
The Journal of Systems & Software 180 (2021) 111032

V
A
a

b

c

d

e

c
d
a
t
p
t
2
d

e

a
(
a

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

Model-based testing in practice: An experience report from theweb
applications domain✩

ahid Garousi a,b,∗, Alper Buğra Keleş c, Yunus Balaman c, Zeynep Özdemir Güler c,
ndrea Arcuri d,e
Queen’s University Belfast, UK
Bahar Software Engineering Consulting Corporation, UK
Testinium A.Ş., Istanbul, Turkey
Kristiania University College, Norway
Oslo Metropolitan University, Norway

a r t i c l e i n f o

Article history:
Received 28 October 2020
Received in revised form 13 June 2021
Accepted 14 June 2021
Available online 30 June 2021

Keywords:
Software testing
Test automation
Model-based testing
Web applications
Experience report
Applied research report

a b s t r a c t

In the context of a software testing company, we have deployed the model-based testing (MBT)
approach to take the company’s test automation practices to higher levels of maturity and capability.
We have chosen, from a set of open-source/commercial MBT tools, an open-source tool named
GraphWalker, and have pragmatically used MBT for end-to-end test automation of several large web
and mobile applications under test. The MBT approach has provided, so far in our project, various
tangible and intangible benefits in terms of improved test coverage (number of paths tested), improved
test-design practices, and also improved real-fault detection effectiveness. The goal of this experience
report (applied research report), done based on ‘‘action research’’, is to share our experience of applying
and evaluating MBT as a software technology (technique and tool) in a real industrial setting. We
aim at contributing to the body of empirical evidence in industrial application of MBT by sharing
our industry-academia project on applying MBT in practice, the insights that we have gained, and
the challenges and questions that we have faced and tackled so far. We discuss an overview of
the industrial setting, provide motivation, explain the events leading to the outcomes, discuss the
challenges faced, summarize the outcomes, and conclude with lessons learned, take-away messages,
and practical advices based on the described experience. By learning from the best practices in this
paper, other test engineers could conduct more mature MBT in their test projects.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Systematic and adequate testing of software systems is a
ostly activity, but so do the costs caused by software defects
ue to inadequate testing. In a quest to increase effectiveness
nd efficiency of testing, software engineers have used test au-
omation (Polo et al., 2013) for several decades now. While most
ractitioners use automation for the test execution phase, test au-
omation is ‘‘not just for test execution’’ (Garousi and Elberzhager,
017), i.e., it can be used in other test activities such as test-case
esign.
Model-based testing (MBT) (Utting and Legeard, 2010) is an

stablished black-box testing approach for generation of test

✩ Editor: Daniel Mendez.
∗ Corresponding author.

E-mail addresses: v.garousi@qub.ac.uk (V. Garousi),
lper.keles@testinium.com (A.B. Keleş), yunus.balaman@testinium.com
Y. Balaman), zeynep.ozdemir@testinium.com (Z.Ö. Güler),
ndrea.arcuri@kristiania.no (A. Arcuri).
https://doi.org/10.1016/j.jss.2021.111032
0164-1212/© 2021 Elsevier Inc. All rights reserved.
cases. In MBT, specific types of models, often called test models,
are developed or are reused from earlier software lifecycle phases
(e.g., requirements or design) for generation of test cases. When
MBT is integrated with test execution tools such as Selenium for
web applications, it can also automate execution of test cases
derived from test models, thus further increasing effectiveness
and efficiency of testing.

MBT has been around for at least 50 years now. An IBM
technical report (Elmendorf, 1970), published in 1970, is often
referred to as one of the first known reported applications of
MBT. The modeling semantic (type of test models) followed in
that first paper was Cause–Effect Graphs, and a prototype tool,
named TELDAP (TEst Library Design Automation Program), for
generating test cases was presented. A very large number of
papers and reports have been published in MBT since then, by
following different approaches to MBT, e.g., from the standpoints
of model semantics (UML models, BPMN or other model types),
level of modeling abstractions, test execution modes (offline or
online), and test selection criteria (model coverage, fault-based,

https://doi.org/10.1016/j.jss.2021.111032
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111032&domain=pdf
mailto:v.garousi@qub.ac.uk
mailto:alper.keles@testinium.com
mailto:yunus.balaman@testinium.com
mailto:zeynep.ozdemir@testinium.com
mailto:andrea.arcuri@kristiania.no
https://doi.org/10.1016/j.jss.2021.111032


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

e
H
v

v
t
a
d
a
m
a
a

w
c
t
a
d
l
o
t
T
t
t
p
(
a
e
n
(
e

(
p
r
c
p
w
w
a
c
(
e
w
r
m
t
e
t
p
l
t
t
e

i
t
e
M
a
e
a

i
d
t

tc.) (Utting et al., 2012; Dias Neto et al., 2007; Li et al., 2017).
owever, many studies report that: ‘‘most developers [still] don’t
iew MBT as a mainstream [testing] approach’’ (Neto et al., 2008).
Specific domains have historically used and taken more ad-

antage of MBT, e.g., embedded software, aerospace, railway and
elecommunications (Utting et al., 2012). While test teams in the
bove specific domains often have the resources to adopt/build
omain-purpose (and often heavy-weight) MBT approaches,
dopting MBT in the enterprise software domains, e.g., web and
obile applications, has not been successful with heavy-weight
pproaches and, instead, needs lean, highly usable, lightweight
nd cost-effective methods and tools (Elodie et al., 2018).
In the context of a software testing company (Testinium A.Ş.)

ith offices in several European countries, we have pragmati-
ally used MBT, since January 2019, to improve the company’s
est-automation practices. The work is the result of an industry-
cademia collaboration (Garousi et al., 2020c), and has been con-
ucted in the context and using the funding of an international
arge European R&D project named ‘‘TESTOMAT – The Next Level
f Test Automation’’ (testomatproject.eu), in which 34 indus-
rial/academic partners across six countries are collaborating. The
ESTOMAT project ran from 2018 to the end of 2020. To provide
he larger context of the work reported in this paper, let us note
hat MBT is only one of the work-packages of the TESTOMAT
roject, and in the industrial context of the subject company
Testinium A.Ş.), several other test automation innovation have
lso been conducted and published as recent papers, e.g., experi-
nce reports and a set of innovative best practices for executable
atural-language test specifications using a test tool called Gauge
gauge.org) were published in Garousi et al. (2020b) and Garousi
t al. (2019).
Given the very large number of MBT approaches and tools

Dias Neto et al., 2007; Li et al., 2017), our goal in the TESTOMAT
roject has been not to develop a yet new MBT approach, but
ather to select and apply the ‘‘right’’ MBT approach(es) in the
ontext of the subject company (Testinium A.Ş.), to identify the
ractical challenges/questions that a typical company or test team
ould face when deploying MBT in practice in the context of
eb and mobile applications, and to take the company’s test
utomation practices using MBT to higher levels of maturity and
apability. It does not matter how good or scientifically-novel a
MBT) test technique is, if it is not practical for software test
ngineers in practice, no test engineer will use it. What might
ork well in lab may not necessarily work well in practice, when
esource constraints (e.g., time and effort), human factors and
any other relevant ‘‘contextual’’ aspects (Clarke et al., 2016) are

aken into account, e.g., background and expertise of the involved
ngineers, management priorities, and return of investment for
he utilized resources. Therefore, actual usage of any test ap-
roach (including MBT) in practice by test engineers working on
arge-scale software is of paramount importance when evaluating
he actual effectiveness and industrial usage of new (or old)
esting techniques proposed by researchers (Arcuri, 2017; Garousi
t al., 2020a).
In this paper, we present an experience report of using MBT

n the web applications domain, to address the above gap related
o the industrial adoption and use of MBT. We report on the
xperience of a project on choosing and applying a practical
BT approach in practice, the insights that we have gained,
nd the questions and challenges that we have faced so far,
.g., which MBT approach/tool should we choose? How to deploy
lightweight MBT approach in our context?
Since this is mainly an industrial project and had to deliver

mprovements in practice, our approach has been ‘‘pragmatic’’. In
iscussion with company’s management, from the beginning of

he project, it was clear that we could not use ‘‘heavyweight’’ MBT

2

and Model-Driven Engineering (MDE) approaches that would re-
quire extensive modeling without considering their cost-benefits
in practice (Arcuri, 2017). For example, we had to ensure that
the chosen modeling is as simple as possible, to ensure ease
of adaption in test teams. Our project’s philosophy has been
similar to that of another experience report on applying MBT in
industry (Arcuri, 2017), in which the author argued that ‘‘it is
important to always state where the models [to be used in MBT]
come from: are they artificial or did they already exist before the
experiments’’ and that ‘‘one has to argue and evaluate if the time
and effort in developing and maintaining such models for a given
system does pay off in the end’’.

The remainder of this paper is structured as follows. Since
we used Gorschek et al.’s process model (Gorschek et al., 2006)
in our project (details in Section 3), sections of this paper are
structured based on that process. Section 2 reviews the industrial
context, needs and the motivations for the project. We discuss
the research approach, design and questions of the project in
Section 3. In Section 4, we review the related work. As the
core of our work, our test automation strategy and test-artifact
development are discussed in Section 5. We report in Section 6
the empirical findings that we have gathered so far in the project,
for assessing the (positive) impacts and the benefits that MBT
had in our project, and also the challenges and questions that we
have observed so far. In Section 7, we discuss the lessons learned,
take-away messages, and practical advice based on the described
experience. Finally, Section 8 concludes the paper and discusses
our current and future work directions.

2. Industrial context, needs and motivations for the project

Testinium A.Ş. is officially classified as a Small/Medium-sized
Enterprise (SMEs). The company employs more than 200 software
test engineers. Almost all test engineers have received differ-
ent certificate types of the ISTQB (International Software Testing
Qualifications Board), e.g., the ‘‘Foundation Level’’ certificate.

The company has been proactive in adapting novel approaches
to increase effectiveness and efficiency of its test activities, and
joining the European TESTOMAT project has been one of those
initiatives. Almost all of the Systems Under Test (SUTs) tested by
test engineers are the clients’ web or mobile applications, e.g., the
online ticket sales website of several major airlines in Turkey.

Two major system GUI-level automated testing technologies
used in the company are Selenium (selenium.dev) and Gauge
(gauge.org). System GUI-level testing is to conduct system test-
ing on a SUT via its Graphical User Interface (GUI). While such
tools are effective for automated execution of the developed test
scripts, based on our many test automation projects, we and
many others (Graham and Fewster, 2012) have found those test
tools alone are not enough for a successful test automation out-
come. A critical issue is that the automated test artifacts should be
designed and developed properly, e.g., should be free from ‘‘test
smells’’ (Garousi and Küçük, 2018) and should be modular, since
as test code grows, it becomes a code-base of its own. Further-
more, the test cases underlying the test scripts should be sys-
tematically designed to have the most cost-effective test suites,
i.e., the most-size-optimal test suites having the highest fault
detection effectiveness. Furthermore, test scripts have to be main-
tainable, since the requirements, code-base and/or the GUI of the
SUT often change. Doing all these aspects in a disciplined manner
was referred to as ‘‘software test-code engineering’’ (STCE) in our
previous work (Garousi and Felderer, 2016). An industry expert,
named Hans Buwalda, also summarizes this point clearly as:
‘‘Success in automation is not as much a technical challenge as it
is a test design challenge’’ (bit.ly/TestDesignForAutomation).

In our industrial context (Testinium A.Ş.), various black-box
test design approaches have been in use since the company was

http://www.testomatproject.eu
https://gauge.org/
https://selenium.dev/
https://gauge.org/
http://bit.ly/TestDesignForAutomation


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

f
v
a
a
h
F
e
e
t
t
b
2

i
s
s
p
t

3

a
w
a
2
t
F
(
a
l
f
v
(
i
c
2
i
p
(
w
r
e

e
s
c
t
u

(
a
a
m
a

p
c
‘
b
t
c
a
e
a
m

ounded in 2010, e.g., category-partition testing and boundary-
alue testing. However, since such techniques can be interpreted
nd applied in different ways by different test engineers, the
utomated test suites were designed in different ways and we
ave been seeing the need for a ‘‘better’’ test-design approach.
urthermore, although there has been a very large research lit-
rature on test-design in academia (like those discussed above,
.g., category-partition testing), systematic test-case design prac-
ices do not seem to be in wide use in many industrial con-
exts (Eldh, 2011). This has mainly been attributed to low applica-
ility of textbook-based test-design approaches in practice (Eldh,
011).
Based on the above exploratory phase and needs analysis

n Testinium A.Ş., and by reviewing the experience report and
uccess stories of MBT in practice, e.g., Neto et al. (2008), we
elected MBT to improve the test-case design and test automation
ractices, which was also raised as one of the work-packages of
he TESTOMAT project (testomatproject.eu).

. Project process and action-research questions

In terms of research process for the project and our industry-
cademia collaboration (Garousi et al., 2020c), we used the
idely-cited process model proposed by Gorschek et al. for
ction-research and technology transfer in SE (Gorschek et al.,
006), which consists of seven steps: (1) Identify the indus-
rial need(s), through assessment and observation activities; (2)
ormulate a research agenda by reviewing the state-of-the-art
literature) and -practice to find the research focus; (3) Formulate
candidate solution in cooperation with industry; (4) Conduct

ab validation (for example, through lab experiments); (5) Per-
orm static validation in the industrial context (for example,
ia interviews and seminars); (6) Perform dynamic validation
for example, pilot projects); and (7) Release the solution in the
ndustrial context step by step, while remaining open to smaller
hanges and improvements. That process model (Gorschek et al.,
006) has been widely cited in the literature and has been used
n a large number of industry-academia collaborations, e.g., our
ast projects with a large number of partners, e.g., Garousi et al.
2020c) and Garousi et al. (2017a). For our research process,
e also benefitted from other papers and guidelines for action
esearch, e.g., Stringer (2013), Iivari and Venable (2009), Petersen
t al. (2014) and d. Santos and Travassos (2009).
Our project goal was to assess practical applicability and cost-

ffectiveness of MBT in the industrial context by applying it to
everal large testing projects, with the hope of making MBT a
ommon test-automation approach in the company. We believe
hat sharing our success story would motivate practitioners for
sing MBT.
Given the very large spectrum of MBT approaches and tools

Dias Neto et al., 2007; Li et al., 2017), we had to choose and
dapt the right MBT approach and tool, by taking advice from
n insightful voice-of-evidence paper (Neto et al., 2008) which
entioned: ‘‘Developers must obviously take care to select an MBT
pproach that matches their project’s specific needs’’.
Furthermore, using any software engineering (SE) approach in

ractice by any SE team has non-trivial costs, and the associated
ost-benefits should be carefully analyzed, a topic referred to as
‘value-based’’ software engineering (Biffl et al., 2006). Only if
enefits of a given SE approach outweigh its costs, a given SE
eamwill decide or continue using it. A paper by Neto et al. (2008)
onfirmed this issue by stating that: ‘‘it’s risky to choose an MBT
pproach without having a clear view about its complexity, cost,
ffort, and skill required to create [develop] the necessary models’’
nd that: ‘‘Evidence on these topics could be a useful step in deter-
ining whether wider deployment of MBT approaches to different
3

domains is worthwhile’’. We aimed at assessing these issues and
to contribute evidence to the state of practice in this area, since
studies have reported ‘‘a serious lack in evidence’’ (Janicki et al.,
2012) in MBT.

