
2

Adaptive Hypermutation for Search-Based System Test

Generation: A Study on REST APIs with EvoMaster

MAN ZHANG, Kristiania University College, Norway

ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Norway

REST web services are widely popular in industry, and search techniques have been successfully used to
automatically generate system-level test cases for those systems. In this article, we propose a novel mutation
operator which is designed specifically for test generation at system-level, with a particular focus on REST
APIs. In REST API testing, and often in system testing in general, an individual can have a long and complex
chromosome. Furthermore, there are two specific issues: (1) fitness evaluation in system testing is highly
costly compared with the number of objectives (e.g., testing targets) to optimize for; and (2) a large part of
the genotype might have no impact on the phenotype of the individuals (e.g., input data that has no impact on
the execution flow in the tested program). Due to these issues, it might be not suitable to apply a typical low
mutation rate like 1/n (where n is the number of genes in an individual), which would lead to mutating only
one gene on average. Therefore, in this article, we propose an adaptive weight-based hypermutation, which is
aware of the different characteristics of the mutated genes. We developed adaptive strategies that enable the
selection and mutation of genes adaptively based on their fitness impact and mutation history throughout the
search. To assess our novel proposed mutation operator, we implemented it in the EvoMaster tool, integrated
in the MIO algorithm, and further conducted an empirical study with three artificial REST APIs and four real-
world REST APIs. Results show that our novel mutation operator demonstrates noticeable improvements
over the default MIO. It provides a significant improvement in performance for six out of the seven case
studies, where the relative improvement is up to +12.09% for target coverage, +12.69% for line coverage, and
+32.51% for branch coverage.

CCS Concepts: • Software and its engineering→ Search-based software engineering; Software testing

and debugging;

Additional Key Words and Phrases: REST API testing, search-based software testing, test generation,

hypermutation

ACM Reference format:

Man Zhang and Andrea Arcuri. 2021. Adaptive Hypermutation for Search-Based System Test Generation:
A Study on REST APIs with EvoMaster. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 2 (September 2021),
52 pages.
https://doi.org/10.1145/3464940

This work is supported by the Research Council of Norway (project on Evolutionary Enterprise Testing, grant agreement
No 274385).
Authors’ addresses: M. Zhang, Kristiania University College, Prinsens gate 7-9, 0152, Oslo, Norway; email: man.zhang@
kristiania.no; A. Arcuri, Kristiania University College and Oslo Metropolitan University, Prinsens gate 7-9, 0152, Oslo,
Norway; email: andrea.arcuri@kristiania.no.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1049-331X/2021/09-ART2 $15.00
https://doi.org/10.1145/3464940

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://doi.org/10.1145/3464940
mailto:permissions@acm.org
https://doi.org/10.1145/3464940

2:2 M. Zhang and A. Arcuri

1 INTRODUCTION

In industry, Representational State Transfer (REST) web services [33] are widely used for building
enterprise applications (e.g., using a microservice architecture [59]) and as well for providing pub-
lic APIs to access web resources over a network (e.g., internet). Due to their wide use in industry,
it would be useful to have an approach to automate system test generation for such services [5].
However, it is quite challenging to automatically test these systems, due to their complexity (e.g.,
when dealing with communications over a network). One possible approach to tackle these chal-
lenges is the use of search-based software testing, which has demonstrated its applicability and
effectiveness to automate software testing in several different contexts [1, 35, 41, 53].

To generate white-box tests for such web services with search techniques, the search needs
to optimize for a large number of testing targets, e.g., lines, branches, and faults. Furthermore,
the evolved individuals (i.e., the tests) need to handle various kinds of actions and data types in
their genes (e.g., to represent numbers, strings, and objects). For instance, a REST API typically
interacts with a database, and the behavior of the system under test (SUT) might be affected
by the status of the database. To manipulate the status in the context of testing, a test needs to
include not only HTTP calls (having query parameters, body payloads, etc.) but also Structured

Query Language (SQL) commands (as actions in an individual shown in Figure 1). In such kind
of tests, the number of the SQL commands can be tens or hundreds [12]. In addition, regarding
the genes, corresponding to different parameters and data types in REST, they can be defined
in various types with additional properties (as genes in an individual shown in Figure 1). For
example, a parameter could be in the URL path or an HTTP header, and its type can be primitive,
e.g., an integer, or structured, e.g., a reference object (e.g., an HTTP body payload in JSON) which
contains a set of fields of various types. To mutate such an individual, considering the quantity
and type of genes, it might not be suitable to apply the typical standard mutation rate 1/n (where
n is the number of genes) used in the literature, based on mutating one gene on average.

In this article, we propose a weight-based hypermutation (Figure 1) specialized for handling mu-
tation for such individuals. Instead of employing a uniform mutation rate, the proposed mutation
manages to determine a mutation rate customized for each gene based on its own weight (as wi

in Figure 1), and the weight can be calculated based on its own characteristics, e.g., the data type.
In addition, considering the huge search space with limited budgets, we increase the average mu-
tation rate (also referred as hypermutation in the literature [45, 52]) to improve the exploration of
the search landscape with the mutation operator. Instead of mutating one gene on average, the
mutation operator decides a number of mutated genes (as calculating � in Figure 1) based on a
set of rules, and the number is also linearly reduced (to 1) with the time spent by the search (in a
similar fashion as temperature cooling in Simulated Annealing [48]).

Although there might exist a large collection of genes in an individual, not all of the genes might
have an impact on the fitness function for the testing targets that are not covered yet. For example,
some of the fields in a JSON body payload in an HTTP POST request might just be data that will be
saved in a database, with no impact on the execution control flow in the SUT. Mutating the genes
that are not related to the testing targets simply results in wasted search budget. Automatically
detecting all these cases would be useful (e.g., using program slicing [56]), but its viability and
scalability on system testing of web services is still an open research challenge. Therefore, in this
article, we further develop an adaptive mutation operator that tracks gene evolution information
such as mutation history with fitness values and impacts on the testing targets during the search
(i.e., the mutated gene has either impact or no impact on the evaluated targets as impact collec-

tion in Figure 1), then use such tracked information to adaptively mutate these genes during the
search (as calculating w with impacts and adaptive gene mutation in Figure 1). For instance, with

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:3

Fig. 1. An overview of adaptive hypermutation for RESTful API Testing.

impact information, we manipulate weights of the genes to guide gene selection for reducing the
probability of involving irrelevant genes.

We implemented our approach with the Many Independent Objective (MIO) algorithm [6]
in the testing tool EvoMaster [4, 7]. We named our technique MIO-WH∗. EvoMaster is an au-
tomated testing tool for REST APIs, which implements several evolutionary algorithms for test
generation. To be able to do white-box testing, the tool is capable of instrumenting the SUT with
search-based heuristics and analyzing coverage at runtime. However, EvoMaster can also be use
for black-box testing [8]. It also has some novel techniques integrated for REST API testing, e.g.,
handling heuristic on SQL queries [12], SQL data generation, and testability transformation sup-
port [13]. MIO is an evolutionary algorithm designed for the system test generation which we have
been using in our work [7, 12, 13, 68] for producing more effective tests for REST APIs. Compared
with other test generation algorithms (i.e., Many-Objective Sorting Algorithm (MOSA) [60]
and Whole Test Suite (WTS) [36, 61]), its performance on system testing of web services has
been studied in [6], showing the best overall results on artificial problems and also real software.

To evaluate our novel techniques, we conducted an empirical study for MIO-WH∗ by compar-
ing it with a baseline technique (i.e., the default version of MIO) on seven open-source RESTful
APIs using three test coverage metrics, i.e., target coverage, line coverage, and branch coverage.
Results of our empirical study showed that our novel technique MIO-WH∗ achieved a significant
improvement over the baseline technique on six out of the seven case studies in test coverage.
Relative improvements with average coverage are up to +12.09% for target coverage, +12.69% for
line coverage, and +32.51% for branch coverage.

