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Abstract: In recent years, the ultra-wideband (UWB) radar technology has shown great potential in
monitoring activities of daily living (ADLs) for smart homes. In this paper, we investigate the significance
of using non-wearable UWB sensors for developing non-intrusive, unobtrusive, and privacy-preserving
monitoring of elderly ADLs. A controlled experiment was setup, implementing multiple non-wearable
sensors in a smart home Lab setting. A total of nine (n = 9) participants were involved in conducting
predefined scenarios of ADLs- cooking, eating, resting, sleeping and mobility. We employed the UWB
sensing prototype and conventional implementation technologies, and the sensed data of both systems
were stored, analysed and their performances were compared. The result shows that the performance of
the non-wearable UWB technology is as good as that of the conventional ones. Furthermore, we provided
a proof-of-concept solution for the real-time detection of abnormal behaviour based on excessive activity
levels, and a model for automatic alerts to caregivers for timely medical assistance on-demand.

Keywords: ultra-wideband; UWB; activities of daily living; ADL; AAL; non-wearable; sensors;
smart-home; IoT

1. Introduction

Trends show that the population of developing nations is growing older than ever before. This is
due to the increase in life expectancy and lower birth-rates [1–3]. This trend will inevitably lead to a
shortage in both nursing home spots and healthcare personnel while simultaneously increasing the
demand for elderly care due to age-related diseases [4]. Consequently, there is a growing concern on
sociological and economic challenges with regards to elderly care in the future. Moreover, there exist
a need for a technology that enables to maintain the health and wellbeing of the older population
with a limited health workforce or availability of family members [5]. Additionally, study shows
that most older adults prefer to age in place and the comfort of their home [6]. One of the proposed
solutions to overcome these challenges is to enable the elderly to stay independent at home and
age in place for as long as possible [7]. According to the authors, this triggers a demand for an
evaluation of a person’s ability to function independently when performing the activities of daily
living (ADLs). However, manual assessment of the performance of elderly ADL is not feasible in real
life [8]. Thus, the ubiquitous and automated sensing of elderly activities, behaviour, physiological and
cognitive abilities has received notable attention in the ambient assisted living (AAL) research domain [5].
Moreover, the implementation of such technologies can empower the elderly towards independent
living through devices that assist them in conducting ADLs and monitoring their health [4,9]. In this
regard, Debes et al. [10] pointed out the great potential of deploying sensing technologies and the
Internet of Things (IoT) into homes of the elderly to classify and monitor the performance in conducting
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the ADLs. In the grounds of such monitoring requirements, various researchers such as in [11–13]
have attempted to characterise the existing proximity sensing technologies, as depicted in Table 1.

Table 1. Comparison between categories of conventional proximity sensors.

Criteria Ultrasound IR Sensor Laser Sensor BLE NFC Passive RFID

Range 16 m 6 m 2200 m 100 m 1 m 12 m
Resolution High Variable Very High Low High High
Linearity Linear Non–linear Linear Non–linear Linear Non–linear

Size Small Small Moderate Small Small Small
Mobility Portable Portable Non–portable Portable Portable Portable
Weight Light Light Heavy Light Light Light

Vassli and Farshchian [7] noted that one significant challenge in such implementations is related
to the elderly’s acceptance and motivation to use the solutions provided. For example, wearable
devices would not be feasible for long-term elderly monitoring because they are burdensome or can
be neglected, for example, when the elderly suffers from dementia [14]. Consequently, non-wearable
solutions are preferred for better elderly acceptance [5]. On the other hand, the perceived privacy
of the user of such sensors can be affected due to the richness of the technology [10]. Integration
of ADL monitoring technologies also needs to be cost-effective and easy to maintain [15]. In this
regard, the ultra-wideband (UWB) radar technology has in recent years shown great potential [16,17]
and has the advantage of using for multiple purposes in the AAL setting while simultaneously
meeting the requirements of elderly acceptance. However, the effectiveness of such sensors varies
depending on the type of activity being recognised [10]. In general, the emphasis on elderly acceptance
and perceived usefulness of the chosen technology is crucial for the task of continuous monitoring.
Thus, we describe a non-wearable UWB sensing prototype and explore its performance with respect
to the conventional technologies for the monitoring of elderly ADL. The remainder of the paper
is organised as follows. Section 2 provides a review of the state-of-the-art sensing technologies in
conventional ADL monitoring, AAL, fog computing, on the potential of UWB radar sensing in health
monitoring systems, and architectural challenges. In Section 3, we present the research methodology
describing the experimental setup, tools and prototypes, and various sensing technologies used in the
study. The results and discussion are presented in Section 4, while Section 5 concludes the paper.

