
Enhancing Resource-Based Test Case
Generation for RESTful APIs

with SQL Handling

Man Zhang1(B) and Andrea Arcuri1,2

1 Kristiania University College, Oslo, Norway
2 Oslo Metropolitan University, Oslo, Norway
{man.zhang,andrea.arcuri}@kristiania.no

Abstract. Nowadays, many companies use RESTful web services to
develop their enterprise applications. These web services typically inter-
act with databases. In REST, resource handling is a fundamental con-
cept, where resources are manipulated by exposing HTTP endpoints. Rd-
MIO* is an evolutionary algorithm which is specialized in test generation
for such kind of services, i.e., RESTful APIs, via manipulating resources
in various ways using HTTP actions (e.g., GET and POST). In this paper,
we further extended Rd-MIO* by employing SQL commands to manip-
ulate the resources for test generation, directly into the databases. We
implemented our novel technique as an extension of the EvoMaster
tool. To evaluate our approach, we selected Rd-MIO* as a baseline tech-
nique and conducted an empirical study with five open source REST
APIs. Results showed that our approach clearly outperforms the base-
line over all of the five case studies.

Keywords: White-box test generation · SQL · REST API Testing ·
SBST

1 Introduction

REST is widely applied in developing web enterprise systems for providing ser-
vices over the network, e.g., Google Drive1 and Azure2. This kind of web services
typically need communications over the network (e.g., with clients and external
services), and interact with databases. Due to these interactions, it is challenging
to test these systems, especially for system-level test case generation.

In REST, there exists a set of endpoints (e.g., POST and GET), which are
exposed for providing services over HTTP. Dealing with resources is a fundamen-
tal concept, where the exposed endpoints enable manipulating these resources.
Rd-MIO* [14,15] is a search-based testing approach which is developed by
1 https://developers.google.com/drive/api/v3/reference.
2 https://docs.microsoft.com/en-us/rest/api/azure/.

This work is supported by the Research Council of Norway (project on Evolutionary
Enterprise Testing, grant agreement No 274385).

c© Springer Nature Switzerland AG 2021
U.-M. O’Reilly and X. Devroey (Eds.): SSBSE 2021, LNCS 12914, pp. 103–117, 2021.
https://doi.org/10.1007/978-3-030-88106-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88106-1_8&domain=pdf
http://orcid.org/0000-0003-1204-9322
http://orcid.org/0000-0003-0799-2930
https://developers.google.com/drive/api/v3/reference
https://docs.microsoft.com/en-us/rest/api/azure/
https://doi.org/10.1007/978-3-030-88106-1_8

104 M. Zhang and A. Arcuri

handling resources for white-box test generations particularly for RESTful APIs.
The approach defines a set of templates to structure HTTP calls in a test in terms
of resources, and developed a set of novel strategies to sample and mutate the
tests with such templates.

In this paper, we extended Rd-MIO* by employing Structured Query Lan-
guage (SQL) to enhance resource handling, i.e., enable adding resources to be
performed into database directly, and utilizing existing resources for the actions
to be tested. We integrated our approach into EvoMaster [2] open-source
tool, and conducted an empirical study with five open-source case studies (one
artificial and four real-world). Results show that tests generated by our novel
approach are capable of achieving on average 45.0% (up to 65.5%) line coverage
and 20.5% (up to 27.3%) branch coverage, among the five case studies. Com-
pared to the existing Rd-MIO* using the default setting, our novel approach
demonstrates consistent and clear improvements on all of the five case studies.
Relative improvements are up to 26.0% for target coverage, up to 26.2% for line
coverage, 20.3% for branch coverage, and 40.6% for fault detection.

The rest of the paper is organized as: Background and Related work are
described in Sect. 2. The proposed approach is presented in Sect. 3, followed by
an empirical study on it (Sect. 4). We discuss the threats to validity in Sect. 5,
and conclude the paper in Sect. 6.

2 Background and Related Work

2.1 Resource and Dependency Based MIO (Rd-MIO*)

The Many Independent Objective (MIO) [3] algorithm is an evolutionary algo-
rithm inspired by the (1+1) Evolutionary Algorithm which only contains sam-
pling and mutation. MIO is designed for generating system-level white-box tests,
and Rd-MIO* [14,15] is an extension of it by handling test generation with an
explicit consideration of resources and their dependencies in RESTful APIs. In
Rd-MIO*, based on HTTP semantics, ten templates of structuring actions on
manipulating resources in a test were developed [15], as follows:

T1. GET is to retrieve resource(s);
T2. PATCH is to partially update a resource which is likely nonexistent;
T3. DELETE it to delete a resource which is likely nonexistent;
T4. PUT is to replace a resource which is likely nonexistent;
T5. POST is to create a resource;
T6. POST/PUT-POST is to create a resource which likely exists;
T7. POST/PUT-GET is to retrieve a resource which likely exists;
T8. POST/PUT-PUT is to replace a resource which likely exists;
T9. POST/PUT-PATCH is to partially update a resource which likely exists;

T10. POST/PUT-DELETE is to delete a resource which likely exists.