The rest of the article is organized as follows. Section 2 introduces related background topics for
providing a better understanding of the rest of the article. Related work is discussed in Section 3.
In Section 4, we introduce an example to better illustrate the problem we are addressing in this
article. The proposed approaches are presented in Section 5 for weight-based hypermutation and
Section 6 for adaptive mutation, followed by an integrated representation and implementation in
Section 7. The empirical study and experiment results are shown in Section 8. We discuss threats
to validity in Section 9, and conclude the article in Section 10.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:4 M. Zhang and A. Arcuri

2 BACKGROUND

2.1 REST and OpenAPI Specification

The REST is a set of design guidelines for building web services on top of HTTP. It was first
introduced by Fielding in his PhD thesis [33] in 2000. Now it is widely applied in industry, e.g.,
Google,1 Amazon,2 and Twitter.3 A RESTful API is an API that follows the REST guidelines to
manipulate resources with stateless operations over the network using HTTP. For instance, when
following the REST guidelines, the operations should be implemented in accord with the protocol
semantics of HTTP, e.g., you should not delete a resource when handling a GET request.

The OpenAPI Specification4 defines a standard to describe RESTful APIs, using a schema doc-
ument in JSON or YAML format. The schema allows both humans and machines to understand
how to access the services and resources provided by the API. Figure 2 shows a snippet example
of an OpenAPI/Swagger JSON definition for a RESTful API. As shown in the example, the foo
resources can be retrieved with GET, created with POST, and removed with DELETE through a
resource path /foos/{x}. To make a valid HTTP request, for each operation, parameters are re-
quired to be defined with their location (in body, query, or path), their type (type or schema), and
optionality (required). Note that the type can be a primitive (e.g., integer for x and string for y)
or structured (e.g., Info Object for z). Moreover, for the request, a set of possible responses are
defined with HTTP response codes.

In the context of automated test generation, such a standard provides a clear machine-readable
schema which can be used to create well-formatted HTTP requests to the SUT. When using search-
based software testing techniques, test cases (i.e., HTTP requests) will be evolved following the
constraints of the grammar defined by these schemas.

2.2 Hypermutation

The hypermutation operator can be regarded as one of the distinguishing features (compared with
other evolutionary algorithms) of Immune Algorithms that employs mutation at a high rate [45, 52]
(i.e., above the typical 1/n rate) and can explore the fitness landscape by introducing diversity into
a population [22, 24].

The Immune Algorithms are inspired by biological immune systems. One kind of such algo-
rithms follows the clonal selection principle [19, 25] which explains how cells in the immune sys-
tem function in response to an antigenic stimulus (e.g., pathogens). In the immune system, there
exist two kinds of cells, i.e., B-cells and T-cells, and both of the cells have receptors on them for
recognizing antigens (the B cell receptor is also called an antibody) [21]. Affinity measures a de-
gree of the recognition, i.e., binding between an antibody receptor and antigen [21]. The process
can be simplified as [20]: (1) Selection: the B-cell with a better affinity is selected; (2) Proliferation:
the selected B-cells produce many offspring by cloning themselves; (3) Affinity Maturation: clones
are employed with a mutation at a high rate mutation (known as hypermutation) to differentiate
them from their parents; and (4) Reselection: the mutated clones are reselected for ensuring that
the strongest cells with a higher affinity are retained. The whole process is performed iteratively
with the aim of evolving the antibodies with the highest affinity. Theoretical results on the effec-
tiveness of the different features of Immune Algorithms have also been formally proved [23].

The use of higher mutation rates has also been explored in traditional evolutionary algo-
rithms like (1+1) EA, in the so called ‘‘Heavy-Tailed Mutations’’ (HTM). For example, Friedrich

1https://developers.google.com/drive/v2/reference/.
2http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html.
3https://dev.twitter.com/rest/public.
4https://swagger.io/.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://developers.google.com/drive/v2/reference/
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://dev.twitter.com/rest/public
https://swagger.io/

Adaptive Hypermutation for Search-Based System Test Generation 2:5

Fig. 2. Snippet example of OpenAPI/Swagger document in JSON for a RESTful API.

et al. [37, 38] studied HTM for (1+1) EA applied on some pseudo-Boolean artificial landscapes and
combinatorial problems such as the Minimum Vertex Cover and the Maximum Cut. Mironovich
and Buzdalov [58] studied (1+1) EA with HTM on the Maximum Flow problem. Lengler [50] studied
higher mutation rates for different variants of Genetic Algorithms when applied to the optimiza-
tion of the monotone function family HotTopic. Ye at al. [66] introduced a ‘‘normalized standard
bit mutation’’, and investigate it in the context of (1+λ) EA applied on the functions OneMax and
LeadingOnes. Antipov et al. [3] investigated the use of HTM on (1 + (λ, λ)) Genetic Algorithm
applied to Jump functions.

Hypermutation, and Immune Algorithms in particular, have been applied to solve various opti-
mization problems, including multi-objective optimization problems [20, 42, 52]. In this article, we
developed a novel hypermutation specific to test generation for RESTful APIs which faces many
objectives (e.g., thousands of lines and code branches) to be optimized. The hypermutation man-
ages to determine an average number of genes to be mutated based on a number of candidates
and time spent by the search. Some of the different hypermutation mechanisms discussed in the
literature could be adapted and applied in this context as well. But whether they are going to be
effective in the context of test data generation will be a matter of future empirical evaluations.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:6 M. Zhang and A. Arcuri

2.3 Parameter Control

In search algorithms, there can be several parameters that need to be configured, like for example
population size and cross-over rate in Genetic Algorithms. There are different strategies to choose
such settings [26, 32, 46], like a static setting of those parameters, or let them vary dynamically
during the search.

Regarding static settings, no settings is best on all possible optimization problems [65], although
default values recommended in the literature do seem to be performing relatively well on software
engineering problems [11, 49, 62, 67]. Regarding dynamic parameter control, it is less used, and
not just in the software engineering literature: This overview revealed a great number of interesting

publications with promising results. Meanwhile, we also noted a disappointing discrepancy. In theory,

parameter control mechanisms have a great potential to improve evolutionary problem solvers. In

practice, however, the evolutionary computing community did not adopt parameter control techniques

as part of the standard machinery, controlling EA parameters on-the-fly is still a rather esoteric option,

with self-adaptation in evolution strategies being the exception that confirms the rule [46].
Another complementary approach is to base the parameter tuning on features of the addressed

problem instance, in the so called ‘‘Per Instance Algorithm Configuration’’ (PIAC) [43, 44, 51].
Parameter models can be inferred via experimentation, and then used to decide which parameter
settings to use on each new instance of the addressed problem.

In this article, we use an adaptive parameter control for some of the configuration settings,
like the hypermutation. The idea is to have a high mutation rate to reward the exploration of the
search landscape at the beginning of the search, and then gradually reducing it to rather reward
the exploitation. The mutation rate is also updated per-gene based on fitness feedback. We do not
build PIAC models, but some parameters depend on problem instance features, like the number of
genes related to SQL data.

2.4 The MIO Algorithm

The MIO algorithm [6] is an evolutionary algorithm specialized for generating system tests, and
its pseudo-code representation is shown in Algorithm 1. The algorithm was proposed for han-
dling white-box system testing, where it aims at exploiting many specific characteristics of such
a problem domain. For example, there are many targets to optimize for, possibly in the order of
thousands. The final output is not a single individual (i.e., a test case), but rather a population
(i.e., test suite). An individual can cover one or more targets, and its representation is of variable
length (e.g., a sequence of HTTP calls in the context of RESTful APIs). The goal is to maximize
the number of covered targets, where test length is a secondary objective to optimize for. There
is a strong dependency relationship between targets (e.g., nested code blocks), and not all targets
are feasible (e.g., code that cannot be reached). However, each target can be sought independently
in different individuals. Furthermore, the input representation can be very variegated, including
simple booleans, numbers, strings, regular expressions, arrays, objects, and so on. These are just
some of the reasons why a new evolutionary algorithm like MIO [6] was designed.