2. Related Work

2.1. Monitoring ADL

A person’s ability to conduct ADL is important to live a healthy life with minimum caretakers’
assistance [18]. In this regard, Virone et al. [19] employed a heuristic approach using passive infrared
motion sensors to recognise ADL at home in which the sensed data are wirelessly transmitted and
stored in a web server. The authors described the use of circadian activity rhythms (CAR) analysis for
establishing patterns and identifying irregularities in behaviour of the resident. In another experimental
setup in [18], electrical, force, and contact sensors are used to monitor the usage (when and for how
long) of various household items. The authors employed machine learning techniques and were able
to establish indicators of the residents’ wellbeing by identifying irregularities based on excessive or
neglected activities throughout the day. They argue that these indicators could trigger a message
to a healthcare personnel or family member when the system is monitoring the irregular levels.
Dawadi et al. [20] conducted a related study in which a combination of motion/light sensors and an
activity recognition algorithm were used to identify and label variables for mobility, sleep, and bed/toilet
transitions. The authors were also able to identify and collect time duration for various ADLs, such as
cooking, eating, relaxing, personal hygiene, and leaving home, and provided proof of concept with
significant correlation between clinical tests and the proposed system. Although UWB sensing
technologies have shown great potential in the AAL domain in recent years, the proposed research
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is still new. Indeed, to the best of our knowledge, there has only been one in [15] in which the
authors used single, non-wearable, UWB sensor for ADL monitoring and proposed a framework to
acquire and send raw radar data to the cloud through middleware server architecture. According to
Rana et al. [15], the azimuth angle (resident’s position in each movement) is calculated on the cloud
and short-term Fourier transform (STFT) is performed to determine the frequency distribution of the
various activities. The range between the resident and the sensor is also calculated, and these attributes
are used to understand the resident’s engagement at different times, meaning that the relationship
between the attributes and the ADL can be extracted. This relationship is used to train an SVM
(support vector machine learning algorithm) and thereby recognise the conducted ADL and abnormal
activities. The authors argue that the implemented framework facilitates to act upon detection of
abnormality remotely.

2.2. The Potential of UWB Radar Sensing

Diraco et al. [5] describes the use of impulse radio UWB sensing for unobtrusive detection of
falls and monitoring vital cardiorespiratory sign of residents while performing the ADL. The authors
proposed a framework that reduces interference and noise; increased signal-to-noise (SNR) ratio by
performing clutter-removal of reflected signals from static objects (e.g., furniture); and produced
Doppler spectrogram to estimate the distance between the resident and the radar. According to
Diraco et al. [5], further detection of signals reflected from a person’s chest is performed to estimate
vital signs and micro-motion. The signals were extracted, and noise generated from periodic movement
of sources (e.g., fans, curtains, doors) were removed using band-pass filter. Next, the signals
reflected from the person are transformed (with minimum noise and clutter) into intrinsic mode
functions (IMF); therefore, the reflected respiration and heart-rate signals are differentiated using
empirical mode decomposition (EMD). Finally, heart rate and respiration rate are estimated to simulate
the ADLs. However, the authors pointed out that heart rate movement is sensitive to activities
involving high motion and above three meters distance to the sensor. So, activities such as resting,
sleeping and watching TV showed excellent results on the monitoring of cardio-respiratory signs.
In addition, supervised and unsupervised machine learning algorithms were used to detect falls
based on the micro-motion signatures. While the supervised approach was based on simulated falls,
the unsupervised approach showed greater accuracy by training the algorithm based on regular ADL
performance to detect the abnormalities in the residents’ movement. Thus, the UWB system was
feasible for providing enough discriminating features for the detection of events such as falling through
micro-motion signatures while simultaneously monitoring vital sign. Khan et al. [21] also described
a system that monitors vital signs and to detect movement of non-stationary human subject using
wearable devices, UWB radar technology and a combination of algorithms. Similarly, Baird et al. [14]
presented an algorithm that uses non-contact UWB radar to determine if a room is occupied or not
by calculating the sensed and threshold energy values. The algorithm determined the number of
people in the room using principal component analysis (PCA) by calculating the first PC (the most
significant variance in the data) and dividing it to the integral of the entire PC. If this value is below a
threshold, the algorithm assumes there are more people present and continues by searching for another
person by repeating the PC calculation. However, this time without the window containing the first
person detected and the process goes on until all the people are detected and counted. Nguyen and
Pyun [22] proposed Kalman Filter (KF) as a clutter reduction method to remove unwanted signals
in impulse radio UWB in indoor positioning systems. The authors proposed a modification to the
CLEAN algorithm for target detection as well as extended KF to estimate the localization and tracking
of the target. The results showed that the proposed methods and modifications to conventional
approaches improve the efficiency and probability for detecting and tracking moving targets indoor.
Mokhtari et al. [23] also described a novel alternative to wearable tags or video cameras in order to
detect and identify different residents in a smart home. The authors identify that human identification
can be achieved through the generation of unique signatures based on data from sensors measuring
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the individual body shape and movement using methods like passive infrared, analysis of footstep
through a microphone or ultrasound sensor for detection and identification of residents through their
height. However, the authors showed that a UWB based approach is more suitable for detection and
identification applications than the ultrasound due to the low energy and high data rate features.
Additionally, as height measurement may lead to lower accuracy (e.g., individuals with similar heights),
the authors pointed out for considering multiple features like head, shoulder, and gait.