In the planning phase of our project, we derived the following
three Action-Research Questions (ARQ), and we will address them
in this paper:

• ARQ1: How can we choose the ‘‘right’’ MBT test tool for our
purpose? (discussed in Section 5.2)

• ARQ2: What benefits does the MBT approach provide in the
industrial context? (discussed in Section 6.1)

• ARQ3: Which challenges and questions did we face in the
MBT project (so far) and how can they be addressed? (dis-
cussed in Section 6.2)

4. Background and related work

By a literature search, one can find out that, since the first
known MBT paper, published in 1970 as an IBM technical report,
a few thousand papers have been published in various topics of
MBT. Several survey and systematic review papers have summa-
rized such a large body of knowledge, e.g., Dias Neto et al. (2007),
Li et al. (2017) and Janicki et al. (2012).

In the very large research literature and many books on MBT,
we found that various MBT books and papers differ in terms
of how applied and practical they are. We found the book by
Kramer and Legeard (2016) especially useful during our work,
since it provides concrete, practical and pragmatic experience-
based heuristics and guidelines for MBT.

In the rest of this section, we present:

• An overview of how MBT works
• State of the -art and -practice of MBT tools in general, tools

for web applications, and types of test models
• MBT literature in practice and industrial contexts (since our

work falls in this category)
• MBT body of knowledge in the Formal Methods community

4.1. An overview of how MBT works

Model-based testing (MBT) (Utting and Legeard, 2010) is an
established black-box testing approach for generation of test
cases. In MBT, specific types of models, often called test models,
are developed or are reused from earlier software lifecycle phases
(e.g., requirements or design) for generation of test cases. When
MBT is integrated with test execution tools such as Selenium for
web applications, it can also automate execution of test cases
derived from test models, thus further increasing effectiveness
and efficiency of testing.

A UML activity diagram showing the general context and gen-
eral process of MBT (taken from Garousi et al., 2018b) is shown in
Fig. 1. As discussed above, specific types of software models, often
called test models, e.g., UML state-charts, are developed or are
reused from earlier software lifecycle phases, e.g., requirements
or design (forward engineering). There have been also many
studies which have offered approaches for reverse engineering
of (inferring) MBT models from code or other software artifacts,
e.g., Meinke and Walkinshaw (2012), Walkinshaw et al. (2009)
and Groz et al. (2015). Those test models specify the expected
behavior of the SUT. Once test models are ready and have been
verified and validated, they can be used to derive test cases,
which can then be executed on the SUT.

http://www.testomatproject.eu


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

T
C

c
c
r
l
a
b
a
s
d

t
e
w
a

2
e
t
l

Fig. 1. A UML activity diagram showing the general context and general process of MBT (Garousi et al., 2018b).
able 1
lassification of several example (randomly-chosen) MBT tools, as presented in Schieferdecker (2012).
Tool name URL Target domain Type of test

model
Test-generation criteria Test scripting

capabilities

Conformiq
Creator

www.conformiq.com Web, desktop
applications or web
services

State charts Requirements-driven test
generation, black-box
test design heuristics

Textual test plans and
executable test cases
in Java, and so on

Spec Explorer
2010

https://research.microsoft.com/
en-us/projects/specexplorer

Generic (applicable to
all software domains)

State charts
(Spec#)

Transition coverage Executable test cases
in C# or on-the-fly
testing

MaTeLo www.all4tec.net Embedded software Enhanced
Markov chains

Probabilities for
transitions and inputs

Textual test plans
and executable test
cases in TTCN-3
4.2. State of the -art and -practice of MBT tools in general, tools for
web applications, and types of test models

There are perhaps hundreds of MBT tools, each specific to a
ertain domain and types of SUT’s, e.g., mobile apps, web appli-
ations and automotive software. Even surveys and systematic
eviews on MBT tools comparing their features have been pub-
ished, e.g., Dias Neto et al. (2007), Li et al. (2017) and Shafique
nd Labiche (2010). MBT tools are often classified and compared
y their supported type(s) of test models, test-generation criteria,
nd their test scripting capabilities (Schieferdecker, 2012). Clas-
ification of several exampleMBT tools, as presented in Schiefer-
ecker (2012), is shown in Table 1.
A subset of MBT tools is applicable to web applications. Given

he nature of web applications, they are event-based systems,
.g., any mouse click on a hyperlink or HTML button in a given
eb page will change the page, and also the ‘‘state’’ of the web
pp under test.
By reviewing ‘‘survey’’ papers in this area (Dias Neto et al.,

007; Li et al., 2017; Shafique and Labiche, 2010) and also some
xploratory Google searching, one can find a large list of MBT
ools which can be used to test web applications. The following
ist of tools is a partial randomly-chosen subset:

• Commercial tools: TestModeller (testmodeller.io), TestOpti-
mal (testoptimal.com), Tricentis Tosca (tricentis.com), etc.

• Open-source/free tools, made in industry: fMBT (github.
com/intel/fMBT), GraphWalker (graphwalker.github.io),
SpecExplorer (Veanes et al., 2008), TCases (github.com/Corn
utum/tcases), etc.

• Academic prototype tools: ModBat (Artho and others, 2013),
MoMuT (Krenn et al., 2015), VERA (Blome et al., 2013),
JTorX (Belinfante, 2010), Torxakis (Tretmans and van de
Laar, 2019), TESTAR (Vos et al., 2015), etc.
4

4.3. MBT literature in practice and industrial contexts

While it seems that most of MBT literature have been studies
which conducted in academic and lab settings, a subset of the lit-
erature are studies conducted in practice and industrial contexts.
We review a few selected studies below.

An author with affiliation in both industry and academia re-
ported his view of the state of the art and challenges of
‘‘industrial-strength’’ MBT (Peleska, 2013). The reported experi-
ence and opinions are based on a MBT tool named RT-Tester,
developed by the author’s team. The paper highlights the im-
portance of selecting the right modeling ‘‘formalism’’ for the
testing problem at hand, and the fact that development of models,
properly, can prove to be a major hurdle for the success of
MBT in practice. As a related factor, the required skills for test
engineers developing test models are significantly higher than
for test engineers writing conventional test procedures. Other
key factors for successful industrial-scale application of MBT as
reported in the paper were: tracing requirements to the model,
and automated compilation of traceability data.

An experience report of introducing MBT in the context of
a system named European Train Control System (ETCS), devel-
oped by a large European company, named Thales, was reported
in Lackner et al. (2010). The authors argued that MBT is not
applicable ‘‘out-of-the-box’’, and application of MBT in a given en-
vironment (industrial context) requires specific adaptations. The
selected test model formalism was UML/OCL. Certain toolchain-
specific model revisions had to be made, e.g., timed triggers had
to revised in the UML semantics (meta-model). The team used
Borland Together for formalizing and concretizing systemmodels.
The last sentence of the paper was: ‘‘it seems like the industry may
already be aware of the possible benefits of MBT but fears the issues
and costs of its integration’’.

Microsoft has been one of the companies from which many
MBT papers have been published, e.g., Robinson (2003),
Grieskamp (2010) and Grieskamp et al. (2011). A 2003 paper

http://www.conformiq.com
https://research.microsoft.com/en-us/projects/specexplorer
https://research.microsoft.com/en-us/projects/specexplorer
http://www.all4tec.net
http://www.testmodeller.io
http://testoptimal.com
http://tricentis.com
https://github.com/intel/fMBT
https://github.com/intel/fMBT
https://github.com/intel/fMBT
http://graphwalker.github.io/
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

(
p
T
t
m
p
m
t
o

T
f
p
t

c
o
d
t
w
o
v
i
c
I
d
s
t
p
s

l
b
t
t
I
s
p
t
‘
a
o
e
t
T
t
e
w
n
a
b
s
v
[
c
M

s
e
t
e
t
f

t
t
n
t
o
p
S
e
d
s

t
t
S
e
o
h
t

Robinson, 2003) authored by a test architect at Microsoft re-
orted the obstacles and opportunities for MBT in Microsoft.
he author reported that: ‘‘Model-based testing can provide a
remendous increase in testing capability, but modeling technology
ust be integrated into everyday software testing. Small-scale pilot
rojects, readily available tools and tester education have made the
igration to test generation easier at Microsoft ’’. The author and his
eam used five characteristics of innovations that can accelerate
r impede adoption, from a well cited book on the topic:

• Relative advantage: is your innovation better than the exist-
ing method?

• Compatibility: does your innovation integrate with the ex-
isting method?

• Complexity: is your innovation difficult to understand?
• Trialability: is it easy for people to experiment with your

innovation?
• Observability: are the benefits of your innovation easily

visible?

he author then reviewed how each of those characteristics af-
ected the promotion of MBT at Microsoft. According to the pa-
er (Robinson, 2003), as of 2003, more than 600 of Microsoft 5000
esters were involved in some form of MBT.

Several papers from Microsoft have also presented their suc-
ess story with MBT of documentation and quality assurance
f client–server and server–server protocols of Microsoft Win-
ows (Grieskamp, 2010; Grieskamp et al., 2011). A Microsoft MBT
ool named SpecExplorer was used in those studies. The project
as a large-scale undertaking in MBT: More than 25 000 pages
f documentation for over 250 protocols had to be thoroughly
erified to ensure that they are accurate, so that developers can
mplement protocols from the information they contain. Appli-
ation of MBT reflected an investment of over 50 person-years.
n addition, a substantial time investment was made in tool
evelopment, based on a continuous feedback loop from the test-
uite development process into the SpecExplorer development
eam. According to statistical analysis, MBT resulted in a 42%
roductivity gain when compared with traditional test suites in a
ite where similar numbers of requirements were verified.
An interesting ‘‘voice of evidence’’ paper about MBT was pub-

ished in IEEE Software in 2008 (Neto et al., 2008), which was
ased on systematic literature review (SLR). The authors argued
hat a rich body of experiences has not yet been published on all
he SE techniques that researchers have proposed, including MBT.
n fact, by some estimates, the techniques for which we do have
ubstantial experience are few and far between. Thus, our current
aper is a suitable evidence/experience paper aiming to address
hat gap. Based on their experience, the authors reported that:
‘most developers [still] don’t view MBT as a mainstream [testing]
pproach’’ (Neto et al., 2008). The study reported a ‘‘serious lack
f evidence’’ in usefulness of different MBT approaches (Janicki
t al., 2012), and that many publications on MBT provide only
oy examples without proper comparison with other approaches.
he SLR divided the MBT studies into five categories: specula-
ion, example, proof of concept, experience/industrial reports, and
xperimentation. UML-based MBT models were by far the most
idely used formalisms. Furthermore, since applying MBT has
on-trivial costs, the associated cost-benefits should be carefully
nalyzed when considering MBT, a topic referred to as ‘‘value-
ased’’ SE (Biffl et al., 2006). The study discussed this issue by
tating: ‘‘it’s risky to choose an MBT approach without having a clear
iew about its complexity, cost, effort, and skill required to create
develop] the necessary models’’ and that: ‘‘Evidence on these topics
ould be a useful step in determining whether wider deployment of
BT approaches to different domains is worthwhile’’.
5

4.4. MBT body of knowledge in the formal methods community

Researchers in the Formal Methods community have also done
a large number of works on MBT since a few decades ago, e.g., see
a short survey paper (Petrenko et al., 2012). For example, a
MBT approach using Labeled Transition Systems (LTS), which is
a formal method notation, was presented in Tretmans (2008).
An approach for inferring finite-state machines (FSM’s) was pre-
sented in Groz et al. (2015), and those FSM’s can later be used in
MBT. Some fundamental work was done by Nicola and colleagues
on testing ‘‘equivalences’’ (De Nicola and Hennessy, 1984) which
have been highly cited in follow-up MBT studies. Various MBT
tools have also been proposed by the Formal Methods com-
munity, e.g., Belinfante (2010) and Tretmans and van de Laar
(2019).

5. Phases and activities of the MBT test-automation project

As the ‘‘core’’ of our work, we present the phases and activities
of our MBT test-automation project, which include the followings.
We first present our MBT test-automation strategy (Graham and
Fewster, 2012), which itself consists of: (1) how we selected
the ‘‘right’’ test automation tool; (2) how the test models were
designed; and (3) to enable full automated execution of MBT
models, there is a need to development some type of ‘‘glue’’ code.

One of our goals in the project was to measure requirements
coverage and ensure requirements traceability, which we will
also present next. We will also report some results from execu-
tion of MBT test suites. Last but not the least, we will discuss
briefly about development of an MBT coverage tool, that we saw
the need for, during the project.

5.1. Test-automation strategy

For any test automation project, having a proper strategy
is vital (Graham and Fewster, 2012). Such a strategy should
include the following aspects: choosing the right test automa-
tion tool(s) (Raulamo et al., 2017), and how to develop the test
scripts to ensure their quality (e.g., maintainability) (Garousi and
Felderer, 2016). We discuss next how we approached each of
those issues in our MBT project.

5.1.1. Choosing the right test automation approach and tool (ARQ1)
‘‘Selecting the right tool for the right purpose [in MBT] is a key to

uccess’’ (Janicki et al., 2012). A large number of MBT tools exist,
ither as commercial tools, open-source or academic prototype
ools. As it has been reported in other areas of software testing,
.g., Garousi and others (2017) and Borjesson and Feldt (2012),
he choice of test tools often play an important role in success or
ailure of test automation endeavors.