MIO’s fitness function is designed based on testing targets, such as lines, branches, and faults,
to be maximized. Such testing targets are either ‘‘not-covered’’, ‘‘reached’’, or ‘‘covered’’. For ex-
ample, when a if(condition) is executed but the condition is not satisfied, then in this case,
the if true-branch is reached (but not covered) whereas the else branch is covered (as well as
reached). For each testing target, there exists a population of candidate tests aimed at covering
that corresponding target. Note that a test is usually related to multiple test targets (e.g., executing
several lines/branches in the SUT, where each line/branch is a distinct test target).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:7

ALGORITHM 1: Pseudo-Code of the MIO Algorithm [6]

Input : Stopping condition C , Fitness function δ , Population size n, Probability for random sampling
Pr , Start of focused search F

Output : Archive of optimised individuals A

1 T ← SetEmptyPopulations ()

2 A← {}
3 while ¬C do

4 if Pr > rand () then

5 p ← RandomIndividual ()

6 else

// feedback directed sampling

7 p ← SampleIndividual (T)

// applying mutation on a sampled individual p

8 p ← Mutate (p)

// updating archive A with evaluated individual p

9 foreach element k of ReachedTargets(p) do

10 if IsTarдetCovered (k) then

11 UpdateArchive (A,p)

12 T ← T \Tk

13 else

14 Tk ← Tk ∪ {p}
15 if |Tk | > n then

16 RemoveWorstTest (Tk ,δ)

// exploration/exploitation control

17 UpdateParameters (F , Pr ,n)

As shown in the depicted algorithm, the search is started with empty populations. MIO is in-
spired by the (1+1) Evolutionary Algorithm [30] and by the Genetic Algorithms [40]. During the
search, MIO either samples a new test at random (line 5) or mutates an existing test from one
of the populations (lines 7−8) with a probability Pr . The sampled/mutated test is evaluated based
on its execution results. If it achieves any improvement on any testing target, the test will be
added to all the active populations. However, each population per target has a limited size n. Once
the size exceeds this limit, the test with the worst performance for that specific target will be
removed.

When executing a test, one or more new testing targets might be identified. Then, a new popu-
lation containing the executed test will be created for that target. Moreover, if a target is covered,
MIO no longer considers that target in the following optimization search. The associated popu-
lation size is shrunk to one, and no more sampling is allowed from that population. At the end
of the search, the MIO algorithm outputs a set of test cases based on the best tests in each of the
populations.

In the context of white-box testing, test coverage (e.g., line coverage) is a typical criterion
to evaluate the effectiveness of the tests. Thus, it is more important to produce tests that cover
targets rather than tests that are just heuristically close to covering such targets. Therefore, a
feedback-directed sampling was developed in MIO that guides the search to focus the sampling
on populations that have recent improvements. Such sampling enables an effective way to reduce
the search budget spent on infeasible targets [6]. In addition, MIO introduces a focused search

that starts to focus more on the exploitation of the search landscape by reducing the probability

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:8 M. Zhang and A. Arcuri

Fig. 3. An overview of EvoMaster.

of random sampling Pr once the search reaches a given certain time point F . This is done with a
deterministic parameter control (dpc) to decrease Pr linearly to 0 based on the spent search
budget. This allows the later stages of the search to focus more on trying to cover the currently
reached targets, instead of exploring more areas of the search landscape with new random tests.

2.5 EvoMaster

EvoMaster is an open-source tool [15] (currently hosted on GitHub, as well as on Zenodo [14])
that can automatically generate system-level test cases for RESTful APIs, using evolutionary algo-
rithms, e.g., MIO and MOSA. A high-level overview of EvoMaster is represented in Figure 3. It
is composed of two main components: (1) core which implements different search algorithms to
generate tests, defines fitness functions for maximizing testing coverage and fault finding, extracts
and parses schemas for REST APIs, outputs executable tests with the specified language (e.g., Java
and Kotlin), and so on; (2) driver which is developed to manipulate SUTs, e.g., for instrumenting
the SUT and starting/stopping/resetting it. With such a driver, EvoMaster is capable of obtaining
the testing coverage (e.g., covered statements) and search-based heuristics (e.g., branch distance)
at runtime, which are used to evaluate the evolved tests during the search.

EvoMaster is now integrated with several novel techniques for testing REST APIs. To test
REST APIs that interact with databases, SQL handling [12] was implemented in EvoMaster that
defines heuristics on SQL queries, and further enables the search to employ such heuristics as
objectives to optimize. In addition, the SQL handling is able to produce SQL data directly as part of
the tests, to directly manipulate the state of the databases (if any) during the search. Moreover, to
better guide the search in the context of white-box testing, EvoMaster employs a novel testability

transformation [13] that is able to transform the code of SUT with the aim of providing better
heuristic values. Instead of generating sequences of HTTP calls just at random, EvoMaster can
also exploit dependencies among the resources in the OpenAPI schemas [68]. To make its adoption
easier among practitioners, EvoMaster also supports black-box testing [8], which is easier to
setup (as it does not require the manual configuration for the driver).

EvoMaster with those novel techniques serves as a comprehensive platform to test REST APIs.

3 RELATED WORK

For RESTful web services, most of the existing work related to automated test generation employs
black-box testing. Recently, interest has been growing in the research community regarding the
challenges of automatically generating tests for REST APIs using different variants of random
testing, given an OpenAPI schema [16, 17, 31, 39, 47, 54, 63]. For instance, Atlidakis et al. [17] pro-
posed the tool RESTler that is capable of inferring dependencies based on OpenAPI specifications,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:9

analyzing dynamic feedback from responses (e.g., status code) during test execution. Further,
Godefroid et al. [39] designed a set of techniques (including schema fuzzing rules, rules selection,
and value rendering strategies) which is built on the top of RESTler for generating test data for
requests. Viglianisi et al. [63] developed an approach to generate tests with considerations of
data dependencies among operations and operation semantics. In such work, the dependencies
are specified with an Operation Dependency Graph which is initialized with an OpenAPI schema
and evolved during test execution. Karlsson et al. [47] developed a property-based test generation
approach using OpenAPI schemas, and Ed-douibi et al. [31] introduced a model-based test
generation approach to generate tests with models derived from those OpenAPI schemas. Lopez
et al. [54] proposed the RESTest open-source tool, that can exploit inter-parameter dependencies
in the HTTP calls when generating test cases.

By employing white-box information (e.g., coverage), Atlidakis et al. [16] developed Pythia

which is composed of a grammar fuzzer for fuzzing the OpenAPI schema, and a strategy to mutate
the grammar rules for introducing noise (e.g., GET→ GKT) into the produced tests. Then, cover-
age is measured when executing the produced tests which is used a feedback to decide the tests
to be mutated next. To obtain the coverage, Pythia requires performing a static analysis on the
source code and further manual configuration before testing. With our approach, such coverage
information can be obtained automatically by code instrumentation with EvoMaster.

Note that, for developers, it is not necessary to manually write an OpenAPI schema before
using any of these tools on their web services. Depending on the applied libraries/frameworks
for building RESTful web services (e.g., with the popular Spring in the Java ecosystem), the Ope-
nAPI schemas can be automatically generated (e.g., using libraries such as SpringFox and Spring-
Doc). So, the lack of an existing OpenAPI schema in general does not hinder the use of these
tools.

Our work is different, as EvoMaster uses evolutionary algorithms and support white-box test-
ing in addition to black-box testing. Furthermore, to the best of our knowledge, it is the only tool
that can directly generate test data for SQL databases as part of the test cases. The large number
of decisions when generating SQL data (besides HTTP calls) complicates the test generation even
further, and requires more efficient search algorithms. In this work, we improved the search-based
engine of EvoMaster by designing an adaptive mutation specific to REST API white-box testing,
by selecting and mutating genes based on their gene characteristics and fitness impact identified
during the search. Last, but not least, another key difference with existing work on test generation
for REST APIs is that, like RESTest [54] and, recently, RESTler [17] as well, our tool EvoMaster is
open-source [15] and freely available on GitHub since 2016 (http://www.evomaster.org), and on
Zenodo [14]. Furthermore, EvoMaster is actively supported, with extensive user manual docu-
mentation and video demonstrations. This is essential to enable replicated experiments and sup-
port validation from third-party researchers, in addition to making these research results usable
and available among practitioners.