2.3. Architectural Challenges

Implementation sensing technologies (and IoT) will inevitably lead to vast amounts of data.
However, although one could argue that the value of a specific sensor highly depends on what and
how much valuable information can be extracted from the data that it provides, the sensor in isolation
is useless without the infrastructure to interpret and act upon the generated data. Accordingly, research
such as in [24] proposed a cloud-centric (private/public) data processing framework for end-users.
The authors argue that the proposed framework provides flexibility which allows different stakeholders
(e.g., computation, storage, networking, and visualization) grow independently while simultaneously
complement each other in the joint environment. However, the authors also acknowledged open
challenges related to architecture, sensing efficiency, security, privacy, quality of service (QoS), protocol
effectiveness, data mining, visualization, and support. Stojkoska and Trivodaliev [25] also proposed a
similar cloud-centric framework which not only gathers and stores data but also acts as a gateway
for application development for third-party stakeholders, enabling them to perform different tasks
at different layers at sensors (or objects), hubs, cloud and third-party applications. The authors also
recognised challenges in data processing, interoperability, and networking and discussed how fog
computing could decrease the transmission of data to the cloud by implementing simple data processing
algorithms locally. Furthermore, they reflected on challenges related to big data management solution
such as using NoSQL databases, business intelligence tools, and distributed data processing systems
such as Apache Hadoop. The ever-increasing trend in the production of sensors and the challenges
of data handling using cloud-centric frameworks is also discussed in [26]. Aazam and Huh [26]
commented on the benefit of implementing methods such as smart gateway communication and
trimming with fog computing as well as pre-processing the data locally before sending is important to
provide efficient service by reducing the computation burden from the cloud. Indeed, by implementing
fog computing, delay-sensitive applications can be calculated locally and handled in real time as a
result of the decrease in transmission delay.

3. Methodology

3.1. Participants

In this study, older adults were the required target demography of participants. However, since the
prototype system classifies ADLs only based on relative position, the age of participants was not
relevant for completing the experiment. Furthermore, because the performed scenarios are normal
ADLs, no special skill was required to participate. Thus, for our convenience in finding participants,
email invitation was sent to Kristiania University College students. We stated in the email that
participation is completely voluntary and one can opt out anywhere in the middle of the experiment.
They were encouraged to experience the state-of-the-art sensing technologies used in our experiment.
However, no additional incentive package was provided. Accordingly, nine users (4 male and 5 female
students between mid-twenties and early thirties) were chosen to participate in the study.

3.2. Experimental Apparatus

X4M03 Xethru UWB, passive infrared, and ultrasonic sensors were employed in the experiment.
Raspberry Pi, Express server-side framework, MangoDB, and Socket.io (a library in node.js) were used
to implement the Gateway while Meteor (a Cordova framework for mobile interface), and the mLab
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cloud database service were used for the cloud level implementation of the prototype. Detail description
about the implementation of these apparatuses is provided in Section 4.

3.3. Experimental Setup

We performed a controlled experiment using a fully integrated smart home monitoring
laboratory setting. Various types of non-wearable sensors were mounted on different areas (cooking,
eating, sleeping, watching TV and mobility) in the home to detect and classify the participants’ ADLs.
While the conventional sensing technologies were placed in each area in order to detect motion,
two UWB sensors were mounted on the wall as depicted in Figure 1. By continuously sensing
and transmitting data to a fog gateway, the ADLs conducted by the participants were classified
based on detection and localization within the predefined locations. The UWB sensors calculate
the distance to the person by measuring the reflected radio signals and sending them to a local fog
gateway to compute the resident’s relative position in the room based on the intersection of two circles.
Consequently, when the resident is detected in an area associated with an activity, the system stores
activity along with a timestamp. The conventional setup, on the other hand, consisted of infrared and
ultrasonic motion-detection sensors placed to detect and register the mobility event data caused by
the resident for a given ADL. A Raspberry Pi gateway receives the event data, classifies the currently
conducted activity, and stores the activity along with a timestamp.
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3.4. Scenarios

In order to test the system’s ability to detect a resident’s ADL, the participants performed multiple
scenarios that simulate a “cooking” ADL as well as four normal ADLs for the eating, sleeping, resting
and mobility. The sensing systems detected and classified the ADL simultaneously based on the
residents’ position in the room and the duration for performing each scenario was 3 min. For each of
the scenarios described below, the experiment is controlled, started, and stopped through the controller
shown in Figure 2.
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Figure 2. Experiment control dashboard.