A Google search for ‘‘model-based testing tool’’ would return
he names and links to at least a few hundred such tools. For any
est engineer, including us, choosing the ‘‘right’’ MBT tool is thus
ot trivial. For making such a choice, one would also experience
he ‘‘paradox of choice’’, a phenomenon referred to as ‘‘the agony
f choice’’, in an MBT book (Kramer and Legeard, 2016). This
henomenon has also been reported in other areas of SE (bit.ly/
oftwareEngPOC). While there are comparative studies such as Li
t al. (2017), we felt there was a lack of practical/pragmatic/‘‘in-
epth’’ studies comparing MBT tools, a need which we believe
hould be addressed by future studies.
To choose the right tool, we did not have the time resources

o consider and exhaustively compare ‘‘all’’ the MBT tools out
here, since there are simply too many tools. As discussed in
ection 4.2, we relied on survey papers in this area (Dias Neto
t al., 2007; Li et al., 2017; Shafique and Labiche, 2010) and also
ur exploratory Google search (relying on Google’s PageRank) to
and-pick a manageable list of tools. The following tools were
hose that appeared in our candidate list:

http://bit.ly/SoftwareEngPOC
http://bit.ly/SoftwareEngPOC
http://bit.ly/SoftwareEngPOC


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

F
e
R
t
p
t
t
f
m
w
e
t

w
m
c
t
o
m
m
t
i
(
t
t
a

G
t
s
(
m
s
i
s
w
p
m
G
i
(
(
u

• Commercial tools: TestModeller (testmodeller.io), TestOpti-
mal (testoptimal.com), Tricentis Tosca (tricentis.com)

• Open-source/free tools, made in industry: SpecExplorer
(Veanes et al., 2008), GraphWalker (graphwalker.github.io),
NModel (Ernits et al., 2009), TCases (github.com/Cornutum/
tcases)

• Academic prototype tools: ModBat (Artho and others, 2013),
MoMuT (Krenn et al., 2015), CrawlJax (Mesbah et al., 2008)

or choosing the right testing tools in general, many practition-
rs have offered experience-based heuristics. A Grey-Literature
eview (GLR) done in 2017 (Raulamo et al., 2017) synthesized
he heuristics reported in 53 blogs and white papers. The study
resented 17 different criteria for choosing the right tool under
hree categories: (1) test-requirements and test-environment fac-
ors, (2) test-tool technical factors; and (3) test-tool non-technical
actors. The five top criteria (of those 17) were: (1) the tool
atching the test requirements, e.g., type of SUT (for us, this was
eb/mobile apps), (2) tool being fit to the operating environment,
.g., ‘‘right level’’ of model abstraction, test team’s expertise; (3)
ool’s cost, (4) usability, and (5) availability of support for the tool.

We conducted a pilot phase in which we reviewed each tool’s
ebsite to get familiar with its features and its modeling se-
antic. We also downloaded and tried the tool on one of the
ompany’s web applications (Testinium, testinium.com) to be able
o assess it w.r.t. the above five criteria. To make the evaluation
f the above criterion #2 (tool being fit to the operating environ-
ent) precise, we divided it into two parts: (2a) ‘‘right level’’ of
odel abstraction, and (2b) learnability of the tool, given our test

eam’s expertise. Furthermore, in discussion with test engineers
n the company (Testinium A.Ş.), we identified two of the criteria
1 and 2a) as ‘‘essential’’, i.e., if a tool fails any of them, it is out of
he consideration. Results of our evaluation of the 10 above MBT
ools w.r.t. our evaluation criteria (both essential and follow-up)
re shown in Tables 2 and 3.
As we can see in Table 2, only two tools (TestOptimal and

raphWalker) have passed the filtering. After a careful inves-
igation, and as the assessments of these two tools in Table 2
how, we selected GraphWalker, due to the following rationale:
1) it fit our needs, and was open-source, thus we could also
odify it to meet our purpose, if we wanted to; (2) its modeling
emantic was simple, light-weight and pragmatic; and (3) since
t is open-source, we did not have to worry about availability of
upport for the tool. Furthermore, many of the academic tools
ere mostly prototypes, thus were not production-ready for our
urpose, and most were based on heavyweight modeling for-
alisms. Furthermore, we found that several case studies using
raphWalker have been shared by other test engineers, e.g., test-
ng an information kiosk (panel) software in New York’s subway
bit.ly/MBTGuidingTestingDecisions) and also for testing games
bit.ly/MBTofAGameEngine), thus showing its applicability and
sefulness in practice.

Lesson learned: We empirically observed that choosing the
‘‘right’’ MBT tool from amongst the very large pool of
available MBT tools, for a given industrial testing context and
project, is challenging and not trivial. This validates the
empirical evidence reported in many academic and grey
literature sources, e.g., Janicki et al. (2012) and Raulamo et al.
(2017). We found that, as also reported in many other
resources, selecting the ‘‘right’’ tool for the ‘‘right’’ purpose in
MBT is a key to success. Even if a team has the expertise and
knows which MBT technique to use, but if the tool is not
‘‘right’’, succeeding in MBT will be less likely. We found the
guidelines of a Grey-Literature Review (GLR) (Raulamo et al.,
2017) in this topic useful as they helped us choose the right

tool.

6

Based on how GraphWalker works, we designed our MBT
approach as shown in Fig. 2. Test engineers uses the system re-
quirements to design the test models, a form of activity diagrams
showing the UI flow across different pages of a web application
under test. Test engineers should also develop the Selenium Java
code to ‘‘implement’’ the action of each node/edge in the MBT
test models. MBT test models are then executed using the chosen
test tool (GraphWalker), which uses the developed Selenium Java
code to exercise (call) the front-end of the web application under
test, and that communicates with the back-end. Test outputs are
recorded, logged and returned to test engineers by the chosen test
tool (GraphWalker). We discuss each of the steps of Fig. 2 in more
detail in the next sections.

Lesson learned: When introducing MBT to a company for
the first time, a lightweight MBT tool/approach is advisable,
especially when there exist success stories from other
practitioners that have successfully used a given MBT tool in
other industrial contexts (companies).

5.1.2. How the test models were designed
Among important issues in conducting MBT are levels of ab-

stractions and granularity in test models (Kramer and Legeard,
2016). They directly impact how engineers should design the test
models. Generally, one has to choose the ‘‘right’’ level of abstrac-
tion and this impacts the choice of MBT tool and approach. The
modeling formalism, abstraction level and granularity, followed
by our chosen MBT tool, showed to be practical and appropriate,
for the context and domain at hand (web applications).

Let us continue with concrete examples from one of our actual
SUTs: Testinium (testinium.com), the flagship test tool of the
company, which is a web-application gateway (wrapper) on the
Selenium test framework and provides test-management features
and testing on the cloud. Fig. 3 shows two screenshots from the
SUT: the login screen and the ‘‘dashboard’’ (main page) shown
just after login. Essentially, we used the MBT approach to test this
test tool. Our goal was to deploy MBT extensively for this large
SUT and use the knowledge and expertise that we and our test
engineers would learn in the process to increase the capacities
of the test team in testing of the many SUTs provided by the
company’s clients.

We show in Fig. 4 two test models designed for testing the
above two pages. In the modeling semantic of the tool, each
edge corresponds to an action (stimulus), e.g., e_click_signin,
and each node corresponds to one or more verifications (to
be developed using ‘‘assert’’ functions in Selenium Java code),
e.g., n_verify_in_forgot_password_page in Fig. 4. In this
MBT approach, test models are lightweight UML activity dia-
grams, and are essentially the webpage flow-graphs of the web
application under test. The formalism supports definition of cer-
tain nodes as ‘‘shared’’ nodes (shown with orange color in Fig. 4),
which allow breaking down the entire system to several models.
When visiting a shared node, the tool jumps to any node that
has the same tag (they are like function calls). For the web
applications domain, this lightweight notation can be considered
a domain-specific test modeling language.

The MBT models could be, in principle, developed either man-
ually or automatically, i.e., reverse-engineering of the web GUI,
also called GUI ‘‘ripping’’ (Memon et al., 2003). While we have had
some prior experience using some of GUI ripping tools (Memon
et al., 2003b), and we actually tried the possibility of using that
approach, we soon noticed that one disadvantage is getting very
large models with many details (clicking on every possible link
in web pages), that later would require test engineers to spend a
lot of effort to prune (‘‘clean’’) them to make them executable in
MBT tools.

http://www.testmodeller.io
http://testoptimal.com
http://tricentis.com
http://graphwalker.github.io/
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://github.com/Cornutum/tcases
https://testinium.com/
http://bit.ly/MBTGuidingTestingDecisions
http://bit.ly/MBTofGameEngine
https://testinium.com/


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

T
A

w
m
c
T
i
e
a
L
s
a

able 2
ssessing a set of 10 MBT tools w.r.t. two ‘‘essential’’ evaluation criteria.
Tools Criteria

1-Matching test requirements- Essential 2a-Right level of model abstraction- Essential

TestModeller – Exhaustive activity diagram, resulting in repetition of nodes
(youtu.be/nctAQHsmjpI)
Failed the essential criterion 2

TestOptimal Supports web/mobile apps, but not specific for them Web page UI flow diagram

Tricentis Tosca Seems like a test-data management tool
(youtu.be/f6aBpa95kLc). While the introduction on its website
mentions MBT, support for MBT is very limited. Not possible
to design cycles and complex flow/edge structures
Failed the essential criterion 1

–

SpecExplorer Support for MBT of web/mobile apps seems very limited. Most
of focus is on API and unit testing.
Failed the essential criterion 1

–

GraphWalker Specific for web/mobile apps Web page UI flow diagram

NModel - Test model is in a programmatic format, instead of visual
diagrams (doi.org/10.1007/978-3-642-05031-2_14)
Failed the essential criterion 2

TCases Support for MBT of web/mobile apps seems very limited. Most
of focus is on test-case design for input space exploration.
Failed the essential criterion 1

–

ModBat Focus is on API testing. No support for MBT of web/mobile
apps. (fmv.jku.at/modbat)
Failed the essential criterion 1

–

MoMuT Focus is on embedded system testing. No support for MBT of
web/mobile apps. (momut.org)
Failed the essential criterion 1

–

CrawlJax It produces as output a state-flow graph of the dynamic DOM
states and the event-based transitions between them. Focus is
not on GUI testing of web apps
Failed the essential criterion 1

–

Table 3
Assessing the two MBT tools that passed the essential evaluation criteria in Table 2 using a set of additional criteria.
Tools Criteria

1-Matching test
requirements-
Essential

2a-Right level of
model abstraction-
Essential

2b-Learnability 3-Tool cost 4-Usability- Essential 5-Support

TestOptimal Supports
web/mobile apps,
but not specific
for them

Web page UI flow
diagram

Reasonable Has a free
Community
version. Paid
professional
version.

Reasonable (our own
usage, and an online
video demo of the
tool
youtube.com/watch?
v=IfmLqaY53Qo)

Has a Q/A page,
with very few
activities

GraphWalker Specific for
web/mobile apps

Web page UI flow
diagram

Reasonable Free open-source High ability to
monitor the model
during execution live
(elements
highlighted)

Has a Wiki and
Forum (active
discussions)
After some evaluations with our team-members, and since
e found that developing test models manually did not take too
uch effort and, in fact, did provide various ‘‘side’’ benefits (dis-
ussed next), we decided to develop the test models manually.
est engineers actually benefitted from and liked the effort put
nto developing test models, since it was quite a valuable learning
xperience for them to better understand the SUT and their test
pproach, an observation also reported elsewhere (Kramer and
egeard, 2016). Also like other studies (Janicki et al., 2012), we ob-
erved that ‘‘testers working with MBT have increased motivations
nd are eager to learn’’.
7

Lesson learned: Even if the MBT models may be developed
semi-automatically by reverse-engineering them from the
web SUT, we however found that manual development of
MBT models by test engineers provided various ‘‘side’’
benefits, e.g., valuable learning experience, increasing
motivations and interest of test engineers in test automation.
Also note that, if we use tools to reverse-engineer the MBT
models, the huge effort to prune (clean) them to make them
executable in MBT tools often overweighs the cost of
developing them from scratch manually.

One important point is about design best-practices for models.
When developing the test models, we used GraphWalker ’s online
guidelines (graphwalker.github.io) and the chapter ‘‘Good MBT
modeling practices’’ in an MBT book (Kramer and Legeard, 2016) to

https://youtu.be/nctAQHsmjpI
https://youtu.be/f6aBpa95kLc
https://doi.org/10.1007/978-3-642-05031-2_14
https://fmv.jku.at/modbat
https://momut.org
https://youtube.com/watch?v=IfmLqaY53Qo
https://youtube.com/watch?v=IfmLqaY53Qo
http://graphwalker.github.io/


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

e
‘
p
t
s
l
r

m
d
t
1
t
i

5
n

v
f
d
t
i
I
t
r
i
C
p

i
a

(
(
m
f
m
p

Fig. 2. An overview of our MBT approach.
nsure high-quality design for test models, which could be called
‘model design patterns’’, similar to object-oriented (OO) design
atterns. For example, test models should be designed in a way
o be understandable and maintainable. Aside from the above
ources, we found only a few sources in peer-reviewed and grey
iterature on this topic, and thus we think there is a need for more
esearch on this topic in future.

Challenge: We observed a general shortage of knowledge
and resources on best practice and ‘‘design patterns’’ for
designing MBT models. We thus recommend more research
and investigations on this very important topic by
researchers and practitioners in future.

Last but not the least in this section, we discuss the size
etrics of the MBT test suite. Since the SUT (Testinium) had 18
istinct UI pages, our MBT test suites for the SUT resulted in 18
est models (two of them are shown in Fig. 4). Altogether, those
8 test models had 177 nodes and 260 edges. We have made all
he MBT models and artifacts of this SUT available as open-source
n: github.com/vgarousi/MBTofTestinium.

