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ABSTRACT
BACKGROUND: Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key
cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less
consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the
robustness of these associations are needed.
METHODS: We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to
test the associations between IIV and psychopathology (n = 8622, age = 8.9–11.1 years) and IIV and white matter
microstructure (n = 7958, age = 8.9–11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of
RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior
Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors
reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional
anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts.
RESULTS: Increased IIV in both short and long RTs was positively associated with the specific attention problems
factor (Cohen’s d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with
radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12).
CONCLUSIONS: Using a large sample and a data-driven dimensional approach to psychopathology, the results
provide novel evidence for a small but specific association between IIV and attention problems in children and
support previous findings on the relevance of white matter microstructure for IIV.

https://doi.org/10.1016/j.bpsc.2023.03.010
The transitional period from childhood to adolescence involves
continued cognitive development (1,2), neurodevelopment
(3,4), and for some, the emergence of mental health problems
(5–7). Accuracy and processing speed improve with age, and
increased cognitive stability, reflected by decreased intra-
individual variability (IIV) in reaction times (RTs), is observed
(8,9). IIV is thought to be a marker for the efficiency and sta-
bility of top-down attentional control (10,11). High IIV during
cognitive tasks may reflect impairments in information pro-
cessing, failure to maintain attentional control, and difficulties
regulating behavior (12,13).

Increased IIV has been suggested as a phenotype, or even
an endophenotype of attention-deficit/hyperactivity disorder
(ADHD), based on experimental paradigms covering working
memory, sustained attention, and interference tasks (13–18). In
a review, Karalunas et al. (13) found that increased IIV in other
disorders was due to comorbid ADHD, but the apparent spe-
cific association between IIV and ADHD may be driven by a
subset of children. Meta-analyses and other reviews have,
however, found that IIV is a common feature of many different
ª 2023 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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disorders, including ADHD, Tourette’s disorder, autism spec-
trum disorder, traumatic brain injury, dementia, and schizo-
phrenia (11,19,20). Therefore, IIV might be a marker of
deviations in top-down attentional control across diagnostic
categories (13,21), serving as a risk factor for general
psychopathology.

Most previous studies on IIV and psychopathology in chil-
dren have used diagnostic categories and case-control de-
signs, excluding participants with subclinical symptoms, thus
not capturing the dimensional nature of psychopathology
(22,23). A broad data-driven approach can therefore be infor-
mative, with a general factor of psychopathology (p factor)
describing the shared variance across diagnostic categories
(24,25). Because the p factor alone is insufficient, other di-
mensions or subfactors, such as internalizing (e.g., anxious-
ness and sadness) and externalizing (e.g., aggressiveness and
delinquency) problems, should also be considered. Addition-
ally, a separate attention problems dimension is often found
(26). While the p factor is quantified as the shared variance
across different forms of psychopathology, there are several
This is an open access article under the
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ways to define the subfactors. The most common models are
higher order models, in which the factors can correlate with
each other, and bifactor models, in which the subfactors do
not correlate and explain unique residual variance.

A central account of IIV is that it reflects failure to maintain
attentional control (11,12). Supporting this, IIV has been
associated with increased brain activation in the default mode
network (DMN), possibly reflecting insufficiency of its sup-
pression (27,28). Sonuga-Barke and Castellanos (29) proposed
the default mode interference hypothesis to explain attention
fluctuations during task performance in ADHD, and it has later
been extended to other disorders (30). The hypothesis postu-
lates that when transitioning from resting state to task, DMN
activity decreases and task-related brain activity increases.
However, during the task, the DMN activity gradually in-
creases, causing prolonged RTs driving IIV. This is supported
by studies reporting decreased dorsolateral prefrontal cortex
activity, a task-positive brain region, in relation to increased IIV
(31,32). This reflects poorer processing efficiency (13,33–36),
associated with altered white matter, as observed in children
with ADHD (37). It can therefore be informative to investigate
the neural correlates of IIV using diffusion tensor imaging (DTI),
of which the most common metrics are fractional anisotropy
(FA), mean diffusivity (MD), and axial diffusivity (AD) and radial
diffusivity (RD), measuring the degree of anisotropy, the
average diffusion, and diffusion along and across the diffusion
axis, respectively (38,39).