In the cooking scenario, the participant walks to the kitchen area, grabs and fills a kettle with water,
and then proceeds to boil the water. On the kitchen counter, the participant was presented with multiple
instant-ramen noodle cups followed by a set of instructions—pouring water into the cup, stir with a
fork and wait for a couple of minutes as shown in Figure 3a. The eating scenario, on the other hand,
happened at the dinner table as illustrated in Figure 3b, where the participant brings the cooked instant
ramen noodles made in the cooking scenario, proceeds to sit down at one of the eight available seats
and then starts eating. In the leisure scenario, the participant first walks over the multimedia area
where a TV show is being broadcasted and then moves to the couch to sit down and enjoy a couple of
minutes of entertainment (see Figure 3c). Similarly, the participant simulated the sleeping scenario by
laying down flat in a bed (see Figure 3d) located in the sleeping area behind a partition wall which
blocked the direct path between the bed and the UWB sensors. The blocking enabled us to test the UWB
radars’ ability to measure distance through obstacles. Finally, a scenario that measures the system’s
ability to detect a residents’ mobility was implemented by allowing the participant to lay down in bed
for 1.5 min and then watch TV for the remaining 1.5 min. Accordingly, the system detects whether the
resident is moving around in the home to perform various ADLs, thereby depicting changes in the
residents’ behavior.
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3.5. Procedure

First, the participant is instructed to conduct one specific ADL at a time for 3 min while observed
through the window. The scenario is also started in the experiment controller dashboard shown in
Figure 2. Simultaneously, the sensing prototypes detect and localise the participants, and the sensed
data are streamlined into a Raspberry Pi fog gateway for processing, thereby classifying the conducted
ADL. The classified ADL is then stored in a database containing the identified activity, the source
prototype, and a timestamp. When a participant finishes attending one scenario, information about
type of the performed scenario and start/stop time is stored in the database. For each participant and
scenario, the process was repeated for both UWB and conventional sensing systems.

4. Artifact Design

4.1. Architecture

The prototype system is designed in such a way that its control and the generated data are placed
within the resident’s premises, meaning that data processing was performed locally through fog
computing. Additionally, we integrated third-party systems to notify stakeholders when irregularities
occur. Thus, we simulate the implementation of fully integrated smart home ADL monitoring for
the elderly. Figure 4 depicts the overall project architecture with multiple sensors, human presence
as well as distance detection capabilities connected to micro-controllers that enable seamless throughput
of sensed data to the rest of the system. A Raspberry Pi-based fog gateway processes the data received
over established TCP connections. This enables us to localise and track the residents’ position in the
room and thereby classify and store the activities in a database for later analysis. An off-premise cloud
solution receives status messages of the system and the connected sensors and alerts when the local
sensing system detects abnormal behavior. Accordingly, the residents’ health is monitored at a glance
through reactive, responsive, and interactive (web and mobile) user interface. Detailed description of
the different levels of the architecture, technologies and frameworks is provided next.
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4.2. Sensor Level