Thus, a sequence of actions following the template can be regarded as a resource-
handling with a specific purpose, and a test can be regarded as a sequence of such

Resource-Based Test Case Generation with SQL Handling 105

handlings. In addition, each of such templates has a property indicating that it is
either independent (i.e., T1–T4) or possibly-dependent (i.e., T5–T10). With such
definitions, an individual is defined as a sequence of resource-handlings which
perform a sequence of actions (e.g., HTTP calls) on the resources. Moreover,
Zhang et al. [15] defined resource-based sampling and resource-based mutation
for producing and evolving the individual with such structure, i.e., resource-
handlings. To investigate dependencies in REST APIs, Rd-MIO* is integrated
with resource dependency heuristic handling, which is capable of identifying pos-
sible dependencies during the search [15]. Then the sampling and mutation in
Rd-MIO* can further employ such identified dependencies to produce new indi-
viduals. In this paper, we extended the individual and resource-handling with
direct SQL commands for enhancing such resource-based handling.

2.2 SQL Handling in EvoMaster

SQL is a widely used language for managing data in databases. To track all
interactions with the database, in EvoMaster, SQL commands monitoring is
implemented which is capable of tracing all executed SQL commands for access-
ing the SQL database of the SUT during the search [6]. Thus, when executing
actions to be performed on a resource, we can know what tables are accessed
with SQL. In Rd-MIO*, dependencies between resources and tables are also col-
lected for identifying possible dependencies among the resources. For instance,
if the same table is accessed by manipulations on resource A and resource B,
then there might exist a dependency between A and B. For REST APIs, if a
HTTP action triggers an access to tables, it is likely that the table is related to
the resources to be manipulated. In addition, EvoMaster is integrated with a
Domain Specific Language (DSL) (developed by [6]) which enables direct data
insertions with SQL from the generated JUnit tests. With such existing support,
we can employ SQL for manipulating the resources throughout the search.

2.3 REST API Testing

With a wide application of REST, there exists an increase research effort in test
methods for REST APIs. To test RESTful API services, many methods [7–10,12,
13] have been developed with OpenAPI, which is a machine-readable schema that
describes how to create requests for the services. The existing EvoMaster we
extended in this work also uses such schemas to produce tests. In [7], Atlidakis et
al. developed RESTler for generating a sequence of requests to test REST APIs.
The sequence is decided by an inference on dependencies among the endpoints
based on the OpenAPI (at the beginning) and an analysis on runtime responses.
Godefroid et al. [9] also employs the OpenAPI schema to generate test data for
REST APIs using fuzzing techniques. In [10], the schema is applied for studying
differences among different versions of RESTful API services with differential
testing technique. However, most of the approaches on REST APIs are in the
context of black-box testing [8,13].

106 M. Zhang and A. Arcuri

To our best knowledge, the only approaches for handling white-box test gen-
eration for REST APIs are from our work on EvoMaster [3,4,6,15]. In this
paper, we extended the approach which is for handling test generation with
resource-based methods (as described in Sect. 2.1) on EvoMaster, and further
selected the approach as our baseline in the empirical study.

3 Resource Handling with SQL

Resource-based technique (i.e., Rd-MIO*) has demonstrated its effectiveness in
white-box test generation for RESTful APIs [15]. In Rd-MIO*, the resource-
handling is based on the templates which only rely on HTTP actions. However,
it might not be always feasible to apply HTTP calls on manipulating resources,
e.g., the dependent resources might require different levels of authorizations, or
the creation of the resource is not clearly defined in the schema. In these cases,
the state of the resources can not be changed with the Rd-MIO* templates
during search, and that could limit the effectiveness of resource-based techniques
for maximizing code coverage and faults finding in the context of white-box
testing. To manipulate such states, instead of using HTTP actions, it is also
applicable to directly modify data in the database, if any is used. In addition,
this is typically true in RESTful web services which interact with databases for
persisting resources.