.1.3. Development of nodes/edges’ behavior in Java using the Sele-
ium framework
As shown in Fig. 2 (our MBT approach), testers need to pro-

ide the behavior of nodes/edges in Java using the Selenium
ramework. Once we ensured that our test models are properly
esigned (we did a few rounds of peer reviews), we developed
he Java test-code. For example, for the edge e_valid_login
n Fig. 4, we developed the Java test code shown in Table 4.
n this example Selenium Java code, to conduct a valid login,
he username and password fields are first located. Then, a cor-
ect combination of username and password values are entered
n those fields. To find the HTML button for the ‘‘Sign in’’, a
SS selector path is given. The sign-in button is finally clicked
rogrammatically.
As per our observations, the relatively-short Java methods

mplementing nodes/edges’ behavior were quite trivial to develop
nd we did not notice any noticeable challenges.
We observed that, the chosen modeling semantic provided

in a sense, ‘‘enforced’’) a suitable ‘‘separation of concerns’’ (SoC)
design pattern) (Pree, 1995) in a way to make the test code
odular and helped test engineers clearly know what to develop

or each Java method (for example the above method). Also, each
ethod was only a few lines of code, which we think is a best-
ractice on its own, conceptually similar to the following OO
8

recommendation: ‘‘Small methods are a hallmark of OO thinking ’’
(bit.ly/OOPrinciples).

Test-code development was incremental and test engineers
would run the model after developing several methods to test the
test suites, and make corrections if necessary. We used other test
patterns when developing test code, e.g., ‘‘Page Object’’ pattern as
seen as methodsPage in the code listing above. To ensure quality
of test code, we also conducted peer reviewing. Thus, chances
of having defects in the test suites were slim, and in case of
observing issues, the team was able to quickly find and resolve
them.

Lesson learned: The modeling semantic of the chosen MBT
tool provided (in a sense, ‘‘enforced’’) a suitable ‘‘separation
of concerns’’ (SoC) (design pattern) in a way to make the test
code modular and helped test engineers clearly know what
to develop for each Java method. Also, each method was only
a few lines of code, which we think is a best-practice on its
own, conceptually similar to the following OO
recommendation: ‘‘Small methods are a hallmark of OO
thinking’’.

Advice: Even when using a lightweight MBT tool/approach,
there is work that needs to be done manually by test
engineers. However, such work was not more difficult or
time consuming than writing test cases by hand, nor it
required any special in-depth training to learn to use a tool
like GraphWalker.

5.2. Requirement coverage and requirements traceability

One of the work packages in our original project plan
(testomatproject.eu) necessitated measuring requirement cover-
age in design and also execution of test suites. Furthermore,
it necessitated also incorporating test-requirement traceability.
Since our context is an agile context, there were no formal pre-
written requirements documents for any of the SUTs, including
the SUT discussed in this paper (Testinium). We did lightweight
reverse engineering of use cases for the SUT (Testinium) based on
the actual implemented system, as shown in Fig. 5.

The MBT tool has a simple but effective feature for require-
ments coverage and traceability, as shown in Fig. 6. Using the
step labels in the description of each use-case (such as R1.1), we
labeled each node of the test model accordingly, and in this way,
at end of each test execution, the MBT tool provides the ratio of
requirements coverage, as a percentage value. Note that there are

https://github.com/vgarousi/MBTofTestinium
http://www.bit.ly/OOPrinciples
http://www.testomatproject.eu


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032
Fig. 3. Screenshots from the SUT: Testinium.
Table 4
Java Selenium code implementing the behavior for edge e_valid_login in Fig. 4.
types of requirements that cannot be handled with this approach.
However, for this type of systems (i.e., web applications) where
9

requirements are usually not formally defined anyway, this ap-
proach was enough at the moment to meet our industrial needs.



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

f

A
f
t

5

c
Y
t
e
S
M
t
l
2

Fig. 4. Two MBT test models for the SUT: the MBT models of the login and dashboard pages (shown in Fig. 3).. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
s the use of MBT will increase at Testinium A.S. based on this
irst successful study, more sophisticated ways to express and
race requirements will be investigated, if needed.

.3. Video demos and the project artifacts

For interested readers, we have recorded several video screen-
asts of the MBT test executions and have posted them on
ouTube (bit.ly/VideosMBTTestinium). Also, to help other prac-
itioners review and learn from our MBT project, we provide the
ntire test artifacts (test models and Java codes) of the Testinium
UT, open source, in a GitHub repository (github.com/vgarousi/
BTofTestinium). We have also posted the archived version of

he MBT test-suite code and one of the videos in a permanent
ocation with a Digital Object Identifier (DOI) (Garousi et al.,
021).
10
5.4. Execution of MBT test suites

Once we utilized best practices to iteratively design and de-
velop the MBT test models and the required test artifacts (test
code to implement nodes/edges’ behavior in Java using Selenium),
we could then start running the full MBT test suite on the pro-
duction SUT (Testinium). We soon decided to embed the MBT
execution in the company’s Continuous Integration (CI) pipeline,
which would run at least once every night and report the results.
We show in Fig. 7 an email screenshot from the nightly auto-
scheduled MBT executions in the CI pipeline. The two attached
TXT and Excel files are detailed logs of test executions, i.e., paths,
nodes and edges covered in the test run. Later in the paper,
in Fig. 9, we show a partial snapshot from the output test log,
an Excel file automatically generated by the extended reporting
engine that we have added to the MBT tool (GraphWalker), and
emailed automatically, as shown in Fig. 7.

http://bit.ly/VideosMBTTestinium
https://github.com/vgarousi/MBTofTestinium
https://github.com/vgarousi/MBTofTestinium
https://github.com/vgarousi/MBTofTestinium


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

w
c
r
d
t
m
f
t
f

a

Fig. 5. The SUT use-case diagram, and an example use-case description.
Lesson learned: We found the practice of including the MBT
execution in the Continuous Integration (CI) pipeline to be a
good approach, as it would execute automatically every night
and report the results.

For execution of MBT test suites, the other important aspect
as setting the MBT tool parameters and configurations. The
hosen test tool (GraphWalker) provides a large number of pa-
ameters for designing and running a given MBT test suite (all
etails can be found in the tool’s website and online documenta-
ion). Two main parameters, worth mentioning, are the level of
odel coverage that the test engineers want to cover the models

or test-case generation and execution and the type of graph
raversal strategy. GraphWalker documentation phrases this as
ollows: ‘Path [test-case] generation consists of two parts: ‘‘how
to cover?’’ (generators) and ‘‘what to cover?’’ (stop conditions)’. A
generator is an algorithm that decides how to traverse a model.
Four graph traversal algorithms (‘‘generators’’) are supported by
GraphWalker, as of this writing1:

1 https://github.com/GraphWalker/graphwalker-project/wiki/Generators-
nd-stop-conditions.
11
• Random: Navigate through the model in a completely ran-
dom manner, also called ‘‘Drunkard’s walk’’, or ‘‘Random
walk’’. This algorithm selects an out-edge from a vertex by
random, and repeats the process in the next vertex.

• Weighted random: Same as the random path generator,
but will use the weight keyword when generating a path.
The weight is assigned to edges only, and it represents the
probability of an edge getting chosen.

• Quick random: Tries to run the shortest path through a
model, but in a fast way. This is how the algorithm works:

◦ Choose an edge not yet visited by random.
◦ Select the shortest path to that edge using Dijkstra’s

algorithm.
◦ Walk that path, and mark all the executed edges as

visited.
◦ When reaching the selected edge in step 1, start all

over, repeating the above four steps.
◦ The algorithm works well for very large models, and

generates reasonably short sequences. The downside is
when used in conjunction with extended finite-state
machine, the algorithm can choose a path which is
blocked by a guard.

https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions
https://github.com/GraphWalker/graphwalker-project/wiki/Generators-and-stop-conditions


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

c
e
p
c

Fig. 6. Assigning a given node to a requirements item in the chosen MBT tool.
• A* (A-star): Will generate the shortest path to a specific
vertex or edge.

We should remind that the above four algorithms are among
the classical graph traversal algorithms and further details about
them can be found in a typical graph theory textbook (West,
1996). We have done some initial experimentation with some
of the above, but to keep the complexity of our work in a man-
ageable level, we have configured the daily MBT run to use the
‘‘Random’’ option. We plan to conduct in-depth studies by varying
the choice of generators.

Open question: Any given MBT tool and approach (including
the one that we selected) has various parameters and
configurations to be set, like the ones above. An important
open question is which sets of parameters are the best, or
would provide better test outcomes, coverage, execution
time, fault detection effectiveness, etc.? This raises the need
for empirical studies on the choice of those parameters and
configurations and also possibly some new Search-based
Software Engineering (SBSE) (Harman and Jones, 2001)
approaches to select the best options.

Another important aspect for MBT test execution is stopping
onditions (criteria), a condition that decides when MBT test
xecution stops. The generator will generate a new step in the
ath until the stop condition is fulfilled. Nine different stopping
onditions are supported by GraphWalker:

1. Edge coverage: When, during execution, the percentage
of traversed edges is reached, the test is stopped. If an
edge is traversed more than once, it still counts as 1 when
calculating the percentage coverage.
12
2. Vertex (node) coverage: When, during execution, the per-
centage of traversed states is reached, the test is stopped.
If a vertex is traversed more than once, it still counts as 1
when calculating the percentage coverage.

3. Requirement coverage: When, during execution, the per-
centage of traversed requirements is reached, the test is
stopped. If a requirement is traversed more than once, it
still counts as 1 when calculating the percentage coverage.

4. Dependency edge coverage: When, during execution, all of
the traversed edges with dependency higher or equal to
the dependency threshold are reached, the test is stopped.
If an edge is traversed more than once, it still counts as
1, when calculating the percentage coverage. The concept
of ‘‘dependency edge’’ is actually more like operational
profiles (Musa, 1993), i.e., putting weight values on edges.

5. Reached vertex: The stop condition is a named vertex.
When, during execution, the vertex is reached, the test is
stopped.

6. Reached edge: The stop condition is a named edge. When,
during execution, the edge is reached, the test is stopped.

7. Time duration: The stop condition is a time, representing
the number of seconds that the test generator is allowed
to execute.

8. Length: The stop condition is a number, representing the
total numbers of edge-vertex pairs generated by a genera-
tor.

9. Never: This special stop condition will never halt the gen-
erator.

Again, we would have liked to put more resources and experi-
ment with various parameters, but for the time being, we decided
used the Edge coverage=100% as the stopping condition, which
we believe is a reasonable (and acceptable) stopping condition, at
least for all the test engineers that were involved in this project.



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

t

t
p
(

5

f
d
(
t
c

a
t
t

t
b
e
(
c
d
a
e
c
(
P
p
a
o
m
‘
(
r
a

c
t
c
e
(
i
M
m
(
r
n

Fig. 7. An email screenshot from the nightly auto-scheduled MBT executions in
he Continuous Integration (CI) pipeline.

With the above parameters, each full execution of the MBT
est suite would take about 6 h. As discussed in Section 5.3, we
rovide a glimpse of test execution in several YouTube videos
bit.ly/VideosMBTTestinium).

.5. Development of an MBT coverage tool

Two classical approaches for assessing effectiveness and ef-
iciency of any testing technique are: (1) its ability to detect
efects (real or artificially injected defects, via mutation testing),
2) how much coverage is achieved during test execution; and
est coverage can have many different forms, e.g., requirements
overage, code coverage and MBT model coverage.
As we were preparing and planning to evaluate the benefits

nd effectiveness of the MBT approach w.r.t. the second impor-
ant aspect above (coverage), we searched for available coverage
ools to apply in our context.

For measuring code coverage for web applications, one needs
o measure both front-end (client-side) JavaScript (JS) and also
ack-end (server-side) coverage values. In our search for JS cov-
rage tools, we came across many tools, e.g., the Istanbul tool
istanbul.js.org), and the ‘‘Developer tools’’ (DevTools) proto-
ol of Google Chrome (developers.google.com/web/tools/chrome-
evtools). For assessing back-end (server-side) coverage, there
re also various tools, depending on the server-side technology,
.g., the JaCoCo code coverage library (jacoco.org) for server appli-
ations developed in Java, xDebug (www.xdebug.org) and PVOC
github.com/krakjoe/pcov) for server applications developed in
HP. While all these tools are quite stable and popular for their
urposes, our code-coverage need in our context was to gather
nd present both client-side and server-side coverage values in
ne user- (tester-) friendly output (e.g., in line charts), in a ‘‘live’’
anner (as a given MBT test suite was running), and would

‘connect’’ to our selected MBT tool (GraphWalker) seamlessly
without hassle). For such a requirement, we did not find any
eadily-applicable tool to work in conjunction with MBT for web
pplications.
On the other hand, in terms of showing the MBT ‘‘model’’

overage, our selected MBT tool (GraphWalker) would only show
he coverage values (how many edges and nodes have been
overed) at the ‘‘end’’ of MBT test execution and not ‘‘during’’ test
xecution. In discussions with the test engineers in the company
Testinium A.Ş.), they mentioned to us that, for a test engineer,
t is much useful to observe code and model coverage during
BT test execution, especially since such a test execution for a
edium size SUT (e.g., Testinium itself) would take about 6 h

as discussed in Section 5.4), and it is important get continuous
egular feedback about test coverage which a test suite is running,
ot just at the end.
13
To meet all the above requirements, we decided to develop
an MBT coverage tool to measure both model coverage as well as
code coverage at front-end (client-side) JavaScript (JS) and also
back-end (server-side) of the web application under test.

To develop such a tool, we had to choose a client-side and
server-side coverage tools and ‘‘integrate’’ their outputs and show
the results live visually. For model coverage, we used the API
of our selected MBT tool (GraphWalker) to query the model
coverage in regular intervals (e.g., every 5 s).

We named our new developed MBT coverage tool MBTCover.
We have already made MBTCover open-source at: github.com/
vgarousi/MBTCover. Already, the tool has started to be down-
loaded by developers in the community.

We explain next some technical details about how we devel-
oped MBTCover. To get front-end (client-side) JS coverage values
at runtime, we used the Chrome ‘‘Developer tools’’ (DevTools)
protocol. To programmatically extract coverage live from Dev-
Tools at runtime, we use a library called Puppeteer (www.pptr.
dev) which provides an Application Programming Interface (API)
to the DevTools protocol.

To get back-end (server-side) coverage live at runtime, we
used the JaCoCo code coverage library (jacoco.org). This was a
suitable choice since the implementation language of the SUT
in our running case (Testinium) was Java. Of course, for other
SUTs which have been developed in other programming lan-
guages (such as .Net), other server-side code coverage technolo-
gies should be used.

Further details about our implementation of MBTCover can
be found directly in its open-source code-base at: github.com/
vgarousi/MBTCover.

