature overview, existing multi
agent frameworks for microservices architectures do not consider the anomaly
detection process. In addition, existing solutions for anomaly detection from115

microservice architectures only consider local anomalies, for example, anoma-
lies from each microservice. Discovering global anomalies from the whole
architecture is vital, and need a distributed environment highly correlated.
Therefore, in this paper, we propose the first framework to identify both
local and global outliers from microservice architectures using reinforcement120

learning and multi-agent systems.

Figure 1: MASAD Framework

3. MASAD: Multi-Agents System for Anomaly Detection

Let us begin by describing the key elements of the MASAD (Multi-Agents
System for Anomaly Detection). As shown in Figure 1, our framework builds
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upon the multi-agents system and reinforcement learning. The framework125

considers microservices, each of which is requested one partition of the data.
Each partition is stored in the small database. We use the intelligent agent
based on reinforcement learning to identify the local anomalous behaviors
from each microservice. We also use the multi-agent system for enhancing
the learning process of each agent and merging the local anomalous retrieved130

at each agent on global ones. The whole process is ensured by an intelligent
communication strategy among the different agents. MASAD can be divided
into main steps:

1. Local Outliers Determination: The local outliers on each microser-
vice is determined using the reinforcement learning on each agent. Each135

agent learns from the microservices data, by action/reward strategy
(see Section 3.2 for more details).

2. Global Outliers Determination: After predicting the local outliers
by each agent, a merging strategy is used to derive the global outliers
by employing an intelligent communication strategy. Thus, the local140

outliers with high density are considered as global outliers (see Section
3.3 for more details).

In the remainder of this section, we describe the details of MASAD com-
ponents.

3.1. Preprocessing145

This step aims to preprocess the data which will be used in the next step.
It is performed in two stages: The first one is the IIoT data collection from
the microservices architecture to prepare it for the multi-agents system. The
data is collected using the IIoT gateway, and the data is cleaned using the
Apache Kafka software [27]. The second one is data enrichment by integrat-150

ing ontologies to create semantic data and then make it understandable for
different IIoT applications. We used EPOST (Entire Process Ontology on
Software Testing) [28] to create and manipulate our ontology.

3.2. Reinforcement Learning for Local Outliers

The aim of this part is to identify the local outliers for each microservice.155

Each agent is assigned to one mciroservice for deriving the local outliers.
To enhance the intelligent behavior of the agents, the reinforcement learning

6



is integrated on the inference part of each agent. We define a multi-agents
system by a tuple < A,S,U ,R >. A is the set of agents, each of which
is a Markov decision process, S is the finite set of environment states, U is160

the set of actions and R is the reward function. The behavior of each agent
in A is represented by its policy, which specifies how the agent chooses its
actions given the state. The purpose of each agent is to find a policy that
maximizes the coverage of local outliers. In the following the description of
reinforcement learning concepts in retrieving the local outliers is explained:165

1. State: The next action of each agent is dependent on the decisions of
the previous states. Therefore, the state of each agent is composed of
two parts, the set of the previous actions (the set of previous obser-
vations with their outlier scores), and the current data to be handled.
The size of the state space S is measured by the number of observations170

in the database.

2. Action: It is the assignment of the anomaly decision (normal or ab-
normal) behavior of each observation in the database.

3. Reward: It is crucial to determine an appropriate reward function.
It allows a better learning process of each agent in A. We used data175

with ground-truth to make a reward for the actions of the agent. The
reward function is defined as follows:

R(Ai,Ui) =

{
1, if Ai(Uj, Oj) = L(Oj);
0, otherwise,

(1)

where Ai(Uj, Oj) is the decision of the agent Ai, whether the observa-
tion Oj is an outlier or not, and L(Oj) is the label of the observation
Oj (outlier or not).180

4. Environment: The environment is a set of databases of the microser-
vices which contains a large population of microservices data. This
allows the environment to generate particular states for training the
agent and estimate the best actions to be taken.

Each agent Ai starts by scanning the observations of the ith microser-185

vice, it then computes the outlier score represented by the euclidean distance
between the first observation, and the remaining observations of the ith mi-
croservice. If the outlier score is greater than a given threshold, an action
indicating that the first observation is an outlier, otherwise, an action indi-
cating that the first observation is normal. A reward function is computed190
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for this decision based on the label of the first observation. This process is
repeated for all observations of the ith microservice. As result, a set of local
outliers noted LOi is extracted for each agent Ai.