In this study, UWB, PIR and Ultrasonic sensing prototypes are implemented. The UWB sensing
prototype was developed by seamlessly connecting a Xethru X4M300 presence sensor connected
to a Particle microcontroller as depicted in Figure 5a. XeThru X4M300 is Novelda’s presence and
occupancy sensor powered by the XeThru X4 ultra-wideband radar chip which is ultrasensitive with
excellent signal to noise performance for detecting the smallest human movement in a room [27].
Initially, when powered up and connected to the local Wi-Fi, the Particle requests for connection
credentials (IP address and Port) from the fog gateway through the Particle cloud followed by initializing
the radar and making it ready for analysing the presence data using an open source Xethru-Arduino
library [28]. After restarting the radars using a reset pin on the Xethru board, a predefined profile for
occupancy detection analysis is loaded followed by generating a noise map using a pre-processing
clutter reduction technique. Consequently, noise from static objects in the room is considered and
allows the sensors to detect micro-movement generated from the resident. Finally, the detection zone
is set to an area between 0 and 9 m and sensitivity is set to the maximum value equal to nine. At the
same time, the Particle establishes TCP connection to the fog gateway and then sends JSON-encoded
data (per second) containing sensor’s name and the radar’s current state.
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The radar can be in one of "presence", "no presence", "unknown" and "initializing" states.
However, once it is initialised and human movement is detected, the methods are used to fetch
processed presence data (e.g., estimated distance to the resident in millimeters, direction, and an
indicator of the signal strength). So, whenever presence state is detected, the JSON-encoded payload is
sent to the Raspberry Pi for processing the localization to the resident in the room and classify the
conducted ADL. If the connection breaks, the Particle re-sends a request for connection information.
Thus, when the fog gateway boots up, the UWB prototypes connect, reinitialise the radar, and sends the
sensed data automatically. As part of the conventional technologies, PIR prototypes were developed
consisting of Luxorparts PIR sensor connected seamlessly to Particle Photon microcontrollers. With a
7-m detection range and 100 degrees angle, the prototypes were mounted pointing down from the roof
above the dinner table and kitchen area in order to detect motion and thereby classify the cooking
and eating ADL as shown in Figure 5b. The PIR sensor does not calculate the distance to the resident
but it detects the radiation levels emitted in the room. Because of body-heat, humans emit higher
levels of radiation than household objects, which enables the sensor to detect motion in the area.
Furthermore, the connection between the sensor and the Particle microcontroller allowed throughput
of presence data to be sent continuously every second. Like in the UWB prototype, the connected
Particle microcontroller is implemented with the switch/case state system, but it did not require
initializing the radar. The prototype sends sensed data containing the sensor’s name, presence
detection and predefined activity. When the presence state is detected, the fog gateway classifies the
conducted activity.
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Ultrasonic motion detection is another sensing prototype which was developed using HC-SR05
sensor connected to a Particle Photon microcontroller as seen in Figure 5c. The sensor transmits
ultrasonic sound waves and measures the time it takes for the reflected signals to be received by
the sensor which enables to calculate the distance between the sensor and an object in its pathway.
By multiplying, the time spent (traveling) and the speed of sound (in cm/sec) return distance travelled
in centimeters. Consequently, the sensors are placed in key positions where the resident is conducting
an ADL in its direct pathway and the distance (in cm) is calculated. The ultrasonic prototype sends
the sensed data including name of the sensor, presence state, and predefined activity; and the fog
gateway classifies conducted activity whenever a state attribute change to “presence” is detected.
Particle microcontrollers is used to manage connectivity of the sensors with rest of the system over
using an access point (e.g., Wi-Fi) [29]. The configuration is performed to automatically receive an IP
address of the fog gateway and leverages native publish/subscribe feature of the microcontrollers as
depicted in Figures 6 and 7. When the microcontroller is online, a HelloWorld message is periodically
published including the unique particle ID to the cloud thereby made accessible to system and the fog
gateway connection string. The fog gateway is setup with a custom API library for communicating
with the Particle cloud which can detect messages from the microcontroller. Then, the fog gateway
makes a call to a function on the microcontrollers through the API which enables the Particle to fetch
and send data directly to the fog gateway over local TCP connection.
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4.3. The Gateway

The smart fog gateway provides middleware service capable of reconciling the sensing prototypes
and the cloud [30,31]. It enables one to classify the ADLs locally on a low-cost IoT device, thereby
eliminating the need for exporting sensitive data off residents’ premises. It implements web application
using Node.js frameworks on a Raspberry Pi in which the Express server-side framework enables one
to set up local RESTful API through server-side routing. This allows for the sensing prototypes to
interact with the fog through established HTTP methods. Furthermore, the data are processed with
regards to localization and classification of the conducted ADL. Moreover, notifications are sent to the
external cloud solution system’s status or alerting whenever irregularities are detected. RESTful APIs
were set up to allow for the connection and interaction with the fog gateway through predefined HTTP
POST methods. The APIs are accessed by specifying the IP address and port number of the Raspberry
Pi in the request headers along with JSON-encoded data as described next:

1. <IP>:<Port>/api/event: receives JSON-encoded presence data over TCP.
2. <IP>:<Port>/api/experiment: stores performed activities along with the start and stop timestamps.
3. <IP>:<Port>/api/mobility: stores timestamp of movements during the mobility scenario.

The external cloud solution provides authorised stakeholders to monitor the residents’ health
immediately. Therefore, whenever the sensing prototypes connect to local fog gateway, the name of
the sensor is added in a list along with a timestamp. The conventional sensors are associated to a
location (hence an activity) but this is not the case with the UWB prototypes. Thus, whenever the
resident is present, the UWB prototypes add estimated distance between sensors and the resident in
JSON-encoded payload which enables the system to localise and track residents’ position in the room.
The distance between the sensor and the resident is estimated using the intersection of two circles
represented by X and Y coordinates constituting the UWB sensors in a grid system as shown in Figure 8.