Considering an example, where a REST API which interacts with a database
has two resources, foo (with POST and GET) and bar (only with GET). foo is
required to refer to an existing bar, but there does not exist a clear creation
action for bar in the schema as shown in Fig. 1. In this case, without an existing
bar, this issue limits the achievable line coverage on all of the endpoints. However,

1 "/foo/{id}": {
2 "get": {..},
3 "post": {
4 "parameters": [
5 {
6 "name": "id",
7 "in": "path",
8 "required": true ,
9 "type": "integer",

10 "format": "int32"
11 },{
12 "name": "barId",
13 "in": "query",
14 "required": true ,
15 "type": "string"
16 }],
17 "responses": {
18 "200": {..},"201": {..},"401": {..},"403": {..},"404": {..}
19 },
20 "deprecated": false
21 }
22 },
23 "/bar/{id}": {
24 "get": {..}
25 }

Fig. 1. Snippet code of a schema with OpenAPI

Resource-Based Test Case Generation with SQL Handling 107

Table 1. Resource-based sampling templates with SQL commands

Template Description Independent?

11 SQL-POST To create an existing resource No

12 SQL-GET To retrieve an existing resource No

13 SQL-PUT To replace an existing resource No

14 SQL-PATCH(-PATCH) To (partially) update an existing resource No

15 SQL-DELETE To delete an existing resource No

Note that SQL refers to INSERT and SELECT commands, and the template is only applicable
to the resources which has identified possibly-related tables.

based on the SQL commands monitoring (see Sect. 2.2), the accessed table can
be known when executing GET on bar. Thus, we could possibly add a resource
for the bar by using INSERT on the accessed tables.

To enable the application of SQL in resource-handling, we firstly extend
the templates by involving SQL to manipulate resources. Based on semantics of
HTTP actions, we further develop five templates with SQL (as shown in Table 1).
The templates share similar testing purposes on the endpoints of the SUT with
T6–T10 templates in Rd-MIO* (see Sect. 2.1). However, we extend them for
resource preparation by using SQL (i.e., SELECT and INSERT) commands. As
the resource handled by the proposed templates is possible to have an impact
to following actions in the test, then we identify them as possibly-dependent
templates, i.e., the independent property is False in Table 1. With SQL, SELECT
can be applied to the situation whereby there exist resources in the SUT (e.g.,
seeded data), then endpoints can be tested with such existing resources, i.e.,
link the endpoints with existing ones. For INSERT, it is to create new resources
directly into the database, then further employ the newly created ones to test the
endpoints. In addition, we also provide a further extension for T6–T10 templates
with SQL, e.g., an extension would be SQL-POST/PUT-GET for T7 that is
applicable when the POST/PUT cannot function properly to create required
resources. For instance, to test a retrieve operation of an existing foo, it requires
a preparation of the foo resource. But POST foo could not be created due to lack
of dependent resources, i.e., bar. In this case, we can either employ SQL-GET
instead of POST-GET or create the bar for the POST. Such dependency could
be identified with dependency handling in Rd-MIO* [15]. Here, we can employ

A Test

SQL-GET /bar/{id}SQL-POST-GET /foo/{id}

Individual

Resources

SQL/REST Actions

GET /foo/5

POST /foo/5/barId=4

INSERT BAR (4, ...)

GET /bar/42

INSERT BAR(42, ...)

Fig. 2. An example to illustrate a representation of resource-based individual with SQL
handling

108 M. Zhang and A. Arcuri

such information for resource creation with SQL. Figure 2 illustrates a test with
a representation of resource-based individual employing the proposed templates.
The test comprises two resource handlings: one is to retrieve an existing foo with
an extended POST-GET template, and the other is to retrieve an existing bar
with SQL-GET template.

To ensure that SQL actions and REST actions perform on the same resource,
we need to further handle value binding among the actions during sampling.
The binding is implemented based on name matching using the Trigram Algo-
rithm [11] (which has been applied in [15]) for calculating a degree of similarity
between a column name of a table and a gene name in REST actions. Note that
for a SQL action, its genes are typically flatten, while for a REST action, its
genes might be structured (e.g., when representing JSON body payloads). In
this case, we need to go through every genes in the REST action in order to find
the most matched one (but the similarity degree must be more than 0.6 [15]),
then bind the SQL gene and the REST gene. The SQL gene and the REST gene
might have different types, e.g., a id of a resource might be Long in SQL but
String in the REST action. In this case, we handle a type conversion for genes
to be bound with different types. The binding direction depends on the type of
the SQL, i.e., we bind the rest gene based on when SQL is SELECT, and bind the
SQL gene based on the REST gene when SQL is INSERT. For a resource han-
dling, values on the binding genes might be modified, then we need to further
synchronize such binding genes after the mutation. Notice, genes for a SELECT
and REST genes binding with SELECT are not mutable. Based on such bind-
ing, SQL actions and REST actions could be restrained for performing on the
same resource, as shown in Fig. 2, e.g., barId is bound with id of the INSERT
on the table BAR, and so when one is mutated, then the value of the other is
automatically updated.