3.3. Merging Strategy for Global Outliers

Our goal of this step is to learn the global outliers from the set of local195

anomalies of each agent. We define the global outlier pattern candidate by
the set of local outliers, where each local outlier belongs to a given agent in
A. An anomalous pattern is called a global outlier if its density is greater
than a minimum threshold. The density of the pattern Pi is determined by
the sum of distances between each pair of elements in Pi. For normalization,200

we divide this value by the number of distances performed which is set to
|Pi|2. Formally, it is given as follows:

Density(Pi) =

|Pi|∑
j=1

|Pi|∑
l=1

D(P j
i , P

l
i )

|Pi|2
(2)

Note that P j
i , and P l

i are local outliers of the agent Aj, Al, respectively.
Our idea is based on intelligent communication among the agents in A.

Thus, the k nearest neighbors of each agent is determined based on the205

similarity between each two pair of agents. The similarity between the agent
Ai, and the agent Aj is determined as follows:

Sim(Ai,Aj) =

|Ai|∑
l=1

|Aj |∑
m=1

Distance(LOl
i, LO

m
j ), (3)

where Distance(LOl
i, LO

m
j ) is the euclidean distance between the lth local

outlier of the agent Ai, and mth local outlier of the agent Aj.
210

The process starts by computing the kNN (k Nearest Neighbors) [29] of
each agent, which results |A| kNN sets. The global outlier pattern candi-
date is generated from each kNN set by taking one local outlier from each
agent located in this kNN set. The density of this pattern is determined
and added to the set of the global outliers if its density is greater than the215

minimum threshold. A greedy search algorithm is used to explore the global
outlier pattern candidate space.
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Algorithm 1 MASAD Algorithm
1: Input:
M = {M1,M2...,Mn}: The set of n microservices

2: Output:
LO: The set of local outliers.
GO: The set of global outliers.

3: LO ← ∅.
4: for i=1 to m do
5: Ai ← RL(Mi)
6: LO ← LO ∪ LOi

7: end for
8: GO ← ∅
9: KNN ← kNN(A)

10: for i=1 to m do
11: GO ← GO ∪ GreedySearch(KNNi)
12: end for
13: return (LO,GO)

Algorithm 1 presents the pseudo-code of the MASAD algorithm. The
algorithm starts by determining the set of local outliers of each microservice
Mi using the reinforcement learning and by the agent Ai. An intelligent220

communication among agents based on the kNN is performed to determine
the global outlier pattern candidate space. This space is explored by the
greedy search algorithm to identify global outliers.

The complexity cost of MASAD is the sum of the complexity cost of
determining the local outliers, and the complexity cost of determining the225

global outliers. The complexity cost of determining the local outliers is the
m times the complexity of the reinforcement learning is O(|S| × |U|). The
complexity cost of determining global outliers is O(|LO|×k). Therefore, the
complexity cost of MASAD is O(m× |S| × |U|+ |LO| × k).

4. Performance Evaluation230

4.1. Experimental Settings

Here, we evaluate the MASAD framework as proposed and all of the
different components within it. Specifically, the framework’s ability to iden-
tify local, and global anomalous patterns is analyzed using two microservice,
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Figure 2: Runtime comparison of the MASAD and the state-of-the-art anomaly detection
solutions

the NETFLIX1, and the LAMP2 architectures. Four datasets are gener-235

ated: NETFLIX-1800, NETFLIX-3600, LAMP-1800, and LAMP-3600. Each
dataset is produced in 1800 and 3600 seconds simulation on the microservice
architecture NETFLIX, and LAMP, respectively.

The experimental evaluation of the implementation was undertaken on a

1https://netflix.github.io/
2https://aws.amazon.com/fr/blogs/compute/introducing-the-new-serverless-lamp-

stack/
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Figure 3: Comparison in terms of local outliers, and global outliers returned by MASAD
and the state-of-the-art anomaly detection solutions
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INTEL i7-core 64-bit processor running UBUNTU 20 and 32 GB of RAM.240

The host CPU is specified as a quad-core INTEL Xeon E5620 64-bit with
clock measured at 3.27 GHz. The GPU is a NVIDIA Tesla C2085 with 468
CUDA cores (16 multiprocessors each with 64 cores) and clock speed of 3.15
GHz. The GPU contains 3.8 GB global memory, 59.15 KB shared memory,
and warp size of 64. Single precision is used in both CPU as well as GPU. In245

the implementation scenario as used, GPU blocks are used for the simulation
process of the multi-agents system environment. Each agent is allocated to
one GPU block, where a shared memory of each block is allocated to the
corresponding agent. We simulate communication among agents using global
as well as constant memories of GPU host.250

Generally, a well-known issue in anomaly detection is in the evaluation
procedure specifically. Especially with new applications such as in IIoT appli-
cations, where real-world simulation scenarios maybe unknown. To facilitate
a trust-worthy quantitative evaluation, we use the processes defined by Zhang
et al. [30] to inject synthetic anomalous patterns.255

• Injecting local outliers: local outliers are generated by adding noise
several times with a certain probability p ∼ U(0.8, 1.0) and a given
threshold µ;

• Injecting global outliers: From the local outliers, we again add noise260

but now only a few times with a certain probability p ∼ U(0.0, 1.0) and
a given µ.