A study of adults (40) found a positive relationship between
IIV and the DTI indices MD, AD, and RD, and a negative rela-
tionship between IIV and FA in widespread brain regions. In an
atlas-based DTI study on children, Tamnes et al. (9) also found
widespread associations, with IIV being linked to lower FA and
higher MD, AD, and RD in the corticospinal tract (CST), left
superior longitudinal fasciculus (SLF), uncinate fasciculus,
forceps minor, and corpus callosum (CC). These results are
partly supported by Klarborg et al. (41), who reported a link
between IIV and lower FA in the SLF and the white matter
underlying the superior parietal cortex. The CST is a
descending pathway mainly from the precentral motor cortex
into the brain stem, propagating signals critical for body
movement, including response execution (42). The CC is the
main interhemispheric pathway and is important for attention
and processing speed (43). These results thus point to a failure
in motor systems underlying increased IIV. However, effects
were also seen in forceps minor, bilaterally in the uncinate
fasciculus, and in the left SLF, all pathways with frontal con-
nections. Considering the lack of associations with median RT
(9), this suggests that IIV is not just related to processing
speed, but also to cognitive control.

While functional magnetic resonance imaging (MRI)
studies mainly propose the DMN as underlying IIV, DTI
studies report more widespread results. A possible expla-
nation is that the structure of long-distance connections
between neural networks can influence the functional inte-
gration of networks, which in turn is associated with behav-
ioral control (44). Interestingly, the uncinate fasciculus is
considered one of the main tracts connecting to the DMN
(45), creating a possible link between DTI and functional MRI
results. All-in-all, this warrants further investigation into the
neural underpinnings of increased IIV.
Biological Psychiatry: Cognitive Neuroscience and Ne
Previous studies mainly investigated IIV as either the stan-
dard deviation of RT or as the coefficient of variance. This
makes it challenging to make specific inferences about the
nature of increased IIV because these measures are a sum of
data from many trials rather than providing information about
the unimodal, positively skewed distribution observed in RT
data (46,47). This is particularly relevant for the default mode
hypothesis in which regularly fluctuating RTs would be ex-
pected. Contrary to this hypothesis, Salum et al. (15) did not
find that RTs fluctuate regularly throughout a task when RTs
were transformed into frequency bands. Instead, they argue
that IIV may be related to random fluctuations in attention.
More specifically, studies show that IIV is primarily driven by
occasional long responses, which makes it more suitable to
use an ex-Gaussian estimation of variability (46,48,49). An ex-
Gaussian approach decomposes the RT distribution of each
dataset into a normal and an exponential component from
which 3 parameters are calculated (19). The variables mu and
sigma are extracted, representing the mean and standard
deviation of the normal distribution, respectively, while tau
describes both the mean and the standard deviation of the
exponential component or the tail of the distribution. An
advantage of this approach is that by separating tau (slow
responses) and sigma (variability in faster responses), both can
be estimated more accurately (49).

While previous studies have investigated IIV in ADHD, the
present study sought to elaborate on this by testing whether
IIV is associated with attention problems specifically or with
other dimensions of psychopathology identified with a data-
driven approach (n = 8622, age = 8.9–11.1 years). Further-
more, while studies have established an association between
IIV and white matter microstructure, there are inconsistencies
regarding the regional specificity. Therefore, we sought to test
the robustness and regional pattern of the associations be-
tween IIV and white matter microstructure in a large sample
(n = 7958, age = 8.9–11.1 years). We used data from the
Adolescent Brain Cognitive Development (ABCD) Study
baseline assessment and decomposed individual RT distribu-
tions using an ex-Gaussian approach. It was hypothesized that
greater tau and sigma would be associated with both general
psychopathology and a specific attention problems factor
(13,19). Additionally, we hypothesized that greater tau and
sigma would be associated with widespread lower FA and
higher MD, AD, and RD (9).