There is a large body of literature about the use of search algorithms to solve software engineer-
ing problems [41], in particular test case generation [1, 55]. There is no search algorithm which
is best on all possible problems [65]. Therefore, for each specific problem domain, there has been
research effort to evaluate and compare with existing search algorithms, and designing new cus-
tom ones that try to exploit as much domain knowledge as possible. For example, in the context
of unit test generation, the open-source tool EvoSuite [34] has been used to compare with several
different search algorithms [18], and evaluate new ones like MOSA [60]. Our work in this article
is of similar nature, in which we designed a new variant of the MIO search algorithm, exploiting
domain knowledge related to system test generation. We focus on the testing of REST APIs, which

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

http://www.evomaster.org

2:10 M. Zhang and A. Arcuri

Fig. 4. foos/{x} endpoint with POST.

is a context that has not been investigated before in the literature of search-based software testing,
and that is quite different from unit testing for example.

4 MOTIVATING EXAMPLE

In this section, we provide a simple REST API as an example (available online)5 to illustrate our
addressed problem, i.e., test generation for RESTful APIs in the context of white-box testing. That
REST API provides a set of APIs to access foo and bar resources (e.g., POST for creation, GET for
retrieving) which also interact with a SQL database. Figure 4 (complete code in FooRestAPI.java)
represents an implementation of an endpoint with POST action that attempts to create a foo
by a path foos/{x} with SpringBoot.6 Note that with SpringBoot, a REST API schema can
be automatically generated from the implementation, e.g., the snippet schema in Figure 2 was
automatically generated corresponding to this implementation. That endpoint requires specifying
three parameters, i.e., path parameter x with type Integer, query parameter y with type String,

5The full code of the REST API can be found in the adaptivehypermutation package, currently accessible at
https://github.com/EMResearch/EvoMaster/tree/master/e2e-tests/spring-rest-openapi-v2/src/main/java/com/foo/rest/
examples/spring/adaptivehypermutation.
6https://spring.io/projects/spring-boot.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://github.com/EMResearch/EvoMaster/tree/master/e2e-tests/spring-rest-openapi-v2/src/main/java/com/foo/rest/examples/spring/adaptivehypermutation
https://spring.io/projects/spring-boot

Adaptive Hypermutation for Search-Based System Test Generation 2:11

Fig. 5. Info DTO class and Foo Entity class.

and body payload z with type Info object. For the z, it is restricted by a reference object with Info
which is composed of five fields, and one of them t is constrained with a regular expression (see
Info Data Transfer Object (DTO) in Figure 5(a), where the complete code is in Info.java). In
the five fields, only two of them (i.e., c and t) are marked as ‘‘required’’. This means that the other
three fields are optional, and can be omitted. In our context, the lines and branches in the figure
can be regarded as testing targets to be optimized with the search. As seen in Figure 4, the targets
are affected by the state of the interacted database and different values of the parameters, e.g.,
lines 5−6 by the state of the database, lines 7−8 by x, lines 9−10 by y, and lines 12−20 by z. With
the search, such states and values of the parameters can be manipulated by the search operator,
e.g., with mutations. Based on the execution sequence of the targets, there exist a potential order
of priority of manipulating the state or the parameters. For instance, in order to enter this method,
a valid z is required whose t field needs to follow the specified regular expression (see the use
of the annotation @Valid). Otherwise, Spring would return a 400 HTTP status code without
even the need to execute that method. After valid parameters are given as input, lines 7−end
can be reached only if the else-branch at line 5 is covered. This means that, before that target is
covered, it is useless to manipulate the input parameters (i.e., x, y, and z) except for the database
state. The branch target is related to a global state of the SUT that requires a set of pre-actions
which are to insert at least three foos into the database (e.g., with other POST requests on other
endpoints that lead to the creation of such data, or with direct SQL INSERTs from the tests). An
implementation for persisting foo to the database is represented in Figure 5(b) (complete code in
FooEntity.java), that defines the table foo with 7 columns using a JPA entity. Note that involv-
ing the SQL insertions will result in more genes in an individual. Subsequently, the individual
also needs to first handle x to get a value for reaching lines 9−end, then handle y to have a string
value ‘‘foo’’ for reaching lines 11−end. Moreover, at different stages of the search, the optimal
values of the parameters are also varied by the testing targets to be evaluated. For example, as
one field of z related to the four branches (i.e., B0−B3) at lines 12−16 (one else branch is hidden),
the search only focuses on the branch at line 16 (make z.c 300) once branches at lines 12 (a test
which z.c’s value is 100) and 14 (a test which z.c’s value is 200) are covered. Furthermore, values
in pre-SQL actions can also affect the testing target in this endpoint. For instance, there exist a
branch (at line 21) that is independent of the parameters of the endpoint, and rather relies on the
values specified in the SQL insertions (or previous successful POST calls with x equal to 42).

Figure 6 (complete code BarRestAPI.java) is implemented to retrieve (i.e., GET) a bar resource
with a specified a by a path bars/{a} that is simple and depends on whether a specific bar exists
in the database (see line 4).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:12 M. Zhang and A. Arcuri

Fig. 6. bars/{a} endpoint with GET.

A test for the REST API can include more than one HTTP action for testing multiple end-
points. For instance, Figure 7 shows a test related to two endpoints, i.e., POST foos/{x} and
GET bars/{a}, with RestAssured.7 In the context of testing REST APIs, SQL commands can be
applied for manipulating different states of the SUT [12] as it is needed for covering targets such
as the branch target at line 5 shown in Figure 4. For instance, lines 4−14 are used to create a bar
and four foo resources with SQL commands. Note that the complete code for the insertions is not
shown due to space limitation, and more details can be found in test_example().8 Given such
state, lines 15−37 are to test POST foos/{x} endpoint with expected response (i.e., cover B3, B4,
and B5 branches) and lines 25−32 are to test bars/{a} endpoint with expected response. In our
context, such a test with this test data can be treated as an individual.

From the point of view of the automated test generation, one challenge here is that there are a
large number of genes introduced to handle the SQL insertions (due to line 5), but most of them do
not have an impact on the control flow of the SUT (apart from line 21). However, those genes still
have to be there, e.g., to satisfy the non-null constraints in the database. Without new techniques
to handle these cases, the search can be severely hampered, by wasting time in mutating genes
that have no impact on the phenotype. Furthermore, any such technique will have to handle these
cases dynamically and adaptively. For example, the genes of x, y, and z have no impact until the
else branch of line 5 is executed.

To better demonstrate the performance of our novel proposed techniques, we also created an
End-to-End test9 which employs different techniques (i.e., a baseline technique and the proposed
technique) against the foo endpoints (i.e., GET ALL, GET, DELETE, and POST). For EvoMaster,
being a piece of software itself, we need to write tests for it (unit, integration, and End-to-End), e.g.,
to avoid having our research results negatively affected by software faults. Each time we present
a new technique with a motivating example, we add it as an End-To-End test (i.e., as part of the
build, we automatically run EvoMaster on the motivating examples, and verify that all testing
targets are covered in reasonable time).

Regarding the six branch targets (i.e., B0−B5 in Figure 4) that are the most difficult to solve in
this REST API, within three attempts, the proposed approach is capable of producing tests that
cover all of the branches by assigning a budget, i.e., 20k HTTP calls that take a couple of minutes,
while the baseline technique is able to cover just 0 or 1 using the same budget. More details can
be found in the link.9

7https://rest-assured.io/.
8The test can be found at https://github.com/EMResearch/EvoMaster/blob/master/e2e-tests/spring-rest-openapi-v2/src/
test/java/org/evomaster/e2etests/spring/examples/adaptivehypermutation/ManualRestTest.java.
9The E2E test can be currently found at https://github.com/EMResearch/EvoMaster/blob/master/e2e-tests/spring-rest-
openapi-v2/src/test/java/org/evomaster/e2etests/spring/examples/adaptivehypermutation/AHypermutationAWHTest.
java.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://rest-assured.io/
https://github.com/EMResearch/EvoMaster/blob/master/e2e-tests/spring-rest-openapi-v2/src/test/java/org/evomaster/e2etests/spring/examples/adaptivehypermutation/ManualRestTest.java
https://github.com/EMResearch/EvoMaster/blob/master/e2e-tests/spring-rest-openapi-v2/src/test/java/org/evomaster/e2etests/spring/examples/adaptivehypermutation/AHypermutationAWHTest.java

Adaptive Hypermutation for Search-Based System Test Generation 2:13

Fig. 7. An example of a test manually written.