The classification of ADLs is performed by checking if the president’s position is within one
of the predefined areas in the room shown in Figure 1. Thus, the X and Y coordinate position of
the resident are used to classify the ADL by checking if the resident is within the specified area.
However, being registered inside a predefined area is not enough to classify whether the activity is
being conducted or not. For example, the resident could be walking by the predefined area which would
result in a false classification. Thus, a simple ADL classification algorithm was implemented based on
frequency of consecutive presence (e.g., five times) of the resident in an area and the classification data
along with timestamp is stored in local database. Monitoring excessive or neglected performance of
ADLs can establish indicators of the residents’ well-being [18]. Thus, an algorithm was implemented to
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detect irregularities based on the time spent conducting a specific ADL estimated relative to a threshold
value for normal behavior, enabling notifications to be sent to the cloud. The processed sensor data
are sent for visualization on user interface through the Socket.io and enables real-time, bidirectional
and event-based communication [32]. Thus, the data sent from the sensing prototypes are received,
processed and visualised in real-time in the user interface and progress of the classification algorithm
is shown in progress bars.

IoT 2020, 1, FOR PEER REVIEW 11 of 17 

 

establish indicators of the residents’ well-being [18]. Thus, an algorithm was implemented to detect 
irregularities based on the time spent conducting a specific ADL estimated relative to a threshold 
value for normal behavior, enabling notifications to be sent to the cloud. The processed sensor data 
are sent for visualization on user interface through the Socket.io and enables real-time, bidirectional 
and event-based communication [32]. Thus, the data sent from the sensing prototypes are received, 
processed and visualised in real-time in the user interface and progress of the classification algorithm 
is shown in progress bars. 

 

Figure 8. Real-time analytics dashboard. 

4.4. Integration 

The cloud solution was implemented using Meteor JavaScript framework which comes with a set 
of technologies for building connected-client reactive applications, a build tool, and a curated set of 
packages from Node.js and JavaScript [33]. This enables rapid development with seamless connection 
between MongoDB, client, server, authentication, routing as well as mobile devices. The solution was 
deployed on Heroku cloud platform as http://elderly-monitoring-hub.herokuapp.com/ [34]. The mLab 
MongoDB cloud service was used to deploy the database—with backup, monitoring and expert 
support [35]. Thus, a user can access the solution by providing a username and password and can 
host the entire cloud solution outside of the residence. Regarding server-side routing, the local sensing 
system interacts with the cloud using RESTful API consisting of <url>/api/update for updating 
abnormal behavior and <url>/api/ping for receiving ping messages to verify connectivity of the 
sensing prototypes. The API uses JSO-encoded data as input parameters along with current 
connectivity status. The designated health care personnel, friends and family of the resident require 
presenting the incoming sensor data in a secure, yet intuitive and reliable mechanism while 
monitoring the elderly’s ADL. Thus, the stakeholders are authenticated by logging in with a registered 
e-mail and password. This includes a quick overview of the relevant information about the patient, 
the status of local sensing system and ADL irregularities, if detected. 

The cloud receives updates if any of the components stopped sending, which provides reliability 
of the presented data in decision making. Thus, whenever one of the sensing prototypes stop working, 
the status icon of the system changes to a yellow warning sign. Moreover, the sign indicating 
irregularities in ADL will change to a red cross, due to not being able to present whether the system can 
detect irregularities reliably. Additionally, detailed information on a specific patient can be retrieved 
from the patient page through patient cards (see Figure 9). 

Figure 8. Real-time analytics dashboard.

4.4. Integration

The cloud solution was implemented using Meteor JavaScript framework which comes with a set
of technologies for building connected-client reactive applications, a build tool, and a curated set of
packages from Node.js and JavaScript [33]. This enables rapid development with seamless connection
between MongoDB, client, server, authentication, routing as well as mobile devices. The solution was
deployed on Heroku cloud platform as http://elderly-monitoring-hub.herokuapp.com/ [34]. The mLab
MongoDB cloud service was used to deploy the database—with backup, monitoring and expert
support [35]. Thus, a user can access the solution by providing a username and password and can
host the entire cloud solution outside of the residence. Regarding server-side routing, the local
sensing system interacts with the cloud using RESTful API consisting of <url>/api/update for updating
abnormal behavior and <url>/api/ping for receiving ping messages to verify connectivity of the sensing
prototypes. The API uses JSO-encoded data as input parameters along with current connectivity
status. The designated health care personnel, friends and family of the resident require presenting the
incoming sensor data in a secure, yet intuitive and reliable mechanism while monitoring the elderly’s
ADL. Thus, the stakeholders are authenticated by logging in with a registered e-mail and password.
This includes a quick overview of the relevant information about the patient, the status of local sensing
system and ADL irregularities, if detected.