4 Empirical Study

To assess our novel proposed approach, we have carried out an empirical study
which aims at answering two research questions:

RQ1: How does resource-based MIO with SQL perform? Among the different
settings, which one performs best?

RQ2: How much improvement does our approach achieve compared to the exist-
ing work in terms of code coverage and fault detection?

4.1 Experiment Setup

In these experiments, we employed five REST APIs from an existing bench-
mark3 that were previously used in conducting empirical studies on RESTful
API testing approaches [4–6,14]. All of the APIs are open-source Java/Kotlin
projects that interact with a database. Table 2 reports descriptive statistics of
the case studies with the number of classes (#Classes), lines of codes (LOCs),
3 https://github.com/EMResearch/EMB.

https://github.com/EMResearch/EMB

Resource-Based Test Case Generation with SQL Handling 109

Table 2. Descriptive statistics of the case studies

Name #Classes LOCs #Endpoints Resource #R
(#Indep.)

Database
(#Tables,
#Columns)

rest-news 10 718 7 4 (1) (1, 5)

catwatch 69 5442 13 13 (11) (5, 45)

features-service 23 2347 18 11 (1) (6, 20)

proxyprint 68 7534 74 56 (26) (15, 92)

scout-api 75 7479 49 21 (2) (14, 70)

Total 245 23520 161 105 (41) (41, 232)

#R: a number of resources; #Indep: a number of independent resources out of #R

number of endpoints (#Endpoints), number of resources (#R), number of inde-
pendent resources (#Indep) out of #R, number of tables (#Tables) and number
of columns (#Columns). Regarding the case studies, rest-news is an artificial
API which was applied in a university course of enterprise development, and the
remaining four (i.e., catwatch, features-service, proxyprint, scout-api) are real
open-source projects searched from GitHub (https://github.com/).

We implemented our approach (denoted as Rd-MIO*sql) by extending Rd-
MIO* in EvoMaster with SQL handling on the resources. To assess its perfor-
mance, we firstly studied the probability of employing SQL to handle resources
with three settings, i.e., Psql ∈ {0.1, 0.3, 0.5}. Note that, in the context of REST
API testing, the endpoints should have a higher priority to be involved in a
test. Therefore, we set the maximum value of the setting as 0.5, i.e., SQL and
POST/PUT have an (at most) equal probability to be involved in a resource-
handling for preparing resources. Then we selected Rd-MIO* with its best con-
figuration [15] as the baseline technique to compare with. The performance of
the techniques are compared with three coverage metrics: the number of covered
targets (#Targets), line coverage (%Lines) and branch coverage (%Branches).
#Targets is a coverage criterion used in EvoMaster for test generation which
comprises status code coverage, code coverage and fault finding (i.e., the aggre-
gation of all other coverage criteria). More details about the target coverage can
be found in [3]. %Lines and %Branches are metrics typically used in evaluating
white-box testing techniques. To compare with the baseline, we also employ
the number of potential faults (#Faults) as a metric for fault detection. In
these experiments, considering the stochastic nature of the search algorithm,
we repeated our experiments 30 times, following common guidelines on conduct-
ing SBSE experiments [1]. All of the techniques were executed with the same
search budget (i.e., 100k HTTP calls), on the same machine.

4.2 Experiment Results

Results for RQ1. In Table 3, we report the average #Targets, %Lines and
%Branches achieved by our approach combined with all settings (i.e., Psql =

https://github.com/

110 M. Zhang and A. Arcuri

{0.1, 0.3, 0.5}) for all of the case studies. Results show that our approach enables
covering on average 45.0% (up to 65.5%) of lines and 20.5%(up to 27.3%) of
branches among the five case studies.

Table 3. Average #Targets, %Lines, %Branches obtained by Rd-MIO*sql.