5 WEIGHT-BASED HYPERMUTATION

5.1 Individual and Gene Structure

In the evolutionary search, a test case will be defined as an individual. In a test case, there are
several configurations that need to be set, like the choice of query parameters in the URLs, and
body payloads (e.g., JSON data). The goal of the search is to find the best configuration to maximize
the fitness function (e.g., code coverage and number of detected faults).

A typical representation for an individual in an evolutionary algorithm is a 0/1 bit-string. An
individual can then be seen as a list of n genes, each one representing one binary choice (i.e., either
0 or 1). Genes can then be mutated (e.g., flipping a bit from 0−1, or vice-versa). The search space
will then have a size of 2n distinct individuals.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:14 M. Zhang and A. Arcuri

Fig. 8. An example to illustrate a representation of an individual for the test shown in Figure 7.

All search problems can use a bit-string representation, but it has limitations. For example, not
all bit-string of a given length n might represent valid individuals (e.g., there can be constraints,
like when needing to represent a string-date in a valid format and numbers in a given range), or
the length of the representation must be variable (e.g., text strings of variable length). Customized
representations (and mutation operations) are usually designed to exploit as much domain knowl-
edge as possible.

When testing a RESTful API, with HTTP calls, and SQL commands, there is a large variation of
data types, e.g., numbers, strings, dates, objects, arrays, regular expressions, and primary/foreign
keys in SQL tables. EvoMaster uses a rich type system, in which each data type has its own
customized gene representation, with specialized mutation operators on each different data type.
As the test in Figure 7, its individual representation is illustrated with views of actions and genes
in Figure 8. The individual is composed of two HTTP calls, i.e., the first HTTP call on /foos/{x}
with POST has three genes (i.e., an Integer gene for a variable in the path element x of the URL,
a String gene for a query parameter y, and a Object gene for a possible JSON body payload), and
the second HTTP call on /bars/{a} with GET has an String gene representing a variable in the
path element a of the URL.

Regarding the genes, to better handle the problem of test data generation, a key difference in
EvoMaster compared with traditional evolutionary algorithms is that genes have a tree-like rep-
resentation. In other words, each gene could have child genes, and so on recursively (e.g., to repre-
sents structured data that are objects with fields that are themselves objects). For the body payload

z in Figure 8, it is represented by an Object gene with Info DTO class. As its implementation in
Figure 5(a), the object gene includes five fields, where the field t is represented with a Date object.
In addition, the Date object is internally represented with three Integer genes (one for the year,
one for the month, and one for the day), each with its own constraints (e.g., a valid month can
only be within the range of 1 and 12). To mutate such an object gene, its mutation operator will
need to decide which of the internal genes (i.e., fields) to mutate (one or more), and then apply the
specific mutation operators for the types of these internal genes (e.g., Date gene, String gene).

Moreover, as the test in Figure 7, there exists a set of SQL insertions for adding one bar resource
and four foo resources that should also be represented along with contained genes. For instance,
an insertion for adding one foo has seven root genes as Figure 5(b), and one of the genes is a
primary key.

Note that when we refer to |G | = n, we consider only these top-level/root genes, and not the
whole trees. For the example shown in Figure 8, we have n = 31 + 3 + 1 = 35 top-level genes.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:15

Table 1. Weights and Number of Direct Child Genes (if any) for Each Type of Genes

GeneType Weight #Internal Genes
NumberGene 1 0
BooleanGene 1 0
StringGene 1 ≥ 0†

DateGene 1 3
TimeGene 1 3
DateTimeGene 1 2
EnumGene 1 ≥ 1
MapGene sum of weights of elements + 1 ≥ 1
ArrayGene sum of weights of elements + 1 ≥ 1
ObjectGene sum of weights of its fields ≥ 1
DisruptiveGene weight of gene ×p + 1 0, 1
OptionalGene weight of gene +1 0, 1
AnyCharacterRxGene 1 0
CharacterClassEscapeRxGene 1 0
CharacterRangeRxGene 1 0
DisjunctionRxGene sum of weight of terms + 1 ≥ 1
DisjunctionListRxGene sum of weight of disjunctions + 1 ≥ 1
QuantifierRxGene sum of weight of atoms + 1 ≥ 1
RegexGene weight of disjunctionListRxGene 1

Note that † the String gene might contain a set of internal genes when applying testability
transformations [13].

5.2 Gene and Mutation Weight

In a traditional mutation, it is a common practice to have an equal mutation rate that is applied to all
the genes, e.g., 1/n. In our context, considering the structured genes, e.g., an object gene containing
50 fields versus a gene for a simple boolean, however, having the same mutation probability would
be very unbalanced. To address this issue, it would make sense to define a customized mutation
rate for each of the genes that would be dependent on the characteristics of the gene.

To customize the mutation rate, we define a mutation weight for each of the mutable genes,
denoted as a positive valuew that is used in calculating the mutation rate, i.e., the higher the weight,
the higher the chances to be mutated. Such a weight for a gene can be decided in many different
ways, e.g., based on its complexity and the number of possible configurations. Considering the
example in Figure 8, because the Object gene z contains much more information than the String
gene y, then the weight for z should be more than the weight of y. Therefore, we define a mutation

weight based on each type of mutable genes, and the weights are represented in Table 1 as follows:

• For basic types, i.e., Number,10 Boolean and String, we set their weights as 1.
• For time related genes, i.e., Date, Time, and DateTime, because their structures are fixed and

they only refer to time/date information, we define their weights as 1.
• For Enum, the mutation is to select one of defined items in the Enum that can be regarded

as a scoped Integer, thus the weight is defined as 1.
• For Collection genes, i.e., Map and Array, their weights are defined by considering weights

of included elements and possible size mutation, i.e., (
∑ne

e=1we) + 1 where we is a weight of
an included element and ne is a number of included elements.

10Number includes Integer, Long Float, and Double in EvoMaster.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:16 M. Zhang and A. Arcuri

• For Object, the mutation is cumulative based on weights of its fields, i.e.,
∑nf

f =1wf where wf

is a weight of a field and nf is a number of its fields.
• For Disruptive,11 it is a gene containing another gene. The mutation is implemented to mutate

the contained gene with a probability p ∈ [0, 1]. The weight is calculated aswд ×p+1 where
wд is a weight of the contained gene and +1 is for the additional property.
• For Optional,12 it is a gene containing another gene with present property defined by a

boolean value, i.e., the gene is present (True) or absent (False). The weight is calculated
as wд + 1 where wд is a weight of the contained gene and +1 is regarding the mutation of
the present property. For instance, d1 is not required as defined in Figure 5(a), then d1 is
formalized as an Optional gene.
• For regex related genes,13

— AnyCharacter, CharacterClassEscape, and CharacterRange are used to define characters in
the regular expression. AnyCharacter is to represent any character, CharacterClassEscape

is defined for representing special characters (e.g., \d and \s), and CharacterRange is to
represent ranges of characters, e.g., [a-z]. Those genes can be regarded as scoped chars,
thus their weights are defined as 1.

— DisjunctionList defines a (sub)expression connected with the disjunction operator, that
is composed of a sequence of disjunctions. The weight is defined based on the internal
disjunctions, i.e., (

∑nd

d=1wd)+1 wherewd is a weight of a disjunction and nd is the number
of these disjunctions.

— Disjunction defines an element in a (sub)expression connected with the disjunction oper-
ator. The element is composed of a sequence of terms, e.g., AnyCharacter. The weight is
defined based on the terms plus whether appending a prefix or postfix (to handle the cases
of the delimiters $ and ^), i.e., (

∑nt

t=1wt) + 1 where wt is a weight of a term and nt is the
number of all these terms.