For both injections, each data di in each dataset is changed as follows:

di =

{
di + n ∼ N (0, 1) if d ≥ µ
di otherwise.

(4)

The evaluation is performed using the ratio between the number of cor-
rected returned outliers over the number of all outliers. This value is ranged265

between 0, and 1, where a higher value represents the best accuracy.
We compared MASAD against two popular solutions for identifying anoma-

lies on large scale data. SVM-RBF (Support Vector Machine using a Radial
Basis Features) [31]. Isolation Forest [32] is also considered as a baseline
algorithm due to its ability in accurately retrieving outliers.270
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4.2. Runtime Comparison of the MASAD and the state-of-the-art anomaly
detection solutions

Figure 2 presents the runtime in seconds of MASAD and the baseline
anomaly detection algorithms (SVM-RBF, and Isolation Forest). Thus, sev-
eral tests have been performed by varying the number of detected outliers275

from 100 to 100, 000. Whatever the sample used as input, MASAD outper-
forms the two other baseline solutions in terms of computational time. In
particular, for LAMP-1800 data, where the gap between MASAD and other
solutions is high. This comes from the fact that the MASAD can identify
anomalies more quickly using reinforcement learning. Moreover, the commu-280

nication among the intelligent agents allows to rapidly identify the outliers.
Contrary to the other baseline approaches, where SVM-RBF attempt to find
a function to distinguish normal behaviors from others. Besides, the isolation
forest algorithm creates the enumeration tree to determine the outliers.

4.3. Comparison in terms of local outliers returned by MASAD and the state-285

of-the-art anomaly detection solutions

Figure 3 presents the percentage of local detected outliers of MASAD and
the baseline anomaly detection algorithms (SVM-RBF, and Isolation Forest).
Thus, several tests have been performed by varying the number of injected
local outliers from 100 to 100, 000. Whatever the sample used as input,290

MASAD outperforms the two other baseline solutions in terms of detected
local outliers. In particular, for LAMP-1800, and LAMP-3600 data, where
the gap between MASAD and other solutions is high. This comes from the
fact that the MASAD can identify local anomalies more quickly thanks to
the learning strategy, where each agent learns from each microservice using295

reinforcement learning. Instead of the two other baseline algorithms where
they used traditional learning approaches in retrieving the local outliers.

4.4. Comparison in terms of global outliers returned by MASAD and the
state-of-the-art anomaly detection solutions

Figure 3 presents the percentage of global detected outliers of MASAD300

and the baseline anomaly detection algorithms (SVM-RBF, and Isolation
Forest). Thus, several tests have been performed by varying the number of
injected global outliers from 100 to 100, 000. Whatever the sample used as
input, MASAD highly outperforms the two other baseline solutions in terms
of detected global outliers. This is explained by the ability of the MASAD305

to detect global outliers. The strategy used in the communication among
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the different agents allows to share knowledge obtained by the different mi-
croservices in the system, and therefore identify global anomalies of the whole
architecture. This is not the case for the traditional approaches where only
local anomalies are derived.310

5. Conclusion

This paper introduced a novel framework based on reinforcement learn-
ing and multi-agent system to derive both the local and the global anomalies
from the microservices architecture. Results on two well-known microservice
architectures showed that our proposed framework outperforms the base-315

line outlier detection solutions, and able to derive both the local and global
outliers. Porting pure data mining, and deep learning techniques into a spe-
cific application domain requires methodological refinement and adaptation
[33, 34]. In our specific context, this adaptation is implemented by inte-
grating a new model which able to identify both local, and global anomalies320

from microservices data. As future perspective, advanced techniques, in-
cluding recurrent auto-encoder-based approaches, should be investigated for
determining anomalies in microservice architectures, in particular for deter-
mining the global anomalies. Another perspective is to handle with large
microservices using the high performance computing. Exploring other type325

of microservices such as GraphQL is also in our future agenda.
Declaration of competing interest The authors declared that there

is no conflict of interest in this study.
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