METHODS AND MATERIALS

Sample

We used baseline cross-sectional data from the open ABCD
Study (https://abcdstudy.org/) (50,51). The total sample con-
sists of 11,878 8.9- to 11.1-year-old children recruited through
schools near 21 study sites in the United States (52). See the
Supplement for additional information.

The final samples in this study, after quality control (QC),
consisted of 8622 participants (4151 females, meanage = 9.9
years, SD = 0.6, range = 8.9–11.1 years) for analyses on the
associations between IIV and psychopathology, and 7958
participants (3857 females, meanage = 9.9 years, SD = 0.6,
range = 8.9–11.1 years) for analyses on the associations be-
tween IIV and white matter microstructure.
uroimaging August 2023; 8:832–840 www.sobp.org/BPCNNI 833
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Experimental Task

To measure IIV, we used trial-level data from a visual stop
signal task (SST) performed while the participants were in the
MRI scanner. In short, the task involves a go stimulus and a
stop stimulus. The go stimulus requires a fast response while
the occasional stop stimulus on a subset of trials following the
go stimulus requires the participant to withhold their response.
The task is illustrated in Figure 1 and described in detail in the
Supplement.

Of the total sample, 10,248 had available baseline trial-level
behavioral data from the SST. Of these, 693 were excluded
due to missing genetic ancestry factor (GAF) scores (53). The
GAF scores are 4 continuous variables, labeled African, Amer-
ican, European, and East Asian, describing proportion of genetic
ancestry. The scores are calculated based on the Bayesian
clustering results with the 1000 Genomes reference panel.

Of the 9555 datasets with both baseline trial-level behav-
ioral data from the SST and GAF scores, 184 were excluded
due to incomplete data. To ensure task compliance and
enough trials, participants with accuracy below 60% on go
trials were excluded (n = 744), in line with previous literature on
children and the ABCD Study sample (54,55). One additional
dataset with a negative skew in the distribution was removed
because it was unfit for ex-Gaussian distribution analysis.
Thus, 8626 participants passed the QC on behavioral data
performed prior to separate QC on psychopathology and DTI
data.
Figure 1. Illustration of the stop signal task. ITI, intertrial interval; RT, reaction t
(61).]
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Prior to extracting the behavioral variables of interest, trials
with premature responses (RT , 150 ms) were removed. To
account for post-error slowing, a concept of behavioral
adaptation and performance monitoring, potentially affecting
the results, successful go trials following an error response
were excluded to purify our measure of IIV. This resulted in an
average of 42.24 correct go trials removed per participant
(SD = 14.14, range = 12–181) and an average of 219.98 correct
go trials retained (SD = 34.20, range = 75–276).

From these trials, mu, sigma, and tau were extracted as
behavioral variables of interest. The ex-Gaussian distribution
analysis was performed using the function timefit from the
retimes toolbox (56) implemented in R (57), with bootstrap
resampling with 1000 iterations and using the maximum like-
lihood method for parameter estimation.

Parent-Reported Child Psychopathology

Child psychopathology was measured using the Child
Behavior Checklist (CBCL) (age 6–18 years form) (58), which
consists of 119 items scored on a 3-point Likert scale ranging
from 0 (not true) to 2 (very true or often true). The items
describe behaviors (e.g., “Destroys others’ things”) that the
parents rate. Previous studies have shown evidence support-
ing the reliability and validity of CBCL (59). To obtain broad
dimensional factors of psychopathology, we based our ana-
lyses on Clark et al. (26). Based on model 4, a bifactor model
(Figure S1), we separated the items into the specific,
ime; SSD, stop signal delay. [Reproduced with permission from Casey et al.
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residualized subfactors, internalizing, externalizing, and atten-
tion problems. The model has been reported with adequate fit
(root-mean-square error of approximation = 0.07, indicator
level explained common variance = 0.79). Next, a graded
response model was performed in Mplus (60). As in Clark et al.
(26), items about substance abuse (items 2, 106, and 112) were
removed due to low endorsement. Of the 8626 datasets that
passed QC on behavioral data, 4 were excluded due to
incomplete CBCL data, yielding a final sample of 8622 for
analyses on associations between IIV and psychopathology.
The items’ factor loadings are provided in the Supplement.