SUT #Targets %Lines %Branches

rest-news 341.44 52.9% 27.3%

catwatch 1238.01 33.1% 17.8%

features-service 723.02 65.5% 21.2%

proxyprint 2522.48 32.7% 14.5%

scout-api 1967.17 40.8% 21.9%

Average 45.0% 20.5%

Table 4 represents further results for each of the settings with a rank among
the settings. The setting with the maximum value (i.e., Psql = 0.5) achieves
the best results on rest-news, proxyprint, scout-api. This might indicate that, in
these case studies, there might exist some difficulties by using endpoints (i.e.,
POST or PUT) to create resources. Thus, a relatively higher probability (such as
0.5) of applying SQL has a high chance to obtain better results. Compared with
features-service and catwatch, the preference on applying SQL is relatively lower,
i.e., 0.1 for features-service and 0.3 for catwatch. In total, based on average rank
among the case studies, we selected 0.5 (i.e., 50%) as the default configuration
for Psql.

RQ1: Among the five REST APIs, our approach is capable of automatically
generating tests that cover 45.0% of lines (up to 65.5%) and 20.5% of
branches (up to 27.3%) on average. We recommend to apply SQL for

handling resource with a 50% probability.

Table 4. Average #Targets, %Lines, %Branches by different configurations of Psql ∈
{0.1, 0.3, 0.5}. We also report ranks of the configurations for each SUT (value 1 indi-
cates the best), and p-value and χ2 of the Friedman test based on the ranks.

SUT #Targets %Lines %Branches

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

rest-news 337.29(3) 342.08(2) 345.20(1) 52.6%(3) 53.0%(2) 53.3%(1) 26.7%(3) 27.4%(2) 27.9%(1)

catwatch 1240.03(2) 1241.00(1) 1233.15(3) 33.1%(2) 33.2%(1) 33.0%(3) 17.8%(2) 17.9%(1) 17.6%(3)

features-service 724.34(1) 723.65(2) 721.09(3) 65.7%(1) 65.6%(2) 65.4%(3) 21.4%(1) 21.1%(2) 21.0%(3)

proxyprint 2520.97(2) 2509.59(3) 2536.91(1) 32.7%(2) 32.6%(3) 32.9%(1) 14.4%(2) 14.3%(3) 14.7%(1)

scout-api 1955.09(3) 1966.76(2) 1979.67(1) 40.6%(3) 40.8%(2) 41.1%(1) 21.6%(3) 22.0%(2) 22.2%(1)

Average Rank 2.20 2.00 1.80 2.20 2.00 1.80 2.20 2.00 1.80

Friedman Test (0.400, 0.819) (0.400, 0.819) (0.400, 0.819)

Resource-Based Test Case Generation with SQL Handling 111

Results for RQ2. To compare with the baseline technique, Table 5 reports
the average of #Targets, %Lines, %Branches and #Faults, and their results
of pair comparison analysis by Mann-Whitney-Wilcoxon U-tests (p-value) and
Vargha-Delaney effect sizes (Âxy). For coverage metrics, based on the average
results, our approach performs consistently better than the baseline for all of
the metrics. Regarding the pair comparison results, in four out of the five case
studies (i.e., rest-news, catwatch features-service and proxyprint), our approach
achieves clearly significant improvement which can be demonstrated by the low
p-value (i.e., < 0.01) and the high effect size (i.e., > 0.86). For scout-api, there
exists modest improvement, and the improvements on #Targets and %Lines are
statistically significant (i.e., p-value < 0.05 and Âxy > 0.5).

To assess the fault detection by our approach, we also report the number of
“potential” faults (#Faults) detected by our proposed approach and the baseline
in Table 5. Note that faults can be detected with the HTTP status code (i.e.,
500 in RESTful APIs). Regarding the #Faults metric, our approach achieves
significant improvements over all of the case studies.

In Fig. 3, we also analyze the average number of covered targets (i.e., a metric
combined several coverage metrics) using line plots over time, i.e., at every 5%
of the used budget, during the search. Based on these results, for all of the case
studies, our approach shows a clear margin throughout the search compared
with the baseline. This demonstrates the advantage of our approach on both
exploration and exploitation phases with SBST on RESTful APIs.