— Quantifier is used to represent a repeated pattern (e.g.,(f oo){2},\d+) that is defined with
an atom template (i.e., a term) and the number of repeated times. Since the number of
repetitions could be defined as an unbounded range, e.g., + and ∗, the gene could produce
a very large number of atoms each one requiring their own genes. Therefore, EvoMaster
defined a limit for the gene, and the mutation is implemented to mutate one of repeated
genes or add/remove one [12]. The weight is defined based on the atoms plus whether an
atom is added or removed, i.e., (

∑na

a=1wa) + 1 where wa is a weight of an atom, na is a
number of all these atoms, +1 is for the possible removal or addition of an atom.

— Regex is used to define a complete regular expression that contains a DisjunctionList, then
its weight is equal to the weight of the contained DisjunctionList.

5.3 Hypermutation with Deterministic Parameter Control

Specialized evolutionary algorithms for test case generation, such as MIO, do not use the crossover
operator. Defining meaningful crossover operators for test cases is a challenge in itself. The down-
side is that relying on a typical 1/n mutation rate would lead to just 1 mutated gene on average.
This would put more emphasis on the exploitation rather than the exploration of the search land-
scape. This is a problem for system testing, where the search space is huge, and search budget is

11In the context of testing RESTful API, Disruptive gene is used to handle URL path parameters which should not be mutated
once set to handle different calls working on the same resource paths [7].
12In the context of testing RESTful API, Optional gene is needed to handle optional query parameters [7].
13Genes are defined for handling strings in EvoMaster which should match some specified regular expressions [12]. As
PatternCharacterBlock is not mutable, it is not discussed in this article.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:17

usually small (due to the high cost of running system tests). To offset this issue, algorithms such
as MIO have high probabilities of sampling new individuals at random, rather than just mutating
existing ones in the evolving populations.

A complementary approach would be to increase the mutation rate, in what it is called hyper-

mutation. Instead of doing 1 mutation on average (i.e., mutation rate of 1
n

for each gene), there
could be � mutated genes on average. This would be simply achieved by using a mutation rate of
�
n

, where 1 ≤ � ≤ n. As n would vary from individual to individual, having a constant � for the
whole search would not be appropriate. The parameter � should rather be based on a percentage
ρ of n, i.e., � =max (1, ρn), with ρ ∈ [0, 1].

Having hypermutation at the beginning of the search can be useful for exploration of the search
landscape. However, at later stages, it can be too disruptive. The MIO algorithm already includes
a dpc system that, for example, will linearly decrease the probability of sampling new random
individuals (instead of mutating existing ones) throughout the search. The same can be done for
the parameter ρ, e.g., start at 0.5 and decrease it linearly down to 1

n
. In particular, ρ = dpcρ (s, e),

where s is the starting value at the beginning of the search (e.g., ρ = 0.5), and e is the value when
MIO’s focused search starts (e.g., ρ = 1

n
). Note that there can be other strategies [27–29], besides

a simple linear decrease of these parameters. However, whether they would give better results
would be a matter of future empirical investigations.

5.4 Mutation Rate

Given the weights and a number of genes to be mutated, we define a weight-based mutation rate.
Suppose that there exist n (n ≥ 1) top-level mutable genes G = {д1, . . . ,дn } in an individual,
and each gene дi has a weight wi . As previously discussed, as n would vary from individual to
individual, having a constant number of genes to be mutated (i.e., �) for the whole search would not
be appropriate. The parameter � should rather be based on a percentage ρ of n, i.e., � =max (1, ρn),
with ρ ∈ [0, 1]. Thus, with the weights, a mutation ratemi for the дi is calculated as

mi (t ,W) = � × �
�
d × 1

n
+ (1 − d) × wi∑n

j=1w j

�
�
, (1)

where � is an average number of genes to mutate in one operation (� ≤ n), i.e., with those
mutation rates for all n genes, then

∑n
i=1mi (t) = � genes on average are selected to mutate;

W = {wx |x = 1..n} is a set of weights for G; d ∈ [0, 1] is a tunable value, e.g., when d = 1,
the weight wi contributes nothing to the mi , and so the mutation rate would be a simple �

n
. Note

that hypermutation would be represented by � > 1; standard mutation 1
n

would be represented by
� = 1 and then d = 1 and/or all wi = 1.

The motivation for the design of Equation (1) is as follows. We want � top-genes mutated on
average. However, not all top-genes have the same importance (e.g., a simple boolean versus an
object with tens of internal fields), and so the mutation rate should be based on the weights wi

for each top-gene, divided by the sum of all weights
∑n

j=1w j (i.e., proportional to weight). Note

that, if all weights wi are equal, then wi∑n
j=1 w j

= 1
n

. However, we do not want wi to lead in some

cases to very low probabilities. Especially for REST APIs, we could have low-weight genes (e.g,
booleans and numbers) for URL query parameters, and high-weight object fields (e.g., JSON and
XML data) for the HTTP body payloads. These latter should be mutated more often, but still, query
parameters might have a high chance of impacting the fitness, and so we should avoid decreasing
their mutation rate too much if the HTTP body payloads have a lot of internal fields. Therefore,
the use of the parameter d is to offset possible side effects of using the weights wi , by giving
each gene at least a minimum mutation rate of d/n. Note the use of the multiplicative (1 − d), as

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:18 M. Zhang and A. Arcuri

we need to guarantee that the sum of the probabilities for all top-genes should be equal to �, i.e.,∑n
i=1mi (t) = �. How to best choose the right value for d is a matter of empirical investigation, and

it depends on the problem domain.
Such mutation rate can be treated as a strategy for gene selection that, in our context, is applied

on not only the individuals (to select a subset of the n top-level genes) but also on the structured
genes which have more than one internal gene. For instance, to mutate an object gene, a selection
should be applied for deciding which field is to be mutated. The same applies when a mutated gene
has a selection of G ′ internal genes to mutate (e.g., an array gene that has |G ′ | child genes, each
one representing an element in the array). However, in this case, the value � should be based on
the cardinality of |G ′ | and not |G |.

5.5 SQL Gene

An individual might also contain SQL commands, e.g., SQL insertions for manipulating the states
of the SUT and the database in Figure 8. The SQL commands might lead to have many new more
genes as part of the chromosome in an individual. As in that example, to make the SUT have at
least 3 foo resources for covering the branch (see line 5 in Figure 4), the test (Figure 7) includes
four SQL insertions for foo that will lead to 7× 4 = 28 more top-level genes, and in total there are
31 genes from SQL commands (see Figure 8). Compared with the 31 genes, the four genes from
the HTTP actions might result in a relative low chance to be mutated.

The genes for HTTP actions could have more impacts than the SQL genes on covering more
targets. Much of the data for the SQL insertions could have been added only to satisfy constraints
in the database (e.g., when the elements in a column must not be null), and have no effect on the
control flow in the SUT. Therefore, we design a special handling of SQL genes by distinguishing
them from the HTTP action genes when deciding the mutation rate.

Suppose that G is a set of mutable genes in an individual, Z ⊆ G is a subset of G representing
a set of non-SQL genes, and hence G \ Z represents the genes from SQL actions. Then, when
selecting genes to mutate, we apply weight-based selection within the HTTP action gene set and
the SQL gene set, respectively, i.e., Z and G \ Z . To make the two sets have the same overall
mutation probability, an average number of genes t to mutate is distributed to the two sets equally.
Note that when focused search in MIO starts, the t for the two sets is 0.5 to allow only small
modifications.

6 ADAPTIVE MUTATION

When mutating an individual in our context, the mutation is applied to try to evolve new indi-
viduals that cover the currently reached targets (recall our definition in Section 2.4), e.g., lines
and branches. Regarding the implementation shown in Figure 4, each statement is defined as a
target labelled as L<number>(-T /F), e.g., L7-T represents the if-condition at line 7 where the
condition is true, and L9 represents the statement at line 9. Thus, lines L5–L28 are the testing
targets for POST /foos/{x}. Note: even if statements are consecutive in the same block, they are
treated as separate targets, as statements could throw exceptions (and so the following statements
would not be executed in those cases).