MRI Acquisition and Processing

The imaging data in the ABCD Study is acquired across 21
sites and 29 scanners (61). For the present analyses, we used
tabulated diffusion MRI data from a high angular resolution
diffusion imaging sequence with multiple b-values and fast
integrated B0 distortion correction (reversed polarity gradient
method). White matter tracts were segmented based on the
probabilistic atlas AtlasTrack (62). The processing steps are
described elsewhere (63). For our analyses, we included the
following major fiber bundles: cingulate cingulum, para-
hippocampal cingulum, corticospinal/pyramidal, anterior
thalamic radiations, uncinate, inferior longitudinal fasciculus,
inferior fronto-occipital fasciculus, CC, SLF, superior cortico-
striatal, striatal inferior frontal cortex, and inferior frontal su-
perior frontal cortex. All tracts were bilateral except for the CC,
yielding 23 tracts of interest in which we examined mean FA,
MD, AD, and RD.

Of the 8626 datasets that passed QC on behavioral data and
GAF, further exclusions were for missing scanner serial number
(n = 1), missing DTI data (n = 161), and not passing recom-
mended QC (automatic and manual; n = 506), yielding a final
sample of 7958 for analyses on associations between IIV and
white matter microstructure. To correct for scanner effects, we
used neuroComBat (64) in R (57), an adaptation of ComBat (65),
a batch-effect correction tool (Figure S2). The adjustments were
made before the main analyses and with age, sex, GAF, mu,
sigma, and tau as covariates. These were, as recommended,
the same variables as those in the main analyses. neuroComBat
works well for harmonization of DTI data (66).

Statistical Analyses

All statistical analyses were performed using the Permutation
Analysis of Linear Models toolbox (67). Six analyses were run,
testing the associations between 1) mu and psychopathology,
2) sigma and psychopathology, 3) tau and psychopathology, 4)
mu and DTI, 5) sigma and DTI, and 6) tau and DTI. The psy-
chopathology factors (p, internalizing problems, externalizing
problems, and attention problems) and the DTI metrics (FA,
MD, AD, and RD in 23 tracts of interest) were included as
separate modalities in their respective analyses. All analyses
were performed with age and sex as covariates to avoid po-
tential spurious associations driven by age and sex effects
and, additionally, including the 4 GAFs to minimize spurious
associations due to population stratification (68). The p values
were computed using permutation testing across 10,000 iter-
ations. Because the sample contains related subjects,
including twins, a complex block exchangeability restriction
Biological Psychiatry: Cognitive Neuroscience and Ne
was added during permutation (69). Block restriction was
based on 8 unique family types (i.e., family decomposition),
with additional within family shuffling based on sibling status.
Furthermore, familywise error correction was applied across
contrasts (70) and modalities (71) to control for multiple com-
parisons, with a significance threshold of p , .05. The analysis
code is available: https://osf.io/x36qt/.

RESULTS

Descriptive Analyses

Descriptive statistics on the behavioral measures, psychopa-
thology factors, and mean DTI metrics are shown in Table 1
and separately for the sexes in Tables S1 and S2. For the
behavioral measures of interest, mu, sigma, and tau, only
correct response go trials were included. Participants with an
accuracy below 60% on go trials were excluded, but after trial
exclusions, the accuracy was recalculated for the included
trials only, explaining the observed accuracies below 60%. The
2 samples (IIV-CBCL and IIV-DTI, age: 8.9–11.1 years) did not
significantly differ in terms of the main behavioral scores (mu:
t = 20.08, p = .937; sigma: t = 20.08, p = .936; and tau:
t = 20.43, p = .665). Correlations and t tests for age and sex
differences, respectively, are found in the Supplement.