The cloud receives updates if any of the components stopped sending, which provides reliability
of the presented data in decision making. Thus, whenever one of the sensing prototypes stop working,
the status icon of the system changes to a yellow warning sign. Moreover, the sign indicating
irregularities in ADL will change to a red cross, due to not being able to present whether the system can
detect irregularities reliably. Additionally, detailed information on a specific patient can be retrieved
from the patient page through patient cards (see Figure 9).

http://elderly-monitoring-hub.herokuapp.com/
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The Meteor framework is essentially used for creating Web applications, but it also seamlessly
implements Apache Cordova to create apps for mobile platforms. Cordova enables one to wrap the
application written in HTML/JavaScript into a native container to access device functions of the mobile
platforms. These functions are exposed via a unified JavaScript API, allowing one to write one set
of code to target nearly every phone or tablet available today and publish to their app stores [36].
Thus, as illustrated in Figure 10, friends, family, and healthcare personnel can seamlessly and securely
log in and monitor the elderly using a phone, tablet or the conventional web.
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5. Results

Descriptive statistics, accuracy, specificity, recall, and precision are used as metrics to evaluate
performance of both the UWB and conventional sensing prototypes. Additionally, detection frequency,
initial detection time, and the ability to detect mobility are presented next. The results reveal that
the UWB and conventional sensing prototypes were able to detect 785 and 703 times, respectively,
distributed over four different scenarios, where each scenario were conducted for 3 min by the nine
participants. Out of these detections, 783 in UWB and 702 in conventional were classified appropriately.
A detailed description of the results is provided in Table 2.

Analysis of the system’s accuracy, specificity, recall (or sensitivity), precision and error rate for
both the UWB and conventional sensing prototypes is described next:

1. Accuracy indicates how often the classification model was able to predict the correct ADL.
The accuracy (A) for each scenario is calculated as Ai = (TPi + Tni)/N, where TP and TN are
true positive and true negative values, for each scenario (i), and the number of detections (N).
The overall accuracy of each category of sensing prototype is ΣAi.
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2. Specificity, also known as true negative rate, indicates the ratio between when the activity was
not conducted and when the activity was not predicted. The specificity (S) for each scenario (i) is
determined as Si = TNi/(TNi + FPi), where TN and FP are true negative and false positive values,
with total specificity ΣSi.

3. Recall or sensitivity, also known as the true positive rate, is the ratio between when the activity
was conducted and when the activity was predicted. The recall I for each scenario (i) is calculated
as Ri = TPi/(TPi + FNi), where TP and FN are true positive and false negative values, and the
total recall is ΣRi.

4. The precision levels of the system indicate how often the correct daily activity was predicted.
Precision (P) for each scenario is determined as Pi = TPi/(TPi + FPi), where TP and FP are true
positive and false positive values, and the total precision is ΣPi.

5. The error rate indicates how often the classification model predicted the wrong daily activity.
The error (E) for each scenario is calculated as Ei = (FPi + FNi)/N, where FP and FN are false
positive and false negative values, for each scenario (i), and the number of detections (N).
The overall accuracy of the conventional sensing prototype is ΣEi.

Table 2. UWB and conventional classification for each scenario.

Participant
Ultrawideband Conventional

Cook Eat Rest Sleep Cook Eat Rest Sleep

1 25 29 24 22 27 13 32 33
2 27 31 12 11 28 19 11 23
3 22 32 27 12 30 7 33 1
4 19 31 26 10 31 11 22 0
5 5 32 27 8 34 1 34 1
6 28 32 24 8 15 3 25 4
7 24 32 27 1 25 8 35 35
8 28 32 29 7 28 5 29 4
9 23 33 20 3 25 14 23 33

Min 5 29 12 1 15 1 11 0
Max 28 33 29 22 34 19 35 35

Median 24 32 26 8 28 8 29 4
Average 22 32 24 9 27 9 27 15

SD 7.14 1.13 5.20 6.01 5.34 5.77 7.74 15.70
Total 201 284 216 82 243 81 244 134

Accordingly, the overall system’s accuracy, specificity, recall, precision and error rate for both the
UWB and conventional sensing prototypes are calculated as shown in Table 3. The table demonstrates
high values for accuracy, sensitivity, specificity, and precision levels, and low values in misclassification
levels. This implies that both the UWB and conventional prototypes were excellent at discriminating
false data readings and classifying the correct activity.