Two screenshots from the MBTCover tool are shown in Fig. 8,
in which the SUT is Testinium and the MBT suite is running.
Two charts, developed in JavaScript (JS), are updating live every
few seconds, which is an option chosen by the user, showing
the front-end (client-side JS) coverage: (1) One chart shows the
cumulative front-end (JS) coverage, meaning that the coverage
calculation has been done based on the combined lines of JS
covered in all the web pages of the SUT, reached so far, divided
by the sum of all JS code lines; (2) The other front-end coverage
shows the JS coverage % of the current web page, being tested by
the MBT suite.

In the current implementation, MBTCover measures the cover-
age of all the JS files: all third-party JS libraries imported in a web
page and also the customized JS files developed for the SUT. We
plan to develop in near future a feature to select which JS files to
instrument and measure the coverage for. In the screenshots, we
can see that the cumulative front-end (JS) coverage has increased
from mid-0% to above 50% and then back to mid-20% as the
MBT suite continues execution and visits different pages of the
web app SUT. The reason for the fluctuation (up and downs)
is that different web pages of the SUT use (reference) different
JS files with different Line-of-Code (LOC) sizes and also those
different web pages use (call) different amounts of JS LOC. Thus,
the cumulative JS coverage would fluctuate as we can see in the
screenshot.

In Fig. 8, the other front-end coverage chart showing the
JS coverage % of the current web page also provides valuable
information, as we can see the extent of JS code coverage in the
current page, as being tested by the MBT suite. For example, the
MBT execution of Testinium starts with the Login page (Fig. 3)
and then moves to the Dashboard page (the first orange and
the second yellow chart lines correspond to hose two pages). As
expected, the current web-page coverage chart resets to the value
of 0% in each page and then grows up to a certain level, until the
web page changes as the MBT suite is commanding the SUT. The

test engineer can see live the extent of coverage in the current

http://bit.ly/VideosMBTTestinium
https://istanbul.js.org/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://www.jacoco.org
http://www.xdebug.org
https://github.com/krakjoe/pcov
https://github.com/vgarousi/MBTCover
https://github.com/vgarousi/MBTCover
https://github.com/vgarousi/MBTCover
http://www.pptr.dev
http://www.pptr.dev
http://www.pptr.dev
https://www.jacoco.org
https://github.com/vgarousi/MBTCover
https://github.com/vgarousi/MBTCover
https://github.com/vgarousi/MBTCover


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

p
t
n
t

s
v
s
s
g
s
F
M
p
s
a
T
P
t
i

c
w
v
w
t
‘
v
c
i
i
s
t
a
s

t
m
m
o
s
s
n
t
o
h
o
e
s

o
w

age and take actions if they decide to, e.g., if the coverage is low,
hey can investigate why most parts of the included JS files have
ot been covered, and they may decide to add more test paths to
he MBT models, etc.

As shown in Fig. 8, another chart shows the back-end (server-
ide) coverage of the web application under test. In the current
ersion of MBTCover, we are only showing one chart for server-
ide coverage, i.e., the cumulative code coverage. Of course,
erver-side coverage would depend on the technology and pro-
ramming language of the SUT files developed to run in the
erver. For Testinium, this was the Java language. As we see in
ig. 8, the server-side coverage value starts from about 10% as the
BT suite starts execution and of course, since it is a cumulative
ercentage value, it will either stay constant or go up. The server-
ide coverage value then slowly goes higher up to about 12%
nd then there is a quick jump to about 27% and then higher.
hat jump was due to the SUT going to a certain page (‘‘Create
age’’ feature of Testinium) which exercises a large amount of
he Java code-base on the server, thus leading to sudden increase
n server-side coverage.

Furthermore, in discussions with the test engineers in the
ompany (Testinium A.Ş.), they have mentioned to us that it
ould be useful/interesting to observe ‘‘cumulative’’ coverage
alues while testing. We have developed the MBTCover tool to
ork in this way, e.g., part (1) of Fig. 8 shows the ‘‘cumula-
ive’’ server-side coverage. Also, part (4) of Fig. 8 also shows the
‘cumulative’’ client-side coverage. The reason why the coverage
alues in part (4) drop down almost mid-way in the shown
hart is that new JS files (libraries, to be precise) have been
mported in the HTML/JS files of client-side code of Testinium
n the new pages of the SUT that is being tested by the MBT
uite. Therefore, the JS coverage calculation (which is based on
he formula: num_of_covered_JS_lines /total_JS_lines) would give
lower value since the ‘‘divisor’’ value in the formula increases
uddenly.
Just like other aspects of our work in this project (designing

he MBT models and the Selenium code), our software develop-
ent process has been iterative and Agile. In iterative develop-
ent of MBTCover, we saw the need to also show, in the GUI
f the tool, several important informative (useful) statistics, as
hown in Fig. 8, which include: (1) number of test models reached
o far, (2) number of nodes covered so far, and (3) number of
odes executed so far. Note that there is a difference between
he last two mentioned items since the form is the node coverage
f MBT models, while the latter is the number of nodes which
ave been executed and a given node could be counted more than
nce. Without these live metrics, the tester has to wait until the
nd of MBT execution (and that could take up to 6 h for our test
uite), to see the outcomes.

Lesson learned: While there are numerous coverage tools for
conventional test automation, e.g., for xUnit frameworks, to
our surprise, there were no off-the-shelf readily-applicable
coverage tools to work in conjunction with MBT for web
applications. Thus, practitioners should be aware of this, if
they plan to measure coverage in conjunction with MBT. The
MBTCover tool, that we have developed, works with the
chosen MBT tool (GraphWalker), thus it can be helpful.

6. Empirical findings gathered so far in the project

As discussed in Section 3, we derived in the planning phase of
ur project three Action-Research Questions (ARQ), two of which
ere:

• ARQ2: What benefits does the MBT approach provide in the
industrial context?
14
• ARQ3: Which challenges and questions did we face in the MBT
project (so far) and how can they be addressed?

During the phases and activities of the MBT test-automation
project (Section 5), we conducted the measurements to be able
to assess these two ARQs, and we report the empirical findings
next.

6.1. Evaluating the benefits of the MBT approach (ARQ2)

To assess the benefits of MBT in our project, we identified
its benefits and (positive) impacts compared to the previous test
approach used in the company in the past years. As discussed in
Section 2, various black-box test design approaches have been
in use since the company was founded in 2010, e.g., category-
partition testing and boundary-value testing. However, since such
techniques can be interpreted and applied in different ways by
different test engineers, the automated test suites were designed
in different ways, and we have been observing imperfections
in terms of test-case design (e.g., test duplications, and missing
certain test cases or parts).

Based on our assessments (both qualitative and quantitate)
during the project, since January 2019 up to this writing (Fall
2020), the key benefits of MBT have been as follows, which we
discuss in detail next:

• Increased test effectiveness in detection of real faults
• Improved test-case design practices, due to MBT
• Ability to systematically assess requirements coverage by

using MBT
• Intangible but important benefits

6.1.1. Increased test effectiveness in detection of real faults
While the SUT reported in this paper (Testinium, testinium.

com) is a major product of the company with a few hundred
clients, and that has been thoroughly tested throughout the years,
we were still able to detect several major and minor issues in
the SUT, via MBT. This was especially the case in the context of
‘‘regression’’ MBT, i.e., running the MBT suite every time that the
SUT changes. In the last few months of the project (in 2020), there
were a few updates to the SUT, and thus we re-executed the large
MBT suite with no additional cost.

Since we have embedded the MBT execution in the company’s
Continuous Integration (CI) pipeline, in each revision of the SUT,
the MBT test suite automatically runs at night, and it has detected
11 defects in the SUT in the duration of four months (June–
September 2020, inclusive), e.g., system asking for login again
after a long test execution, and certain test reports which were
supposed to be shown by Testinium, not being displayed. The
first above defect showed the value of endurance testing which
was possible using MBT (each execution took more than 6 h).
Endurance testing (also known as soak testing) is a type of non-
functional software testing. Endurance testing involves testing a
system over a significant period of time, to discover how the
system behaves under sustained use.

6.1.2. Improved test-case design practices, due to MBT
Test-case design before MBT was mostly ad-hoc. Although

black-box test design approaches were slightly in use, as per
inspections of the first author (an expert in software testing),
many deficiencies were identified, e.g., duplications among dif-
ferent test suites (could lead to test integrity problems, etc.), and
many missing test paths and test cases.

We wanted to compare objectively the improvement test-case
design practices, due to MBT. Before introducing MBT, the SUT
(Testinium) was tested automatically using a BDD test framework

named Gauge (gauge.org), in which test scrips were written in

https://testinium.com/
https://testinium.com/
https://testinium.com/
http://www.gauge.org


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032
Fig. 8. Screenshots from the MBT coverage tool (MBTCover) that we have developed, as part of the project. (1) MBTCover: Server-side coverage; (2) SUT: Testinium;
(3) MBT execution tool: GraphWalker; (4): MBTCover: Client-side coverage.
natural language (mostly Turkish, but English would also be pos-
sible), and then Selenium code was developed to map those test
scripts to Java commands to exercise the SUT. We have reported
details of that other project in another recent paper (Garousi
et al., 2020b). For the interested reader, we show an example of
a Gauge test-script for the same SUT (Testinium) in Table 5.

We wanted to compare the two test-case design approaches:
(1) Before: manual test design loosely following black-box testing
approaches and test scripting/execution using Gauge, in which
our test engineers loosely followed the black-box test design
15
approaches, and (2) After: MBT (both test-case design and ex-
ecution), as presented in this paper. Our metrics of compari-
son were: (1) number of real faults detected by each test suite,
(2) the number of test steps generated in each approach, and (3)
the time resource spent in each method to develop the test suites.
The measured data for comparison are shown in Table 6. The
values for the number of real faults detected have been gathered
in the same settings, i.e., executing both test suites in a period
of four months of the changed versions of the SUT (6 different
versions).



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

t
o
e
s
m
(
1
i
p
o
i
t
s
M
r

w
a
e
c
t
m
8

t
e
(
s
m
s
h

t
s
t
M
‘
u
p
d

Table 5
An example Gauge test-script for the Testinium as the SUT.
Table 6
Comparing the two test-case design approaches.
Test-design approach Number of real faults

detected
Number of test steps
generated

Time resource spent to
develop the test suites

Manual test design loosely following black-box
testing, and test scripting/execution using Gauge

3 2658 4 engineer-months

MBT (both test-case design and execution) 11 38,460 2 engineer-months
t
m
a
i

6

i
t
u
t
m
c
n
I
e
s
p
M
w
m
t
l
I
b

As we can see in Table 6, manual test design using Gauge
ook about 4 engineer-months: one of the authors was devel-
ping the test suites. The MBT test suite development took 2
ngineer-months. We can see that with less overall time re-
ources, devoted to develop the test suites, MBT has provided
ore real-fault detection effectiveness. Also, in terms of test steps

comprehensiveness), MBT has enabled us to generate more than
0-fold more test steps (38,460 versus 2658). These are large
mprovements, that strongly support our findings that MBT has
rovided significant, concrete benefits to the testing processes
f the involved industrial partner. One of main blockers for the
ntroduction of MBT in industry is its up-front cost of building
he models. Table 5 provides the important contribution of clearly
howing that such cost was manageable when using a lightweight
BT approach, while at the same time leading to a significant

eturn of investment in terms of fault detection.
As an example of what the MBT test suites and steps look like,

e show in Fig. 9 a partial snapshot from the output test log,
n Excel file automatically generated by the extended reporting
ngine that we have added to the MBT tool (GraphWalker). We
an see the start and the end of the very long sequence of 38,460
est steps in this log. As we can see, MBT test execution has taken
ore than 9 and half hours: starting on 22.34 PM and ending on
:09 AM the next morning.
In Fig. 9, the ‘‘model visit sequence number’’ column shows

he sequence of visiting a given test model. As a reminder, the
ntire MBT suite of the SUT has been broken into multiple models
18 test models), as discussed in Section 5.1.3. The ‘‘Entity visit
equence number’’ column shows the sequence of visiting a given
odel entity (node or an edge of the state diagram). For example,
ome nodes and edges towards the end of the test log in Fig. 9
ave been visited more than 500 or 600 times.
Thus, it is clear that MBT has led to major improvements in

est-case design practices. Furthermore, we were able to gather
everal expert opinions from senior testers who confirmed that
est-case design practices have indeed been improved, thanks to
BT. As a qualitative feedback, one test manager mentioned that:

‘The new MBT approach is very promising and we are excited to
se it more widely in as many test projects across the company as
ossible. MBT has increased effectiveness and efficiency of our test
esign activities and will continue to do so in future’’.
16
6.1.3. Ability to systematically assess requirements coverage by us-
ing MBT

As discussed in Section 5.2, one of the work packages of the
R&D project (testomatproject.eu) was to measure requirement
coverage in design and also execution of test suites and also
incorporating test-requirement traceability. We used the MBT
tool’s simple but effective feature for requirements coverage and
traceability (as shown in Fig. 6). That pragmatic and lean feature
helped us and our test engineers to design the MBT models while
tracing certain elements of test models (nodes and edges) back
to requirements. Upon finishing execution of MBT test suites,
since we had chosen edge-coverage of models = 100% as the test
ermination criterion, the tool would also provide 100% require-
ent coverage as the outcome. That test-requirement traceability
pproach was welcomed by our test engineers and managers, and
ndeed was seen as a benefit and (positive) impact of MBT.

.1.4. Intangible but important benefits
According to the informal feedback of the engineers involved

n this project, MBT made the work of test engineers more ‘‘in-
eresting’’, and more organized. Many in the company have told
s that, thanks to MBT models, they can now see the ‘‘big pic-
ure’’ of test-case design much more easily with having the test
odels in front of them, and the model being directly exe-
utable. Attention to intangible benefits of any Software Engi-
eering (SE) approach in practice is widely discussed (bit.ly/
ntangible BenefitsInSE) (Kramer and Legeard, 2016; Blackburn
t al., 2006). While such benefits are difficult to measure, they
hould be considered when assessing usefulness of any SE ap-
roach in practice. We were curious to know what made MBT and
BT test development more ‘‘interesting’’ to our engineers and
hen, we asked them, we were told that development of MBT
odels looks like an innovative and joyful design development

ask (see the model examples in Fig. 4), and engineers would
earn more about test automation and the SUT in the process.
t was clear to us and our test engineers that such intangible
enefits were indeed very important.

http://www.testomatproject.eu
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE
http://bit.ly/IntangibleBenefitsInSE


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

M
s
e
i
p

2

Fig. 9. Partial snapshot from the output test log, generated by the extended reporting engine that we have added to the MBT tool.
t
m

Challenge: Systematic (quantitative) assessment and
comparison of improvements in test-case design practices in
our industrial setting have not been trivial, due to issues such
as measurements in work practices seen as ‘‘extra work’’ and
also to sensitivity of such measurements (outcome of
measurements could harm practitioners’ prestige and
position), as reported in other studies too (Vegas et al., 2015).
In other words, from an academic standpoint, formally
quantify the benefits of MBT in industry is a challenge, as
controlled experiments are often not feasible in this context
(not easy from an industrial standpoint to ‘‘justify’’ the time
and effort to do such experiments). We are exploring ways of
doing such comparisons in a quantitative but still viable way.