Associations Between IIV and Psychopathology

To examine the relationships between IIV and broad dimensions
of psychopathology, we separately tested the associations
between mu, sigma, and tau and a general p factor and specific
uncorrelated subfactors of internalizing, externalizing, and
attention problems (Table 2). Age, sex, and the 4 GAFs were
included as covariates and relatedness was accounted for. The
analyses showed a significant positive association between
sigma and the attention problems factor (t = 6.06, p = .010,
Cohen’s d = 0.13) indicating that more variability in RTs within
the normal distribution was associated with more attention
problems. Additionally, we found a significant positive associ-
ation between tau and the attention problems factor (t = 6.71,
p = .021, Cohen’s d = 0.15) indicating that more long RTs were
associated with more attention problems. Scatterplots of the
significant associations are shown in Figure 2. All other results
from these analyses were nonsignificant.

Associations Between IIV and White Matter
Microstructure

To examine the relationships between IIV and white matter
microstructure, we performed similar analyses as described
above for associations between IIV and psychopathology,
separately testing the associations between mu, sigma, and
tau and regional DTI metrics (FA, MD, AD, and RD in 23 tracts
of interest: Tables S6–S8). Age, sex, and the 4 GAFs were
included as covariates and relatedness was accounted for.

The results showed that tau had a significant positive as-
sociation with RD in the left (t = 5.28, p = .013, Cohen’s d =
0.12) and right (t = 5.19, p = .020, Cohen’s d = 0.12) CST,
indicating that a longer tail of RTs in the RT distribution was
related to increased RD bilaterally in that tract. Scatterplots of
the significant associations are shown in Figure 3. All other
results from these analyses were nonsignificant.
uroimaging August 2023; 8:832–840 www.sobp.org/BPCNNI 835
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Table 1. Descriptive Statistics

Variable

Sample for IIV-CBCL Analyses, n = 8622 Sample for IIV-DTI Analyses, n = 7958

Mean SD Min Max Mean SD Min Max

Age, Years 9.93 0.63 8.92 11.08 9.94 0.63 8.92 11.08

goRT, ms 550.83 90.84 292.15 1032.73 550.41 90.97 292.15 1032.73

goAcc, % 73.33% 11.40% 25% 92% 73.45% 11.35% 25% 92%

Mu 386.53 84.08 154 964.42 386.43 84.21 154 962.42

Sigma 72.58 30.74 2.84 400.46 72.54 30.72 2.84 400.46

Tau 164.39 46.41 14.81 370.68 164.08 46.49 14.81 370.68

p Factor 20.03 0.91 21.77 3.26 – – – –

Internalizing Problems 0.02 0.75 22.73 3.68 – – – –

Externalizing Problems 20.02 0.71 22.61 2.98 – – – –

Attention Problems 20.03 0.78 22.22 2.96

FA – – – – 0.47 0.016 0.39 0.53

MD, 3 1023 mm2/s – – – – 0.78 0.019 0.70 0.87

AD, 3 1023 mm2/s – – – – 1.23 0.023 1.07 1.32

RD, 3 1023 mm2/s – – – – 0.56 0.020 0.48 0.65

FA, MD, AD, and RD represent the mean values across all tracts.
AD, axial diffusivity; CBCL, Child Behavior Checklist; DTI, diffusion tensor imaging; FA, fractional anisotropy; goAcc, accuracy on go trials; goRT,

reaction time on go trials; IIV, increased intraindividual variability; MD, mean diffusivity; Min, minimum; Max, maximum; RD, radial diffusivity.
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DISCUSSION

The results of the present study showed that increased IIV in
short (sigma) and long (tau) RTs were positively associated
with attention problems in a large population–based sample of
children ages 8.9 to 11.1 years. Additionally, we found that tau
was positively associated with RD in the left and right CST.
Overall, the findings indicate a small but specific association
between IIV and attention problems in children and support
previous findings on the relevance of white matter micro-
structure for IIV.