Table 3. Performance of the UWB and conventional technologies.

Ultra-Wide Band Conventional

Accuracy 97.7% 99.8%
Specificity 99.9% 99.9%

Recall 97.6% 99.8
Precision 99.7% 99.8%

Error Rate >1% >1%
Detection Frequency 100/108 94/108
Initial Detection Time 15.95 s 21.81 s

Mobility 18/18 16/18



IoT 2020, 1 333

Analysis of the detection frequency, which describes the system’s ability to classify frequently
enough to exclude the possibility of missing a conducted activity, was found to be 100/108 and
94/108 potential minutes for the UWB and conventional systems, respectively (see Table 3). That is,
both systems performed reasonably well, the UWB being slightly better. Additionally, the average
initial detection time for the conventional prototype was found to be slightly faster. Finally, the ability
to detect the mobility of the resident was tested by having the participants first conduct the sleeping
scenario, and then perform the resting scenario. Thus, as shown in Table 4, the UWB system was able to
detect all the participants’ mobility in such a way that sleeping was detected before the mobility change
and the resting after. However, the conventional system performed slightly less as it missed to detect
the sleeping scenario of two participants. Consequently, the results indicate the ability to provide
excellent performance with regards to monitoring the elderly’s ADL using both the UWB and the
conventional system. In general, our results show that the non-wearable ultrawide-band technology
can provide equally good performance as conventional ones with regards to monitoring of elderly
ADL. However, as this research was focused on the limited quality characteristics mentioned above,
it will be extended further in our future work by concentrating more on the evaluation of usability of
the gateway and cloud solutions for monitoring elderly ADL using non-wearable UWB.

Table 4. Initial detection time for UWB and conventional prototype in seconds.

Participant
Ultrawideband Conventional

Cook Eat Rest Sleep Cook Eat Rest Sleep

1 10.53 11.71 23.87 29.67 12.14 31.84 12.96 11.08
2 15.35 10.34 40.60 39.96 6.29 11.75 10.88 14.95
3 6.40 8.40 24.64 39.98 6.87 26.81 9.95 139.79
4 6.49 7.85 23.38 80.49 9.14 9.14 14.76 null
5 7.43 7.27 21.18 46.55 6.71 97.03 5.40 59.64
6 25.03 5.86 42.94 27.95 13.03 27.70 15.60 55.31
7 4.83 4.35 30.94 34.19 7.85 27.96 4.99 4.89
8 1.79 5.69 17.04 66.61 5.88 8.95 4.48 7.72
9 24.43 3.66 22.50 34.93 6.02 42.82 10.93 6.50

Min 1.79 3.66 17.04 27.95 5.88 8.95 4.48 4.89
Max 25.03 11.71 42.94 80.49 13.03 97.03 15.60 139.79

Median 7.43 7.27 23.87 39.96 6.87 27.70 10.88 13.02
Average 11.36 7.24 27.45 44.48 8.21 31.56 9.99 37.49

SD 8.46 2.66 8.91 17.75 2.69 27.09 4.20 46.89

6. Conclusions

This work investigated the development of a context-aware, non-wearable UWB sensing prototype
capable of recognizing activities of daily living (ADL). The prototype was implemented using
a non-contact UWB, and its performance was compared to conventional state-of-the-art sensing
technologies including the ultrasonic and passive infrared. Accordingly, a controlled experiment
was performed in a smart-home laboratory setting which allowed us to measure the ability of
the technologies to detect and to classify the participants’ daily activities through simulation of
predefined scenarios- cooking, eating, resting, sleeping, and mobility. The classification performance
was evaluated through statistical metrics and indicators revealing valuable insights into the sensing
technologies ability to monitor elderly ADL. The result showed excellent performance for both systems
in accuracy, sensitivity, specificity, and precision. The low-level misclassification also reveals that both
technologies were excellent in discriminating false data readings and classifying the activities correctly.
Regarding detection frequency, both systems performed well and the UWB system performed slightly
better. Furthermore, although the average initial detection time was shorter for UWB, looking closer
at the datasets revealed that the conventional implementation showed more outliers, which makes
it slightly faster. Finally, the ability to detect a user’s mobility was tested in such a way that the
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participants first performed the sleeping scenario and then the resting. The result showed that the
UWB system was able to detect the mobility changes of all participants in the correct order (sleeping
was detected before resting). However, the conventional implementation performed slightly less.
Overall, our study indicates excellent performance with regards to monitoring elderly ADL for both
the non-wearable UWB radar sensing prototype as well as conventional implementations, the UWB
being slightly better in some of the indicators.
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