Given a set of targets to optimize for, however, not all of the genes in an individual are re-
lated to such targets. For instance, the example in Figure 9 shows the evolution of an individual
to test the endpoint POST /foos/{x} (see its implementation in Figure 4). In the example, the
individual to be mutated is composed of the four foo SQL insertions (to cover L5-F) and an HTTP
action POST /foos/{x}. For Non-SQL genes, the individual includes three top-level root genes
{x ,y, z} (see genes representation for POST /foos/{x} in Figure 8), and z is an Object that fur-
ther includes a set of internal genes, i.e., {c, t ,d1,d2,d3}. In the figure, at the beginning of the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:19

Fig. 9. An example to illustrate the evolution of an individual through mutations during the search.

search, Non-SQL genes in the individual I0 are initialized, e.g., by random sampling, as I0〈0, abc ,
〈1,2000-01-01〉, e, f ,д〉. With the SQL actions, L7–L10 are reachable, and the I0 can cover targets
{L7-F, L9-T, L10}, thus the targets to be optimized are {L7-T, L8, L9-F }. Note that, once some targets
are covered, in MIO, we do not consider them in the fitness function for the rest of search. Cov-
ering one target may also additional targets to be reached, e.g., once L9-F is covered, L11–L28 are
reached atm30. Based on that implementation of the SUT, there are two genes (i.e., x and y) which
are related to the execution of {L7-T, L8, L9-F }. Thus, applying any mutation on z will lead to a
waste of budget, e.g., m0 in Figure 9, as that mutation has no impact on those testing targets. To
reduce such waste, one possible solution is to identify possibly related genes for the targets, and
then increase the chances to mutate them. Therefore, in this article, we propose an impact-based

weight that decides gene weights adaptively based on collected impact on targets throughout the
search (Sections 6.1 and 6.2). In addition, we developed an adaptive gene mutation to mutate the
genes based on their fitness impacts and latest mutation history (Section 6.3).

6.1 Gene Impact

Recall the example in Figure 9. Assume that L9-F is the target to be optimized (afterm1), mutating
x (as m3) and z (as m4) genes does not lead to any impact on the fitness of the target. Regarding

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:20 M. Zhang and A. Arcuri

Table 2. Impact Information Collection for Each Type of Genes

GeneType Additional Impacts Description

StringGene
employSpecialization

F: impact when the specialization is not employed
T: impact when the specialization is employed

specializationImpacts a map of impacts for each existing specialization in the gene

DateGene
yearImpact impact when mutating the year gene
monthImpact impact when mutating the month gene
dayImpact impact when mutating the day gene

TimeGene
hourImpact impact when mutating hour gene
minuteImpact impact when mutating minute gene
secondImpact impact when mutating second gene

DateTimeGene dateImpact impact when mutating date gene
timeImpact impact when mutating time gene

EnumGene valuesImpact a map of impacts for each value
MapGene, ArrayGene lengthImpact impact when removing or adding elements
ObjectGene fieldsImpact a map of impacts for each field
DisruptiveGene geneImpact impact for the contained gene

OptionalGene
presentImpact

F: impact when the present is false
T: impact when the present is true

geneImpact impact for the contained gene
DisjunctionRxGene termsImpact a map of impacts for each contained term
DisjunctionListRxGene disjunctionsImpact a map of impacts for each contained DisjunctionRxGenes
RegexGene listRxGeneImpact impact of contained DisjunctionListRxGene

m2 andm5, mutating the y gene shows impacts on the target L9-F that can be positive (e.g.,m5) or
negative (e.g.,m2). As such, we define gene impact and collect the impacts over each gene mutation
history, per individual. The gene impact is described with

• mt represents the number of times there was an impact on the given target t , i.e., the fitness
of t was changed with the mutation of the gene, and
• nt represents the number of times there was no impact on the given target t , i.e., the fitness

of t is not changed with the mutation of the gene.

In addition, a gene may have internal genes, and the impacts of the internal genes also needs
to be collected. Moreover, a gene might also have additional characteristics which are employed
during mutation. For instance, regarding the Optional gene, there exists an additional property,
i.e., present, indicating whether the gene is present (i.e., whether this gene should contribute to the
phenotype of the individual). During the mutation of the gene, we can mutate either the contained
gene (when the present is True) or the property by flipping the present boolean. In this case, it
might be helpful to collect an impact regarding the present property. Table 2 presents a list of
genes which are defined with additional internal impacts. For each type of gene, we have

• Number, AnyCharacterRxGene, CharacterClassEscapeRxGene, CharacterRangeRxGene. There
is no need to collect additional impacts because they do not have internal genes and addi-
tional properties that are used in the mutation.
• QuantifierRxGene. It might produce a very large number of atoms. Collecting impacts for

such atoms might not be effective to distinguish genes. Therefore, we do not collect internal
impacts for it currently.
• Date, Time, DateTime, Enum, Object, Object, Disruptive, DisjunctionRx, DisjunctionListRx and

Regex. Impacts with respects to their internal genes are collected.
• String. A String might be specified with regular expressions. For example, in Info DTO

shown in Figure 5(a), one of its properties named t is defined with \d{4}-\d{1,2}-\d{1,2}.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:21

ALGORITHM 2: Collect and Update Impacts After Each Mutation (impactCollect)

Input : Targets T , Mutated Genes S , Original form of the Mutated Genes O , Impacts of the Mutated
Genes M

Output : Updated Impacts M

1 ET ← {}
2 foreach element t of T do

3 if isTarдetChanдed (t) then

4 ET ← ET ∪ {t }
5 foreach element д of S do

// Update д impact, for every ET ,mt+ = 1.0/|S |, for every T \ ET ,nt+ = 1.0

6 mд ← updateImpacts (1.0/|S |,ET , 1.0,T \ ET)

/* if д has internal genes, extract the mutated internal genes Sдc, their orignal

form Oдc and impacts Mдc. */

7 Oдc , Sдc ,Mдc ← extractInternalMutatedGenes (oд ,д,mд)

8 if |Sдc | > 0 then

9 mд ← impactCollect (T ,Sдc ,Oдc ,Mдc)

With the support of testability transformations [13], the String can be transferred into a
Regex and Date that can be regarded as its specializations. A String might have many (≥
0) specializations. During the mutation, we can change a different specialization, mutate
the current specialization, or mutate the value. As such, we collect additional impacts, for
employSpecialization and specializationImpacts.
• Map and Array. We collect an impact for the length that is used to decide about mutating an

element or adding/removing an element. Regarding each of the elements, we currently do
not collect impacts for them because the collection might have many elements, and impacts
among them might be not much different.
• Optional. Impacts for the contained gene and present property are collected.

In the context of hypermutation, multiple genes (i.e., S and |S | > 1) might be mutated at one
time. Given a target t , after applying a mutation on S , there exist two conditions: (1) if there is
no change on a fitness of t , then nt for all genes in S should be increased by 1; (2) if there is a
change on the fitness, then we treat all mutated genes equally by increasing their mt with 1/|S |.
During hypermutation, there might be a misleading counting for mt when impactful genes and
noimpactful genes are mixed together in S . However, the counting for nt would be correct, and an
increase of nt is greater or equal than an increase of mt , i.e., 1 ≥ 1/|S |. Therefore, by comparing
an impactful gene (дm) with a noimpactful gene (дn) with mt and nt , the impactful indicator (mt)
of дm is never less than дn , i.e., mдm

t ≥ m
дn

t , and the noimpactful indicator (nt) of дm is never
greater than дn , i.e., nдm

t ≤ n
дn

t . Therefore, it is still possible to distinguish impactful genes using
this impact collection.

Algorithm 2 defines the impact collection for the mutated genes. Line 6 presents impact counting
for each of the gene. Because there might exist internal genes, lines 7−9 deal with the collection
of additional impacts for them (see Table 2).