Table 5. Results by comparing with the baseline technique

A(Base) B(Rd-MIO*sql)

SUT Metrics A B hatAba p-value relative(b−a)/a

rest-news #Targets 273.91 345.20 1.00 <0.01 +26.0%

%Lines 42.2% 53.3% 1.00 <0.01 +26.2%

%Branches 23.2% 27.9% 1.00 <0.01 +20.3%

#Faults 4.72 6.63 1.00 <0.01 +40.6%

catwatch #Targets 1055.03 1233.15 1.00 <0.01 +16.9%

%Lines 27.4% 33.0% 1.00 <0.01 +20.5%

%Branches 14.8% 17.6% 1.00 <0.01 +19.1%

#Faults 16.70 20.76 0.97 <0.01 +24.3%

features-service #Targets 707.52 721.09 0.94 <0.01 +1.9%

%Lines 64.3% 65.4% 0.86 <0.01 +1.7%

%Branches 18.5% 21.0% 0.95 <0.01 +14.0%

#Faults 37.55 39.57 0.92 <0.01 +5.4%

proxyprint #Targets 2342.90 2536.91 0.89 <0.01 +8.3%

%Lines 30.7% 32.9% 0.86 <0.01 +7.3%

%Branches 13.5% 14.7% 0.92 <0.01 +9.1%

#Faults 90.19 100.74 0.99 <0.01 +11.7%

scout-api #Targets 1944.03 1979.67 0.69 0.003 +1.8%

%Lines 40.4% 41.1% 0.68 0.004 +1.7%

%Branches 21.9% 22.2% 0.61 0.069 +1.4%

#Faults 111.47 113.42 0.71 <0.01 +1.8%

112 M. Zhang and A. Arcuri

Thus, we can conclude that

RQ2: Rd-MIO* enhanced with our SQL handling (with a 50% probability of
its application) consistently outperforms the baseline technique in all of the
five REST APIs in terms of target coverage, line coverage, branch coverage

and fault detection.

Discussion. Regarding the coverage improvement on the case studies, we found
that our approach is the most effective to rest-news. By checking this case study,
we found that there exist some difficulties when creating news resource with
POST endpoint, because a news need to refer to a valid country specified with
String, i.e., one of pre-defined list restored in a textual file (i.e., .txt). With
the search, it is difficult to get a valid String within the limited budget, espe-
cially when there exist many objectives to be optimized in our context. Since
the news resource cannot be created, it would have an impact on testing related
actions on this resource, e.g., GET, UPDATE. For instance, Fig. 4 shows a snip-
pet code of the GET endpoint (see NewsRestApi.kt5) on this resource (i.e.,
GET /news/{id}) with coverage information achieved by tests generated by our
approach (i.e., all lines are covered). Note that lines with green color indicate
the line covered by tests. Regarding the line coverage on this endpoint, we found
that the line 161 is not solved by tests generated by the baseline (denoted with
× in the figure) with 100k search budget, and a precondition to reach the line

rest−news scout−api

catwatch features−service proxyprint

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

1750

2000

2250

2500

660

680

700

720

1700

1800

1900

1000

1050

1100

1150

1200

250

275

300

325

Used Budget (%)

Av
er

ag
e

of
 C

ov
er

ed
 T

ar
ge

ts

Base Rd−MIO*sql

Fig. 3. Average covered targets (y-axis) with Base and Rd-MIO*sql throughout the
search, reported at 5% intervals of the used budget allocated for the search (x-axis).

Resource-Based Test Case Generation with SQL Handling 113

Fig. 4. An example of coverage of GET /news/{id} endpoint in rest-news achieved by
our technique

Fig. 5. A test automatically generated by our approach which is able to cover the lines
159 and 161 in Fig. 4

is related to an existing news resource with the specified id. However, with the
proposed approach, the problem can be easily addressed by directly inserting
a news resource, despite that the country might not be valid (as the check is
carried out only when a new country entry is created). A test to handle the
problem is shown in Fig. 5.

Regarding catwatch case study, it also obtains a noticeable improvement
with our approach. As its statistics shown in Table 2, 11 out of 13 endpoints are
independent, i.e., GET actions. The remaining two are endpoints such as /import
and /export that do not refer to any specific resources. Thus, it is unlikely to
manipulate the resources in this REST API (e.g., language, contributor) using

114 M. Zhang and A. Arcuri

HTTP actions with the default Rd-MIO*. An alternative solution such as SQL
handling would show its effectiveness to this situation. For instance, regarding
LanguageService.java related to language resource, the line coverage by Rd-
MIO* and Rd-MIO*sql are 56.2% vs. 96.9%. Due to space limitation, complete
coverage report can be found with a link4 that are conducted by Intellij coverage
report5.