Previous research has reported inconsistent results on
whether increased IIV is specific to ADHD or a marker of atten-
tional control difficulties across diagnostic categories
(13–15,19). We used a data-driven dimensional approach to
psychopathology and found that IIV was specifically associated
with attention problems in a large population–based sample of
children. Notably, in our bifactor model, this specific attention
problems factor explained unique variance beyond a general p
factor, and we found no associations between IIV and the p
factor or the subfactors, internalizing or externalizing problems.
Moreover, using an ex-Gaussian approach, we distinguished
between standard deviation within the normal distribution
(sigma) and the tail of the RT distribution (tau) and found that
attention problemswere associatedwith both. This is in contrast
Table 2. Results From Permutation Analyses on Increased Intra

Variable

p Factor Internalizing Problems

t p d t p

Mu 0.05 z1.000 0.001 21.93 z1.000 20

Sigma 3.81 .986 0.08 22.58 z1.000 20

Tau 5.41 .748 0.12 23.01 z1.000 20

p Values were corrected using familywise error rate and corrected acr
negative).

aSignificant p values.

836 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
to previous research showing that increased IIV is primarily
driven by long RTs or tau (46,48,49). Tau has been argued to
reflect attention lapses (16,46,48), and the finding is therefore in
line with studies on children and adolescents diagnosed with
ADHD (16,46,72,73). However, while tau is linked to attentional
lapses, attentional lapses have been found to be insufficient to
explain IIV (13,19,74), indicating that the conceptualization of IIV
is still unclear.

Relatedly, Karalunas et al. (13) reported that the observed
increased IIV in children with ADHD was driven by a subset of
children with extreme values. This can perhaps partly explain
the small effect sizes observed in the present study because
the associations may be stronger in samples with higher
overall symptom levels. Moreover, while tau may be associ-
ated with symptom severity in children with ADHD (16), both
sigma and tau may be associated with attention problems in a
population-based sample of children. Additionally, the age
range, 8.9 to 11.1 years, can possibly explain our lack of
findings in relation to other dimensions of psychopathology,
particularly internalizing problems, because these symptoms
typically present later in adolescence (75). This is supported by
the positive association between age and internalizing in this
study (see the Supplement). The relationship between IIV and
internalizing problems may therefore be of interest in later re-
leases of the ABCD Study.
individual Variability and Psychopathology

Externalizing Problems Attention Problems

d t p d t p d

.04 21.32 z1.000 20.03 1.74 .863 0.04

.06 0.69 z1.000 0.02 6.06 .010a 0.13

.07 3.53 z1.000 0.08 6.71 .021a 0.15

oss modalities (psychopathology factors) and contrasts (positive and
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Figure 2. Associations between increased intra-
individual variability and attention problems factor.
(A) Scatterplots of the positive association between
sigma and attention problems and (B) tau and
attention problems. Each dot represents an individ-
ual participant. The y-axis is residualized for age,
sex, and the 4 genetic ancestry factor scores.
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While we hypothesized that increased IIV would be asso-
ciated with both p factor and attention problems, we only
found significant results for the latter. This may highlight the
underlying mechanisms for the association between increased
IIV and ADHD in previous research (13–16). It has, however,
been argued that increased IIV in ADHD stems from hyperac-
tivity and not inattention (19,76), but few studies distinguish
between the two. Of importance, the CBCL items loading on
the attention problems factor measure a mixture of attention
problems, hyperactivity, impulsivity, and compulsiveness
symptoms. In other words, the associations in the present
study may not be solely attributed to attention problems.
Furthermore, Buzy et al. (76) report that the effect was more
pronounced with increased cognitive load in their working
memory task. Further research across different cognitive tasks
and different clinical and nonclinical samples is warranted.

Our results showed positive associations between tau and
RD of the left and right CST in line with previous literature
demonstrating the role of the CST in processing speed and
execution of motor responses (9,42). Because typical neuro-
development involves increases in FA and decreases in MD
and RD (77), this result might indicate that increased IIV, driven
by a longer tail in the distribution of RTs, is related to locally
less mature white matter microstructure. However, this does
Biological Psychiatry: Cognitive Neuroscience and Ne
not explain why CST was not associated with mu and sigma
because these variables also represent motoric mechanisms.
Using functional data or further deciphering the conceptuali-
zation of the ex-Gaussian components, e.g., by looking at trial
history and occurrence of errors, may further clarify the present
findings.