Lesson learned: MBT provides various intangible benefits
which are as important as if not more as its tangible
(measurable) benefits. It is important to recognize, analyze
and discuss them in test teams. As Albert Einstein said: ‘‘Not
everything that counts can be counted’’ (toye, 2015).

We were also keen and careful of the cost-effectiveness of
BT throughout the MBT project so far. We are also aware of
everal other studies which have touched on this issue, e.g., an
xperience report (Arcuri, 2017) by a researcher who had worked
n industry for several years and had used MBT, mentioned three
oints in this regard: (1) ‘‘it’s risky to choose an MBT approach

without having a clear view about its complexity, cost, effort, and
skill required to create [develop] the necessary models’’ (Neto et al.,
008); (2) ‘‘it is important to always state where the models [to
17
be used in model-based testing] come from: are they artificial or
did they already exist before the experiments’’ and (3) ‘‘one has
o argue and evaluate if the time and effort in developing and
aintaining such models for a given system does pay off in the end’’.

For this purpose, we had group and individual discussions with
test engineers in our MBT project in several iterations. All the
involved team members agreed that costs invested into MBT have
been well worth it, and everyone is eager to see a wider adoption
of MBT in many client projects in the company.

Lesson learned: The action-research project (and the case
study) of introducing MBT at Testinium A.Ş. has been a
success so far, as all involved engineers and managers found
it useful, and want to continue to use it, and want to apply it
to other products as well.

6.2. Challenges and open questions observed so far (ARQ3)

During the entire project, we have gathered the challenges
and the open questions that we have observed so far, as reported
throughout the paper in the previous section. We provide some
further discussions on each of them.

Challenges:

• While there are some studies which have proposed design
patterns for UML models in general (Sunyé et al., 2001), we
observed a general shortage of knowledge and resources on
best practices and design patterns for designing MBT models
(as discussed in Section 5.1.2). We thus recommend more



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

O

7
m

m

7
M

c
U
p
i
r
i
t

‘
a
o
a
S
i
M

m
n
v

research and investigations on this very important topic
by researchers and practitioners in future. Our approach
for quality assurance of MBT models was regular peer re-
view and inspection by experience team members, but there
is need for design patterns for this purpose to help test
engineers new to MBT design to design high-quality MBT
models.

• Systematic quantitative assessment and comparison of im-
provements in test-case design practices in our industrial
setting has not been trivial (Section 6.1), due to issues such
as measurements in work practices seen as ‘‘extra work’’
from industrial side and also due to sensitivity of such
measurements (outcome of measurements could harm prac-
titioners’ prestige and position), as reported in other stud-
ies too (Vegas et al., 2015). In other words, from an aca-
demic standpoint, formally quantifying the benefits of MBT
in industry is a challenge, as controlled experiments are
often not feasible in this context (not easy form indus-
trial standpoint to ‘‘justify’’ the time and effort to do such
experiments). We are still exploring ways of doing such
comparisons in a quantitative but still viable cost-effective
way, so that we could get the buy-in of the practitioners.

pen questions:

• Any given MBT tool and approach (including the one that we
selected: GraphWalker), has various parameters and con-
figurations to be set, such as the choice of graph traversal
algorithms to generate test paths (Section 5.4). An important
open question is which sets of parameters are the best,
or would provide better test outcomes, coverage, execution
time, fault detection effectiveness, etc. This raises the need
for empirical studies on the choice of those parameters and
configurations and also possibly some new Search-based
Software Engineering (SBSE) (Harman and Jones, 2001) ap-
proaches to select the best options.

. Discussion: Lessons learned, limitations and take-away
essages

We discuss the lessons learned, limitations and take-away
essages in this section.

.1. Increase in maturity and capability of test automation using
BT

In software engineering and software testing, maturity and
apability of teams and organizations are widely discussed issues.
sually, maturity relates to how well a team or an organization
erforms all processes of a software engineering topic, e.g., test-
ng (Plays-in-Business.com, 2021). Capability, on the other hand,
elates to and is the level of a team or an organization’s ability and
mprovement achievement in specific technical area, e.g., MBT
esting.

In our context, test automation maturity was the high-level
‘umbrella’’ notion, under which we wanted to improve various
utomation ‘‘capabilities’’. Higher capabilities in MBT have been
ne of the approaches to increase the company’s overall test
utomation maturity. As we discussed in the paper’s abstract and
ection 1, in the planning phase of this project, we were keen to
mprove both maturity and capability of test automation using
BT in the subject company.
There are systematic maturity and capability improvement

odels such as Test Maturity Model integration (TMMi) (Vee-
endaal and Wells, 2012; Garousi et al., 2017b; Garousi and
an Veenendaal, 2021). We also have some past experience in
18
applying TMMi in other industrial contexts, e.g., see the case
study section of Garousi et al. (2018a).

For the current paper, and the current MBT project that we
have conducted in the specific industrial context (Testinium A.Ş.),
we did not decide to use such systematic maturity improvement
models in this first phase of the project, but instead we decided
to focus on the ‘‘technical’’ aspects of the MBT (as discussed in
Section 5), and also evaluating the benefits and challenges of the
MBT approach (Section 6). Certainly, as a by-product, as both the
tangible and intangible benefits of MBT showed (Section 6.1), it
is certain that maturity and capability of test automation in the
subject company have improved using MBT. We have plans to
utilize one or more of the systematic maturity and capability
improvement models, from the literature, in this industrial con-
text in future, and to assess whether they would provide extra
benefits and improvement recommendations.

7.2. Lessons learned and take-away messages

We summarize below the main lessons that we have learned
so far in our MBT project, and also the practical advice based on
our described experience. Let us clarify that these lessons learned
shall not be interpreted as facts or general rules, but they are
only several main lessons learned, experience and beliefs from
our particular project and context.

Lesson learned 1: We empirically observed that choosing the
‘‘right’’ MBT tool from amongst the very large pool of available
MBT tools is not trivial (Section 5.1.1). We found that, as also
reported in many other resources, selecting the ‘‘right’’ tool for
the ‘‘right’’ purpose in MBT is a key to success. We found the
guidelines of a Grey-Literature Review (GLR) (Garousi and El-
berzhager, 2017) in this topic useful as they helped us choose the
right tool. When introducing MBT to a company for the first time,
a lightweight MBT tool/approach is advisable, especially when
there exist success stories from other practitioners that have
successfully used a given MBT tool in other industrial contexts
(companies).

Lesson learned 2: Even if the MBT models may be developed
automatically by reverse-engineering them from the web SUT,
we found that manual development of MBT models by test en-
gineers provided various ‘‘side’’ benefits, e.g., valuable learning
experience, increasing motivations and interest of test engineers
in test automation (Section 5.1.2). There were indeed some of the
intangible benefits of MBT (Section 6.1).

Lesson learned 3: The modeling semantic of the chosen MBT
tool provided (in a sense, ‘‘enforced’’) a suitable ‘‘separation of
concerns’’ (SoC) (design pattern) in a way to make the test code
modular and helped test engineers clearly know what to develop
for each Java method. This shows the importance of choosing the
right MBT approach and tool (Section 5.1.1).

Lesson learned 4: Including the MBT execution in the Contin-
uous Integration (CI) pipeline was shown to be a good practice
(Section 5.4), as it would execute automatically regularly (every
night) and report the results.

Lesson learned 5: While there are numerous coverage tools for
conventional test automation, e.g., for xUnit frameworks, to our
surprise, there were no off-the-shelf readily-applicable cover-
age tools to work in conjunction with MBT for web applica-
tions, which would derive and show both front-end (client-side)
JavaScript (JS) and also back-end (server-side) coverage values,
‘‘live’’, as a given MBT test suite is running. Thus, practitioners
should be aware of this, if they plan to measure coverage in
conjunction with MBT. The MBTCover tool (Section 5.5), that we



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

h
a

L
M
e
t
(

f
l
r

ave developed, works with the chosen MBT tool (GraphWalker),
nd thus it can be helpful.

esson learned 6: The action-research project of introducing
BT at Testinium A.Ş. has been successful so far, as all involved
ngineers and managers found it useful, and want to continue
o use it, and want to apply it to other test projects as well
Section 6.1).

Furthermore, as discussed in Section 1, several motivators
or this experience reports were the following phrases from the
iterature, and for each of them we provide how this experience
eport relates or contributes to:

• ‘‘. . . a serious lack in evidence’’ in MBT (Janicki et al., 2012):
We have first-hand observed the evidence that MBT can
work well in practice if planned and conducted carefully,
as we have done in our project. We thus believe this paper
contributes to the body of empirical evidence in indus-
trial application of MBT by sharing our industry-academia
project on applying MBT in practice.

• ‘‘most developers [still] don’t view MBT as a mainstream [test-
ing] approach’’ (Neto et al., 2008) (a paper in 2008): Although
as per review of the industry and grey literature of MBT,
industrial adoption of MBT still seems limited as of 2020,
sharing positive evidence of MBT in practice can help change
the situation in the position direction, one success story
at a time, and gradually bring MBT to ‘‘mainstream’’. In
addition to sharing our experience in academic papers like
this, we actively disseminate our experience and findings
to practitioners via industrial talks, e.g., Garousi and Keles
(2020). We have been able to ‘‘influence’’, in a good way, at
least five test engineers in our company to start using MBT
in an active mode to develop test suites.

• ‘‘Developers must obviously take care to select an MBT ap-
proach that matches their project’s specific needs’’ (Neto et al.,
2008): By carefully considering our industrial context and
project needs (Section 2), we selected the right test au-
tomation approach and tool (Section 5.2), and we invite all
practitioners to use our example approach in their projects.

• ‘‘it is important to always state where the models [to be used
in MBT] come from: are they artificial or did they already exist
before the experiments’’ and ‘‘one has to argue and evaluate if
the time and effort in developing and maintaining such models
for a given system does pay off in the end’’ (Arcuri, 2017): For
this issue, it is true that we developed the MBT models from
scratch since they did not exist from before in our project,
but with a pragmatic/lean MBT model formalism and good
usability, the MBT tool has minimized our MBT model devel-
opment efforts (Section 5.1.2), and all teammembers believe
that efforts put into MBT model development are well worth
it, especially since manual development of MBT models by
test engineers provided various ‘‘side’’ benefits, e.g., valuable
learning experience, increasing motivations and interest of
test engineers in test automation. We believe this is in quite
a contrast to many MBT approaches, proposed in academia
which are often not cost-effective in industry, e.g., the PhD
work of the first author (Garousi, 2006). We discussed in
some recent works (Garousi et al., 2020a, 2017a) why such
‘‘heavy-weight’’ MBT approaches are hard to be applied in
practice (industry).

Lesson learned 7: An important and interesting issue to look
into is to find out the specific factors that would make an MBT
project successful. Related to this question are: What are the
prerequisites (enablers) of a successful MBT-based project? What
are the limiting factors? While these were not among our formal
set of raised RQs in the project’s beginning (Section 3), towards
19
the end of the project, we did think about them. Some initial
experience-based insights from our project for those questions
are as follows. Note that the following identified factors are not
exhaustive and only are several initial factors which we have
observed in our project context so far. We intend to conduct a
more systematic study on these RQs in future studies.

• What are the prerequisites of a successful MBT project? We
have identified several prerequisites (enablers) for this, as
discussed below.

◦ Management support: First and foremost, just like the
case of applying a new any other software engineering
in a given team or company, there should be manage-
ment support, since some non-trivial ‘‘upfront‘‘ effort
and cost will be spend on initial training of the staff,
etc.

◦ Potential and background of team members to learn MBT:
Another prerequisite is ability of team members to
learn the modeling side of MBT (Section 5.1.2) and also
development of model elements’ behavior in Java using
the Selenium framework (Section 5.1.3). We believe
we did a good arrangement in this regard, by having
some team members who had intrinsic interest in Java
and Selenium development to self-pick work on that
aspect, and team members who were interested in
modeling in general to be assigned to the design of test
models.

◦ Choosing the right MBT tool: Without a surprise, having
a good and reliable MBT tool, which is ‘‘fit’’ for the MBT
purpose, is critical to achieve a successful outcome in
an MBT project.

• What are the limiting factors?

◦ In a way, the negation of the above prerequisites would
be considered as limiting factors for the outcome of
a MBT project. In addition, the challenges and open
questions that we observed and derived in Section 6.2
are also considered as limiting factors.

7.3. Limitations

The action-research project of introducing MBT at Testinium
A.Ş. has been successful so far. However, no project in industry or
academia can be ‘‘perfect’’. We have been aware of the limitations
of our project so far, and in fact, we are working on them. These
limitations are:

Limitation 1: As the first paper of the MBT project, the cur-
rent paper is an ‘‘experience report’’ based on action-research
(Stringer, 2013; Iivari and Venable, 2009; Petersen et al., 2014;
d. Santos and Travassos, 2009), in which we have synthesized and
presented the project, and empirical benefits of MBT in practice.
To increase the rigor of our assessment, we plan to conduct
controlled experiments and rigorous case studies in our ongoing
R&D project in future.

Limitation 2: Choice of graph traversal algorithms in the Graph-
Walker tool to generate test paths (Section 5.4): To keep the
complexity of our work in a manageable level so far, we have
configured the MBT runs to use the ‘‘Random’’ option. We plan
to conduct in-depth studies by using the other graph traversal
algorithms (choice of generators).