Regarding features-service, most of the resources have a reference to a POST
action for their creation. In addition, its schema clearly shows their hierarchi-
cal relationships among the resources, which further makes required resources
complete (i.e., prepare corresponding ancestor’s resources) with a high proba-
bility. This could explain the modest improvement and the effectiveness with a
relatively low (Psql = 0.1) application probability (as shown in Table 4) on this
case study. However, our approach still demonstrates its effectiveness compared
with the baseline, i.e., the significant improvement shown for all of the metrics.
This indicates that SQL handling is possibly required for resource handling for
testing REST API despite that POST/PUT endpoints for the resources have
been clearly defined.

Regarding proxyprint, there exist various resources (i.e., 56 #R in Table 2)
and their relationships are not clearly identified with the schema. For instance,
POST /request/accept/{id} is to accept a request to add a new printshop,
and the request can be registered via POST /request/register. POST uses to
create a resource, and its dependent resources if exist are typically specified with
a hierarchical form, e.g., /products/{productName}/features/{featureName}
and /products/{productName} in features-service. But in this case, the depen-
dency between the two endpoints are not obvious with their URIs, (i.e.,
/request/register and /request/accept) that might limit an effective-
ness of HTTP actions on manipulating such resources. However, for POST
/request/accept/{id}, the accessed table can be identified (as described
in Sect. 2.2) that allow SQL to prepare such resource for the POST. The
effectiveness of our approaches can be shown with 95.2% line coverage on
RegisterRequestController.java (See footnote 3) for handling the request,
compared with 35.7% by Rd-MIO*. In addition, in this case study, there
exists an endpoint /admin/seed for initializing data into the service (see
AdminController.java (See footnote 3)). To test the system, we seed such
data by requesting the endpoint before each test as shown in Fig. 6a. An effec-
tive test to POST /request/accept/{id} (shown in Fig. 6b) is just employed
such seeded data, i.e., id=2 at line 6 refers to a seeded request (see line 119 in
AdminController.java (See footnote 3)).

Regarding scout-api, its schema is similar with features-service, i.e., resources
are connected and have a POST for its creations. By further identifying the
source code, we found that there exist some difficulties in handling media file
resources. For instance, POST /v1/media files is to “Add a media file to the
system. Specify URL of media file or use ‘data URI’ to upload base64-encoded
file”. Currently, it is not effective to generate such data with the search, i.e., a

4 https://doi.org/10.5281/zenodo.5059928.
5 https://www.jetbrains.com/help/idea/code-coverage.html.

https://doi.org/10.5281/zenodo.5059928
https://www.jetbrains.com/help/idea/code-coverage.html

Resource-Based Test Case Generation with SQL Handling 115

Fig. 6. A test automatically generated by our approach which employs the existing
data for preparing a resource for /request/accept/{id}

valid URI referring to a media file (e.g., image). But we could employ SQL to add
data into the database for making the resource exists. Besides, in this case study,
most of data retrieves are implemented with a query parameter named attrs
which indicates “The attributes to include in the response. Comma-separated
list”. However, with 100k HTTP calls, currently EvoMaster cannot handle
such constraints (e.g., specified with textual language) properly. This might be
a reason for the modest improvements on this case study, but they are still
statistically significant.

Significant improvements on fault detection could be a result of such improve-
ment on coverage. Thus, by carefully analyzing results on the five case studies,
we summarize that:
Our proposed technique significantly enhances the handling on resources which
is capable of generating more effective tests against REST APIs, particularly

effective on the SUTs whose creation actions are restricted or unclear.

5 Threats to Validity

Conclusion Validity. Our applied technique is in the context of search-based test-
ing. To handle its randomness nature, we repeated our experiments 30 times,

116 M. Zhang and A. Arcuri

which is recommended by standard guidelines [1] in search-based software engi-
neering for conducting experiments. To properly draw the conclusions based on
the results, we employed a set of statistical tools, i.e., Friedman test (p-value
and χ2) for variance analysis of performances of different settings among case
studies, Mann-Whitney U-test (p-value) and Vargha-Delaney (Â12) for reporting
comparison results with the baseline technique.

Construct Validity. In these experiments, outputs are obtained from search-
based techniques. To avoid any potential bias in such outputs, we first used
the same stopping criterion (i.e., 100k HTTP calls) for baseline and proposed
techniques. In addition, all the experiments were executed on the same machine
for further dealing with this validity threat.

Internal Validity. The approach is implemented on the EvoMaster tool that
is open-source, and the experiments were conducted with case studies which are
available online as well. We cannot guarantee that our implementation is free of
bugs, but the implementation and experiments can be examined by anyone, as
we made them open-source (www.evomaster.org).