Though we hypothesized that greater tau and sigma would
be associated with widespread lower FA and higher MD, AD,
and RD, the data did not support this. Interestingly, the sig-
nificant results show effect sizes of d . 0.10, but several tracts
demonstrate effect sizes around 0.10 without reaching statis-
tical significance.

The results of the present study should be interpreted
considering some limitations. First, there are design issues
with the SST, as discussed by Bisset et al. (78). However, by
only looking at RTs from go trials derived from trial-level data,
we have bypassed most of the issues because they were
mainly concerning the stop trials and the calculation of accu-
racies. Nonetheless, the literature shows that in RT tasks that
are not pure, e.g., in which a stop signal can occur, partici-
pants slow down their RTs in anticipation of a possible stop
signal, meaning that RTs increase as a function of stop signal
probability (79,80). In the current SST, the stop signal proba-
bility is lower than recommended (81), which might be a benefit
Figure 3. Associations between increased intra-
individual variability and diffusion tensor imaging
metrics. Scatterplots of the positive associations
between tau and radial diffusivity (RD) in the right (A)
and left (B) corticospinal tract. Each dot represents
an individual participant. The x-axis is residualized
for age, sex, and the 4 genetic ancestry factor
scores. L, left; R, right.
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in the present study because this should interfere less with the
RTs. Furthermore, by looking at IIV with an ex-Gaussian
approach, allowing the separation of long and short RTs, and
by all participants receiving the same stop signal probability,
the present results should be less contaminated by stop sig-
nals. Second, further investigations into the conceptualization
of the parameters in the ex-Gaussian distribution, e.g., through
looking at trial history, are needed to provide more insight into
how the parameters could be influenced by stop signals. Third,
the specific factors in bifactor models can be difficult to
interpret (82), may have less variance, and be more unstable
(83). Fourth, our methodological choices may have increased
the chance for type II errors or false negatives. This is apparent
when considering the strict block exchangeability restriction
and multiple comparisons correction applied in the permuta-
tion analyses. Fifth, the t values and effect sizes are small,
though it has been argued that effect sizes are particularly
interesting in well-powered studies with large samples, such as
in the ABCD Study (84). Owens et al. (85) investigated effect
sizes in the ABCD Study and demonstrated that even small
effect sizes can be relevant. Several studies also discuss how
true brain-behavior relationships are smaller than previously
described and that small effects should not be dismissed
because they can be important clinically or for public health
(84,86).

Future research could use longitudinal data to investigate
how IIV interacts with psychopathology and white matter over
time, during development, and, for instance, during psycho-
logical and pharmacological treatment. Future studies could
also examine alternative methods for segmenting RTs to
investigate IIV and other behavioral attributes related to cogni-
tive processing and decision making (e.g., drift diffusion, fre-
quency analysis, RTs in relation to errors). Some work has
already been done on the ABCD Study dataset to compare
different ways to calculate IIV (54); however, more work is
needed to clarify the sensitivity of different methods for
measuring IIV in relation to psychopathology and its neural
correlates.

In conclusion, the present study found that IIV is associated
with attention problems and regional white matter micro-
structure in a population-based sample of children ages 8.9 to
11.1. Leveraging a large sample, an ex-Gaussian approach to
segment RTs, and a data-driven dimensional approach to
psychopathology, the current study built on existing literature,
supporting increased IIV as a cognitive phenotype specifically
associated with attention problems in children. Moreover,
increased IIV driven by long RTs was associated with white
matter microstructure bilaterally in the motoric CST. This
knowledge can contribute to further understanding of the
cognitive mechanisms underlying attention problems in chil-
dren. Further studies are needed to delineate how such diffi-
culties develop and potentially change during treatment.
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