Limitation 3: In this paper, we presented our experience of MBT
in the context of one single SUT (Testinium, Fig. 3). Work has
already started in the company to apply MBT on more large-scale



V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

S
t

L

o
r
p
e
a
d
f
e
p

L

a
o
f
t
a
l
i
s

p
i
t
f
e
t
d

i
b
l
e
f
i
e
S
t

C

t
K
c
m
-
-
A

D

c
t

A

t
w
s
a
2

R

A

A

B

B

B

B

B

C

D

D

E
E

E

E

G

G

G

G

G

UTs, and we plan to share more findings from those efforts as
hey become available in future.

imitation 4: By seeing the lack of proper MBT coverage tools,
development of our MBT coverage tool (MBTCover), as discussed
in Section 5.5, has been a good step in the project. While we
have used that tool in an ‘‘exploratory’’ manner to assess coverage
and improve MBT test suites as needed, we plan to conduct more
systematic studies on MBT coverage.

Limitation 5: We should also highlight that we applied MBT in
ne particular setting. Thus, every practitioner should carefully
eview the literature (at the end of this paper), and do a proper
lanning to prevent disappointment with MBT. Based on our
xperience, we can recommend the use of lightweight tools such
s GraphWalker as a first step to introduce MBT in companies
ealing with web and enterprise applications. As there are a very
ew reported research and success stories in this domain, this
xperience report provides a valuable contribution to inspire
ractitioners to try out MBT on their projects.

imitation 6: The opinion bias of the authors and the interviewed
employees on the results can be a factor and a threat to validity.

8. Conclusions and ongoing/future works

In this paper, we have presented an experience report of
pplying Model-Based Testing (MBT) in industry, in the domain
f web applications. We are glad to share that MBT has fully
ulfilled the expectations in our industrial context. We believe
hat a good strategy and a pragmatic approach has enabled us to
chieve this. Our experience also confirmed that following lesson
earned in Janicki et al. (2012): ‘‘Because of the complexity of MBT
n comparison to existing testing techniques, any actions that aim at
preading MBT inside a company have to be taken in small steps’’.

Based on the feedback from the engineers that worked in this
roject, our MBT project has showed us several important ongo-
ng work directions, e.g.: (1) we are in the process of improving
he testing tool to incorporate fault tolerance (when an assertion
ails), (2) test visualization (showing the number of times each
dge and node has been covered), (3) quantitative assessment of
he benefits of MBT; and (4) assessing effectiveness of MBT in
etection of injected faults (by mutation testing).
As discussed in Section 7.2, another important issue to look

nto is to find out the specific factors that would make an MBT-
ased project successful. Related to this question are the fol-
owing Research Questions (RQs): What are the prerequisites/
nablers of a successful MBT-based project? What are the limiting
actors? While these were not among our formal set of raised RQs
n the project’s beginning (Section 3), we derived some initial
xperience-based insights from our project for those issues in
ection 7.2. We intend to conduct a more systematic study on
hese RQs in future studies.

RediT authorship contribution statement

Vahid Garousi: Conceptualization, Methodology, Investiga-
ion, Writing - original draft, Project administration. Alper Buğra
eleş: Methodology, Validation, Investigation, Resources, Data
uration, Writing - review & editing, Supervision, Project ad-
inistration. Yunus Balaman: Software, Data curation, Writing
review & editing. Zeynep Özdemir Güler: Resources, Writing
review & editing, Supervision, Project administration. Andrea
rcuri: Validation, Investigation, Writing - review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared

o influence the work reported in this paper.

20
cknowledgments

This work was supported by the European ITEA3 program via
he ‘‘TESTOMAT (The Next Level of Test Automation)’’ project
ith grant number 16032, by the Scientific and Technological Re-
earch Council of Turkey (TÜBİTAK) with grant number 9180076,
nd also by the Research Council of Norway with grant number
74385.

eferences

rcuri, A., 2017. An experience report on applying software testing academic
results in industry: we need usable automated test generation. Empir. Softw.
Eng. http://dx.doi.org/10.1007/s10664-017-9570-9.

rtho, C.V., et al., 2013. Modbat: A model-based API tester for event-driven
systems. In: Haifa Verification Conference. Springer, pp. 112–128. http://dx.
doi.org/10.1007/978-3-319-03077-7_8.

elinfante, A., 2010. Jtorx: A tool for on-line model-driven test derivation and
execution. In: International Conference on tools and Algorithms for the
Construction and Analysis of Systems. Springer, pp. 266–270. http://dx.doi.
org/10.1007/978-3-642-12002-2_21.

iffl, S., Aurum, A., Boehm, B., Erdogmus, H., Grünbacher, P., 2006. Value-Based
Software Engineering. Springer, http://dx.doi.org/10.1007/3-540-29263-2.

lackburn, M.R., Busser, R.D., Nauman, A.M., Morgan, T.R., 2006. Model-based
testing in practice. In: INFORMATIK 2006–Informatik Für Menschen–Band
2. In: Beiträge der 36, Jahrestagung der Gesellschaft für Informatik eV (GI),
http://dx.doi.org/10.1007/11526841_37.

lome, A., Ochoa, M., Li, K., Peroli, M., Dashti, M.T., 2013. Vera: A flexible
model-based vulnerability testing tool. In: IEEE International Conference
on Software Testing, Verification and Validation. IEEE, pp. 471–478. http:
//dx.doi.org/10.1109/ICST.2013.65.

orjesson, E., Feldt, R., 2012. Automated system testing using visual gui testing
tools: A comparative study in industry. In: IEEE International Conference
on Software Testing, Verification and Validation. IEEE, pp. 350–359. http:
//dx.doi.org/10.1109/ICST.2012.115.

larke, P., O’Connor, R.V., Leavy, B., 2016. A complexity theory viewpoint on
the software development process and situational context. In: Proceedings
of the International Conference on Software and Systems Process. pp. 86–90.
http://dx.doi.org/10.1145/2904354.2904369.

e Nicola, R., Hennessy, M.C., 1984. Testing equivalences for processes. Theo-
ret. Comput. Sci. 34 (1–2), 83–133. http://dx.doi.org/10.1016/0304-3975(84)
90113-0.

ias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H., 2007. A survey
on model-based testing approaches: a systematic review. In: Proceedings
of International Workshop on Empirical Assessment of Software Engineering
Languages and Technologies. pp. 31–36. http://dx.doi.org/10.1145/1353673.
1353681.

ldh, S., 2011. On Test Design (Ph.D. thesis). Mälardalen University, doi: none.
lmendorf, W., 1970. Automated Design of Program Test Libraries. IBM Tech-

nical report, TR 00.2089, https://benderrbt.com/Automated%20Design%20of%
20Program%20Test%20Libraries%20-%201970.pdf.

lodie, B., Fabrice, A., Bruno, L., Arnaud, B., 2018. Lightweight model-based
testing for enterprise IT. In: IEEE International Conference on Software
Testing, Verification and Validation. IEEE, pp. 224–230. http://dx.doi.org/10.
1109/ICSTW.2018.00053.

rnits, J., Roo, R., Jacky, J., Veanes, M., 2009. Model-based testing of web
applications using nmodel. In: Testing of Software and Communication
Systems. Springer, pp. 211–216. http://dx.doi.org/10.1007/978-3-642-05031-
2_14.

arousi, V., 2006. Traffic-Aware Stress Testing of Distributed Real-Time Systems
Based on UML Models using Genetic Algorithms (Ph.D. thesis). Department
of Systems and Computer Engineering, Carleton University, doi: none.

arousi, V., Borg, M., Oivo, M., 2020a. Practical relevance of software engineer-
ing research: synthesizing the community’s voice. Empir. Softw. Eng. 25,
1687–1754. http://dx.doi.org/10.1007/s10664-020-09803-0.

arousi, V., Elberzhager, F., 2017. Test automation: not just for test execution.
IEEE Softw. 34 (2), 90–96. http://dx.doi.org/10.1109/MS.2017.34.

arousi, V., Eskandar, M.M., Herkiloğlu, K., 2017a. Industry-academia collabora-
tions in software testing: experience and success stories from Canada and
Turkey. Softw. Qual. J. 25 (4), 1091–1143. http://dx.doi.org/10.1007/s11219-
016-9319-5.

arousi, V., Felderer, M., 2016. Developing, verifying and maintaining high-
quality automated test scripts. IEEE Softw. 33 (3), 68–75. http://dx.doi.org/

10.1109/MS.2016.30.

http://dx.doi.org/10.1007/s10664-017-9570-9
http://dx.doi.org/10.1007/978-3-319-03077-7_8
http://dx.doi.org/10.1007/978-3-319-03077-7_8
http://dx.doi.org/10.1007/978-3-319-03077-7_8
http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/3-540-29263-2
http://dx.doi.org/10.1007/11526841_37
http://dx.doi.org/10.1109/ICST.2013.65
http://dx.doi.org/10.1109/ICST.2013.65
http://dx.doi.org/10.1109/ICST.2013.65
http://dx.doi.org/10.1109/ICST.2012.115
http://dx.doi.org/10.1109/ICST.2012.115
http://dx.doi.org/10.1109/ICST.2012.115
http://dx.doi.org/10.1145/2904354.2904369
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1145/1353673.1353681
http://dx.doi.org/10.1145/1353673.1353681
http://dx.doi.org/10.1145/1353673.1353681
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb11
https://benderrbt.com/Automated%20Design%20of%20Program%20Test%20Libraries%20-%201970.pdf
https://benderrbt.com/Automated%20Design%20of%20Program%20Test%20Libraries%20-%201970.pdf
https://benderrbt.com/Automated%20Design%20of%20Program%20Test%20Libraries%20-%201970.pdf
http://dx.doi.org/10.1109/ICSTW.2018.00053
http://dx.doi.org/10.1109/ICSTW.2018.00053
http://dx.doi.org/10.1109/ICSTW.2018.00053
http://dx.doi.org/10.1007/978-3-642-05031-2_14
http://dx.doi.org/10.1007/978-3-642-05031-2_14
http://dx.doi.org/10.1007/978-3-642-05031-2_14
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb15
http://dx.doi.org/10.1007/s10664-020-09803-0
http://dx.doi.org/10.1109/MS.2017.34
http://dx.doi.org/10.1007/s11219-016-9319-5
http://dx.doi.org/10.1007/s11219-016-9319-5
http://dx.doi.org/10.1007/s11219-016-9319-5
http://dx.doi.org/10.1109/MS.2016.30
http://dx.doi.org/10.1109/MS.2016.30
http://dx.doi.org/10.1109/MS.2016.30


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

H

I

J

K

K

L

L

arousi, V., Felderer, M., Hacaloğlu, T., 2017b. Software test maturity assessment
and test process improvement: A multivocal literature review. Inf. Softw.
Technol. 85, 16–42. http://dx.doi.org/10.1016/j.infsof.2017.01.001.

arousi, V., Felderer, M., Hacaloğlu, T., 2018a. What we know about software
test maturity and test process improvement. IEEE Softw. 35 (1), 84–92.
http://dx.doi.org/10.1109/MS.2017.4541043.

arousi, V., Felderer, M., Ç. M. Karapıçak, Yılmaz, U., 2018b. What we know
about testing embedded software. IEEE Softw. 35 (4), 62–69. http://dx.doi.
org/10.1109/MS.2018.2801541.

arousi, V., Keleş, A.B., Balaman, Y., Güler, Z.Ö., Arcuri, A., 2021. Data set:
MBT of testinium-test suite and demo video run of the test suite. http:
//dx.doi.org/10.5281/zenodo.4642018 (Last accessed: April 2021).

arousi, V., Keles, A.B., 2020. Next level of test automation with model-based
testing. In: A Talk in the Northern Ireland Developer Conference (NIDevConf).
https://youtu.be/zaMpJ1aoj30.

arousi, V., Keleş, A.B., Balaman, Y., Güler, Z.Ö., 2020b. Test automation with
the gauge framework: Experience and best practices. In: International
Conference on Computational Science and Its Applications. pp. 458–470.
http://dx.doi.org/10.1007/978-3-030-58802-1_33.

arousi, V., Keleş, A.B., Güler, Z.Ö., Balaman, Y., 2019. Executable natural-
language test specifications: A test-automation experience report. In:
Proceedings of the Turkish National Software Engineering Symposium
(UYMS). doi: none.

arousi, V., Küçük, B., 2018. Smells in software test code: A survey of knowledge
in industry and academia. J. Syst. Softw. 138, 52–81. http://dx.doi.org/10.
1016/j.jss.2017.12.013.

arousi, V., Shepherd, D.C., Herkiloğlu, K., 2020c. Successful engagement of
practitioners and software engineering researchers: Evidence from 26 in-
ternational industry-academia collaborative projects. IEEE Softw. http://dx.
doi.org/10.1109/MS.2019.2914663, (in press).

arousi, V., van Veenendaal, E., 2021. Test maturity model integration (TMMi):
Trends of worldwide test maturity and certifications. IEEE Softw. http://dx.
doi.org/10.1109/MS.2021.3061930, (in press).

arousi, V., et al., 2017. Comparing automated visual GUI testing tools: an indus-
trial case study. In: Proceedings of ACM SIGSOFT International Workshop on
Automated Software Testing. pp. 21–28. http://dx.doi.org/10.1145/3121245.
3121250.

orschek, T., Garre, P., Larsson, S., Wohlin, C., 2006. A model for technology
transfer in practice. IEEE Softw. 23 (6), 88–95. http://dx.doi.org/10.1109/MS.
2006.147.

raham, D., Fewster, M., 2012. Experiences of Test Automation: Case Studies of
Software Test Automation. Addison-Wesley Professional, doi: none.

rieskamp, W., 2010. Microsoft’s protocol documentation program: A success
story for model-based testing. In: International Academic and Industrial
Conference on Practice and Research Techniques. Springer, p. 7. http://dx.
doi.org/10.1007/978-3-642-15585-7_3.

rieskamp, W., Kicillof, N., Stobie, K., Braberman, V., 2011. Model-based quality
assurance of protocol documentation: tools and methodology. Softw. Test.
Verif. Reliab. 21 (1), 55–71. http://dx.doi.org/10.1002/stvr.427.

roz, R., Simao, A., Petrenko, A., Oriat, C., 2015. Inferring finite state machines
without reset using state identification sequences. In: IFIP International
Conference on Testing Software and Systems. Springer, pp. 161–177. http:
//dx.doi.org/10.1007/978-3-319-25945-1_10.

arman, M., Jones, B.F., 2001. Search-based software engineering. Inf. Softw.
Technol. 43 (14), 833–839. http://dx.doi.org/10.1016/S0950-5849(01)00189-
6.

ivari, J., Venable, J., 2009. Action research and design science research:
seemingly similar but decisively dissimilar. In: European Conference on
Information Systems. doi: none.

anicki, M., Katara, M., Pääkkönen, T., 2012. Obstacles and opportunities in
deploying model-based GUI testing of mobile software: a survey. Softw. Test.
Verif. Reliab. 22 (5), 313–341. http://dx.doi.org/10.1002/stvr.460.

ramer, A., Legeard, B., 2016. Model-Based Testing Essentials-Guide to the ISTQB
Certified Model-Based Tester. John Wiley & Sons, ISBN: 978-1-119-13001-7.

renn, W., Schlick, R., Tiran, S., Aichernig, B., Jobstl, E., Brandl, H., 2015.
Momut:: UML model-based mutation testing for UML. In: IEEE International
Conference on Software Testing, Verification and Validation. IEEE, pp. 1–8.
http://dx.doi.org/10.1109/ICST.2015.7102627.

ackner, H., Svacina, J., Weißleder, S., Aigner, M., Kresse, M., 2010. Introducing
model-based testing in industrial context–an experience report. Model-Based
Test. Pract. 11, doi: none.

i, W., Le Gall, F., Spaseski, N., 2017. A survey on model-based testing tools for
test case generation. In: International Conference on tools and Methods for
Program Analysis. Springer, pp. 77–89. http://dx.doi.org/10.1007/978-3-319-
71734-0_7.
21
Meinke, K., Walkinshaw, N., 2012. Model-based testing and model inference.
In: International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Springer, pp. 440–443. http://dx.doi.org/10.1007/
978-3-642-34026-0_32.