External Validity. The approach was evaluated with five REST APIs which
interact with SQL databases, taken from a benchmark for REST API testing.
More case studies would help to generalize results of our approach. REST is
widely applied in industry, however, most of them are not open-source, which
limits our experiments with more case studies.

6 Conclusions and Future Work

Testing REST APIs is challenging, especially for system-level test generation,
due to their possible complex interactions with SQL databases. In REST,
exposed endpoints are typically defined based on resources and actions that
can be performed on them. Thus, via the endpoints, manipulating resources
with different states can help obtaining better code coverage in the context of
white-box testing. Rd-MIO* is such approach for automatically generating tests
using search-based techniques. In this paper, we further extended it by enhancing
the resource manipulation with direct SQL handling. We implemented our app-
roach in the EvoMaster open-source tool, and conducted an empirical study
with five open-source case studies. Experimental results show that our approach
significantly outperforms the existing Rd-MIO*, in terms of code coverage and
fault detection. Our novel technique demonstrates its advantages on all of the
five case studies, particularly on the SUTs whose creation actions are restricted
or too complex.

In future, we plan to 1) conduct more studies with various types of databases,
and 2) investigate solutions for handling constraints specified with textual lan-
guage. For more information, visit our webpage at www.evomaster.org.

Resource-Based Test Case Generation with SQL Handling 117

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Softw. Test. Verif. Reliab. (STVR)
24(3), 219–250 (2014)

2. Arcuri, A.: EvoTaster: evolutionary multi-context automated system test gener-
ation. In: IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE (2018)

3. Arcuri, A.: Test suite generation with the many independent objective (MIO) algo-
rithm. Inf. Softw. Technol. (IST) 104, 195–206 (2018)

4. Arcuri, A.: Restful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 28(1), 3 (2019)

5. Arcuri, A.: Automated blackbox and whitebox testing of RESTful APIs with Evo-
Master. IEEE Softw. 38, 72–78 (2020)

6. Arcuri, A., Galeotti, J.P.: Handling SQL databases in automated system test gen-
eration. ACM Trans. Softw. Eng. Methodol. (TOSEM) 29(4), 1–31 (2020)

7. Atlidakis, V., Godefroid, P., Polishchuk, M.: Restler: stateful rest API fuzzing. In:
Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, pp. 748–758. IEEE Press (2019). https://doi.org/10.1109/ICSE.2019.00083

8. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Automatic generation of test
cases for rest APIs: a specification-based approach. In: 2018 IEEE 22nd Interna-
tional Enterprise Distributed Object Computing Conference (EDOC), pp. 181–190
(2018)

9. Godefroid, P., Huang, B.Y., Polishchuk, M.: Intelligent rest API data fuzzing.
In: Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2020, pp. 725–736. Association for Computing Machinery, New York
(2020). https://doi.org/10.1145/3368089.3409719

10. Godefroid, P., Lehmann, D., Polishchuk, M.: Differential regression testing for rest
APIs. In: Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2020, pp. 312–323. Association for Comput-
ing Machinery, New York (2020). https://doi.org/10.1145/3395363.3397374

11. Martin, S., Liermann, J., Ney, H.: Algorithms for bigram and trigram word clus-
tering. Speech Commun. 24(1), 19–37 (1998)

12. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: black-box constraint-
based testing of RESTful web APIs. In: Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol.
12571, pp. 459–475. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
65310-1 33

13. Viglianisi, E., Dallago, M., Ceccato, M.: RESTTESTGEN: automated black-box
testing of restful APIs. In: IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE (2020)

14. Zhang, M., Marculescu, B., Arcuri, A.: Resource-based test case generation for
restful web services. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1426–1434 (2019)

15. Zhang, M., Marculescu, B., Arcuri, A.: Resource and dependency based test case
generation for RESTful Web services. Empir. Softw. Eng. 26(4), 1–61 (2021).
https://doi.org/10.1007/s10664-020-09937-1

https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1145/3395363.3397374
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1007/978-3-030-65310-1_33
https://doi.org/10.1007/s10664-020-09937-1

	Enhancing Resource-Based Test Case Generation for RESTful APIs with SQL Handling
	1 Introduction
	2 Background and Related Work
	2.1 Resource and Dependency Based MIO (Rd-MIO*)
	2.2 SQL Handling in EvoMaster
	2.3 REST API Testing

	3 Resource Handling with SQL
	4 Empirical Study
	4.1 Experiment Setup
	4.2 Experiment Results

	5 Threats to Validity
	6 Conclusions and Future Work
	References