Memon, A., Banerjee, I., Nagarajan, A., 2003. GUI Ripping: Reverse engineering
of graphical user interfaces for testing. In: 10th Working Conference on
Reverse Engineering, 2003. WCRE 2003. Proceedings. Citeseer, pp. 260–269,
doi: none.

Memon, A., Banerjee, I., Nagarajan, A., 2003b. GUI Ripping: Reverse engineer-
ing of graphical user interfaces for testing. In: Proceedings of Working
Conference on Reverse Engineering. pp. 260–269, doi: none.

Mesbah, A., Bozdag, E., Van Deursen, A., 2008. Crawling ajax by inferring user
interface state changes. In: International Conference on Web Engineering.
pp. 122–134. http://dx.doi.org/10.1109/ICWE.2008.24.

Musa, J.D., 1993. Operational profiles in software-reliability engineering. IEEE
Softw. 10 (2), 14–32. http://dx.doi.org/10.1109/52.199724.

Neto, A.D., Subramanyan, R., Vieira, M., Travassos, G.H., Shull, F., 2008. Improving
evidence about software technologies: A look at model-based testing. IEEE
Softw. 25 (3), 10–13. http://dx.doi.org/10.1109/MS.2008.64.

Peleska, J., 2013. Industrial-strength model-based testing-state of the art and
current challenges. arXiv preprint arXiv:1303.1006 doi: none.

Petersen, K., Gencel, C., Asghari, N., Baca, D., Betz, S., 2014. Action research
as a model for industry-academia collaboration in the software engineering
context. In: Proceedings of International Workshop on Long-Term Industrial
Collaboration on Software Engineering. 2647656. http://dx.doi.org/10.1145/
2647648.2647656, pp. 55-62.

Petrenko, A., Simao, A., Maldonado, J.C., 2012. Model-Based Testing of Software
and Systems: Recent Advances and Challenges. Springer, ed, http://dx.doi.
org/10.1007/s10009-012-0240-3.

Plays-in-Business.com, 2021. Maturity and capability — What is it?. https://www.
plays-in-business.com/maturity-and-capability-what-is-it/ (Last accessed:
April 2021).

Polo, M., Reales, P., Piattini, M., Ebert, C., 2013. Test automation. IEEE Softw. 30
(1), 84–89. http://dx.doi.org/10.1109/MS.2013.15.

Pree, W., 1995. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, doi: none.

Raulamo, P., Mäntylä, M.V., Garousi, V., 2017. Choosing the right test automation
tool: a grey literature review. In: International Conference on Evaluation and
Assessment in Software Engineering. pp. 21–30. http://dx.doi.org/10.1145/
3084226.3084252.

Robinson, H., 2003. Obstacles and opportunities for model-based testing in an
industrial software environment. In: Proceedings of the European Conference
on Model-Driven Software Engineering. pp. 118–127, doi: none.

d. Santos, P.S.M., Travassos, G.H., 2009. Action-research use in software engi-
neering: An initial survey. In: Proceedings of the International Symposium
on Empirical Software Engineering and Measurement. pp. 414–417. http:
//dx.doi.org/10.1109/esem.2009.5316013.

Schieferdecker, I., 2012. Model-based testing. IEEE Softw. 29 (1), 14. http://dx.
doi.org/10.1109/MS.2012.13.

Shafique, M., Labiche, Y., 2010. A Systematic Review of Model Based Testing tool
Support. Technical Report SCE-10-04, Carleton University, doi: none.

Stringer, E.T., 2013. Action Research. SAGE Publications, doi: none.
Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M., models, Refactoring.UML.,

2001. Refactoring UML models. In: International Conference on the Unified
Modeling Language. Springer, pp. 134–148. http://dx.doi.org/10.1007/3-540-
45441-1_11.

toye, F., 2015. ’not everything that can be counted counts and not everything
that counts can be counted’ (attributed to albert Einstein) (in eng). Br. J. Pain
9 (1), 7. http://dx.doi.org/10.1177/2049463714565569.

Tretmans, J., 2008. Model based testing with labelled transition systems. In:
Formal Methods and Testing. Springer, pp. 1–38. http://dx.doi.org/10.1007/
978-3-540-78917-8_1.

Tretmans, G., van de Laar, P., 2019. Model-based testing with torxakis: The
mysteries of dropbox revisited. In: Proceedings of the Central European
Conference on Information and Intelligent Systems. doi: none.

Utting, M., Legeard, B., 2010. Practical Model-Based Testing: A tools Approach.
Elsevier.

Utting, M., Pretschner, A., Legeard, B., 2012. A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22 (5), 297–312. http://dx.doi.org/10.
1002/stvr.456.

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachman-
son, L., 2008. Model-based testing of object-oriented reactive systems with
spec explorer. In: Formal Methods and Testing. Springer, pp. 39–76. http:
//dx.doi.org/10.1007/978-3-540-78917-8_2.

Veenendaal, E.v., Wells, B., 2012. Test Maturity Model Integration (TMMi):
Guidelines for Test Process Improvement. Uitgeverij Tutein Nolthenius.

http://dx.doi.org/10.1016/j.infsof.2017.01.001
http://dx.doi.org/10.1109/MS.2017.4541043
http://dx.doi.org/10.1109/MS.2018.2801541
http://dx.doi.org/10.1109/MS.2018.2801541
http://dx.doi.org/10.1109/MS.2018.2801541
http://dx.doi.org/10.5281/zenodo.4642018
http://dx.doi.org/10.5281/zenodo.4642018
http://dx.doi.org/10.5281/zenodo.4642018
https://youtu.be/zaMpJ1aoj30
http://dx.doi.org/10.1007/978-3-030-58802-1_33
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb26
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1109/MS.2019.2914663
http://dx.doi.org/10.1109/MS.2019.2914663
http://dx.doi.org/10.1109/MS.2019.2914663
http://dx.doi.org/10.1109/MS.2021.3061930
http://dx.doi.org/10.1109/MS.2021.3061930
http://dx.doi.org/10.1109/MS.2021.3061930
http://dx.doi.org/10.1145/3121245.3121250
http://dx.doi.org/10.1145/3121245.3121250
http://dx.doi.org/10.1145/3121245.3121250
http://dx.doi.org/10.1109/MS.2006.147
http://dx.doi.org/10.1109/MS.2006.147
http://dx.doi.org/10.1109/MS.2006.147
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb32
http://dx.doi.org/10.1007/978-3-642-15585-7_3
http://dx.doi.org/10.1007/978-3-642-15585-7_3
http://dx.doi.org/10.1007/978-3-642-15585-7_3
http://dx.doi.org/10.1002/stvr.427
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb37
http://dx.doi.org/10.1002/stvr.460
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb39
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb39
http://dx.doi.org/10.1109/ICST.2015.7102627
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb41
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb41
http://dx.doi.org/10.1007/978-3-319-71734-0_7
http://dx.doi.org/10.1007/978-3-319-71734-0_7
http://dx.doi.org/10.1007/978-3-319-71734-0_7
http://dx.doi.org/10.1007/978-3-642-34026-0_32
http://dx.doi.org/10.1007/978-3-642-34026-0_32
http://dx.doi.org/10.1007/978-3-642-34026-0_32
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb44
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb45
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb45
http://dx.doi.org/10.1109/ICWE.2008.24
http://dx.doi.org/10.1109/52.199724
http://dx.doi.org/10.1109/MS.2008.64
http://arxiv.org/abs/1303.1006
http://dx.doi.org/10.1145/2647648.2647656
http://dx.doi.org/10.1145/2647648.2647656
http://dx.doi.org/10.1145/2647648.2647656
http://dx.doi.org/10.1007/s10009-012-0240-3
http://dx.doi.org/10.1007/s10009-012-0240-3
http://dx.doi.org/10.1007/s10009-012-0240-3
https://www.plays-in-business.com/maturity-and-capability-what-is-it/
https://www.plays-in-business.com/maturity-and-capability-what-is-it/
https://www.plays-in-business.com/maturity-and-capability-what-is-it/
http://dx.doi.org/10.1109/MS.2013.15
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb54
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb54
http://dx.doi.org/10.1145/3084226.3084252
http://dx.doi.org/10.1145/3084226.3084252
http://dx.doi.org/10.1145/3084226.3084252
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb56
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb56
http://dx.doi.org/10.1109/esem.2009.5316013
http://dx.doi.org/10.1109/esem.2009.5316013
http://dx.doi.org/10.1109/esem.2009.5316013
http://dx.doi.org/10.1109/MS.2012.13
http://dx.doi.org/10.1109/MS.2012.13
http://dx.doi.org/10.1109/MS.2012.13
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb59
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb60
http://dx.doi.org/10.1007/3-540-45441-1_11
http://dx.doi.org/10.1007/3-540-45441-1_11
http://dx.doi.org/10.1007/3-540-45441-1_11
http://dx.doi.org/10.1177/2049463714565569
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb64
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb65
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb65
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb68
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb68
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb68


V. Garousi, A.B. Keleş, Y. Balaman et al. The Journal of Systems & Software 180 (2021) 111032

V

V

W

W

V
A
t

egas, S., Dieste, Ó., Juristo, N., 2015. Difficulties in running experiments in
the software industry: experiences from the trenches. In: International
Workshop on Conducting Empirical Studies in Industry. pp. 3–9. http://dx.
doi.org/10.1109/CESI.2015.8.

os, T.E., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J., 2015.
Testar: Tool support for test automation at the user interface level. Int. J.
Inf. Syst. Model. Des. (IJISMD) 6 (3), 46–83. http://dx.doi.org/10.4018/IJISMD.
2015070103.

alkinshaw, N., Derrick, J., Guo, Q., 2009. Iterative refinement of reverse-
engineered models by model-based testing. In: International Symposium
on Formal Methods. Springer, pp. 305–320. http://dx.doi.org/10.1007/978-
3-642-05089-3_20.

est, D.B., 1996. Introduction to Graph Theory. Prentice hall, doi: none.

ahid Garousi is Manager of Bahar Software Engineering Consulting and an
ssociate Professor in Queen’s University Belfast. His expertise include software
esting and improving software engineering practices. He received his Ph.D.
22
in software engineering from Carleton University. For more info, visit: www.
vgarousi.com.

Alper Keleş is a Project Leader in Testinium A.Ş. His expertise include software
testing and test automation. He received his B.Sc. in Computer Engineering from
İstanbul University.

Yunus Balaman is a Test Automation Engineer in Testinium A.Ş. His expertise in-
clude software testing and test automation. He received his B.Sc. in Mathematics
Engineering from Yıldız Technical University.

Zeynep Özdemir Güler is the Research and Development Manager of Testinium
A.Ş. She received her Ph.D. in Mechanical Engineering from Ozyegin University.

Andrea Arcuri is Professor of Software Engineering at Kristiania University
College (formerly Westerdals), Oslo, Norway. He received his Ph.D. in software
engineering from the University of Birmingham, UK in 2009.

http://dx.doi.org/10.1109/CESI.2015.8
http://dx.doi.org/10.1109/CESI.2015.8
http://dx.doi.org/10.1109/CESI.2015.8
http://dx.doi.org/10.4018/IJISMD.2015070103
http://dx.doi.org/10.4018/IJISMD.2015070103
http://dx.doi.org/10.4018/IJISMD.2015070103
http://dx.doi.org/10.1007/978-3-642-05089-3_20
http://dx.doi.org/10.1007/978-3-642-05089-3_20
http://dx.doi.org/10.1007/978-3-642-05089-3_20
http://refhub.elsevier.com/S0164-1212(21)00129-1/sb72
http://www.vgarousi.com
http://www.vgarousi.com
http://www.vgarousi.com

	Model-based testing in practice: An experience report from the web applications domain
	Introduction
	Industrial context, needs and motivations for the project
	Project process and action-research questions
	Background and related work
	An overview of how MBT works
	State of the -art and -practice of MBT tools in general, tools for web applications, and types of test models
	MBT literature in practice and industrial contexts
	MBT body of knowledge in the formal methods community

	Phases and activities of the MBT test-automation project
	Test-automation strategy
	Choosing the right test automation approach and tool (ARQ1)
	How the test models were designed
	Development of nodes/edges' behavior in Java using the Selenium framework

	Requirement coverage and requirements traceability
	Video demos and the project artifacts
	Execution of MBT test suites
	Development of an MBT coverage tool

	Empirical findings gathered so far in the project
	Evaluating the benefits of the MBT approach (ARQ2)
	Increased test effectiveness in detection of real faults
	Improved test-case design practices, due to MBT
	Ability to systematically assess requirements coverage by using MBT
	Intangible but important benefits

	Challenges and open questions observed so far (ARQ3)

	Discussion: Lessons learned, limitations and take-away messages
	Increase in maturity and capability of test automation using MBT
	Lessons learned and take-away messages
	Limitations

	Conclusions and ongoing/future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