6.2 Adaptive Impact-Based Weight

With the gene impacts discussed in Section 6.1, we define adaptive weights based on them, which
are calculated as

wi (T) = 1.0 +
T∑

t

wi (t) × 100, (2)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:22 M. Zhang and A. Arcuri

wi (t) =
⎧⎪⎪⎨⎪⎪⎩

1.0 if nt = 0 andmt = 0
c ×mt

nt + c ×mt
otherwise

, (3)

where T is a set of targets evaluated for the mutation, wi (T) is an impact-based weight for a gene
дi ∈ G = {д1, ...,дn } for all targets T , wi (t) is an impact-based weight for дi regarding a target
t ∈ T , and c is a configurable parameter. For instance, c = 1 means that we treat nt andmt equally.
In this article, we set c 1.5 to give more emphasis tomt . Note that, when a gene is never mutated,
and so nt andmt are 0, then we prioritize mutation of such genes to collect its impact information,
and thus we set its weight to 1.

For the example shown in Figure 9, G = {x ,y, z} at the time point m5, T = {L9-F } based on the
last 5 mutations (i.e.,m0..m4), the weights forG can be calculated as:wx (T) = 1.0+ 1.5×0.0

2.0+1.5×0.0 ×100,
wy (T) = 1.0 + 1.5×1.0

0.0+1.5×1.0 × 100, and wz (T) = 1.0 + 1.5×0.0
2.0+1.5×0.0 × 100. Compared with x and z, y

has a higher weight, and so it will have more chances to be mutated. The weights can be used in
Equation (1) to calculate a mutation rate to select a subset from a set of genes.

6.3 Adaptive Gene Value Mutation

When we need to mutate an individual, we not only need to select which genes to mutate, but also
how to mutate them. Regarding gene value mutation, even if it is a structured gene, ultimately,
there would be the need to modify a value of a Number, String, or Boolean. For instance, to mutate
the Object gene z, m0 modifies a year (Integer) of a Date gene, which is just one of the fields
of z.

Based on the archived fitness evaluations, we manage to collect impacts (see Section 6.1) that
are used to guide the selection of which gene to mutate. In addition, we can employ the impact-
based strategy to mutate genes when the mutation is a decision-making problem, e.g., for Enum,
selecting a value based on its impact. However, it is unlikely that such a strategy would be viable
to use to mutate Number and String genes, due to the extremely large number of possible values
they can have. Inspired by the impact collection, in this article, we provide a basic approach to
handle Number and String mutation by deriving a possibly feasible boundary for each specific tar-
get based on its collected mutation history. Note that we do not handle Boolean mutation because
its mutation is very simple, i.e., just flipping the current value.

6.3.1 Number. The valid range of values of Number genes are often specified in the schema with
boundary values (i.e., MIN and MAX), indicating that the value should range from MIN to MAX.
In the context of test case generation, mutations for Number type genes have been implemented
in EvoMaster as modifying a current value (vc) with a delta [7] (named standard value mutation),
i.e.,

• For Integer and Long, modifying the current value with a ±2i delta (δ), where i is decided at
random within an adaptive range [0,MAXδ], and the MAXδ is decreased during the search,
e.g., from 30 to 10.
• Double and Float, modifying the current value with a ±2i ×д delta, where д is generated with

a Gaussian distribution, and i is handled similarly as for Integer and Long.

If the modified value (vm based onvc) is out of the range, then one of the two boundary values (i.e.,
either MIN or MAX) will be selected as the modified value. In this mutation, the modified value is
based only on δ and the specified range.

Inspired by the impact collection, the gene mutation history with their achieved fitness might
be used to narrow down the range of the numerical gene, i.e., an adaptive boundary (MINd and
MAXd) derived with the mutation history. Such a derived boundary can be employed by the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:23

mutation for restricting the value modification (i.e., δ ≤ max (|MAXd − vc |, |MINd − vc |) and
vm ∈ [MINd ,MAXd]), thus a value within the derived boundary would have a high probabil-
ity to be the modified value. The strategy to update the boundary with a mutation history is
represented in Algorithm 3. Suppose that, an integer gene x ranges from MIN = 0 to MAX = 122,
and its target is to satisfy a condition IF-condition (x == 111). At the beginning, considering
that range, x could have an initial sampled value like x0 = 0. Afterwards, x0 might be selected
by the mutation operator, which produces a modified value, e.g., x1 = 64. For the given target,
by comparing the fitness values (in this case, based on branch distance for integer comparisons)
achieved by x0 and x1, we might derive a boundary for the feasible solution. In this case, x1 > x0

and x1 has a better fitness than x0, i.e., Fx1=64 Fx0=0, thus a feasible solution could be located
at [x0+x1

2 = 32,MAXd = 122]. The boundary could be employed for the next mutation once x0 or
x1 is selected, e.g., modify the value from x1 to x2 = 48. Note that we track an evolution history
of an individual along with its fitness, and this history is shared among the evolved individuals.
For example, for x , its evolution history is (〈x0, Fx0〉, 〈x1, Fx1〉), when x0 is selected for applying
the next mutation, the derived boundary is still same as x1 is selected, i.e., [32, 122]. Based on the
fitness value (Fx2) of x2, the boundary could be further narrowed down. In this example, compared
with x1, x2 has a worse fitness value, i.e., Fx1=64 Fx2=48, then the boundary could be updated to
[x1+x2

2 = 56,MAXd = 122].
Regarding the target IF-condition x==111, it is static and linear, and it can be covered when x

is 111 (assuming the input x is not modified). However, in our context, the targets may be nonlinear
(e.g., x2 + 4x + 60 == 120), dynamic or dependent on other variables (e.g., x == y). The derived
boundaries are just heuristics to handle the most common cases, and so might be less useful in
more complex cases. For instance, regarding x == y, during the search, y might be modified,
leading to a different feasible solution for x. Therefore, at some point, the feasible solution for x
may be out of the current derived boundary. To handle these targets, before narrowing down the
range, we examine the applicability of the mutation with the derived boundaries for the gene by
checking whether there exist a xi � [MINd ,MAXd] (produced by the standard mutation) that has
a better fitness. If such xi exists, the derived boundary would be reset to the defined boundary
[MIN ,MAX] (see lines 6−8 in Algorithm 3). Thus, the modified value can be outside from the
narrowed boundary, and the mutation becomes equivalent with the standard mutation. In our
context, there often exist genes which are dependent with others. However, if the dependent genes
are not mutated (e.g., a period between the two mutations on y), the derived boundary (e.g., for x)
is still effective to be used by the mutation. Therefore, in our implementation, we employ recent
mutations (e.g., 10 recent mutations) to derive the boundary for a specific target.

As a further optimization, the boundary can be quickly narrowed down by using an intermediate
value of the range as the mutated value (e.g., similarly to a binary search algorithm [64]), and this
might be helpful at the beginning of the search. However, the mutation with the intermediate
value might lead to a big delta compared with the current value, and that may lead to a side effect
in the later stages when the exploitation of the search landscape would be preferable (i.e., focused
search). Therefore, we develop a strategy to control such mutation with a probability φ which is
decided based on three aspects, i.e., number of mutations on the value, recent mutation results,
and exploitation control. Note that the parameter control can be implemented in various ways. In
this implementation, we control φ with three levels, i.e., high, medium, and low (high indicates
a high demand to employ such mutation, i.e., a condition when there is a lack of mutations or
recent improvements, and low indicates a low demand to employ such mutation, i.e., a condition
when there exist enough mutation history or recent improvements). With these three levels, the
probability φ is calculated as

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:24 M. Zhang and A. Arcuri

φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dpcφ (ph ,pm) if u < 3 or r > 3 (high)

dpcφ (pm ,pl) otherwise if u ∈ [3, 5] or r > 1 (medium)

pl otherwise (low)

, (4)

whereu is the number of updates on the value for a target; r is a counter for the gene value mutation
keeping track of how often it does not lead to a fitness improvement, i.e., r is set to 0 once there
is an improvement; dpc (s, e) is a function to decrease the value from s to e linearly throughout
the search [6], where s is a value when search starts and e is a value when focused search starts;
For the experiments in this article, we set ph = 0.8, pm = 0.5, and pl = 0.1. With such parameter
control, if there exist few mutations applied on the gene or we experience ineffective mutations
multiple times, we allow a higher probability to use the intermediate value of the range. Note that,
if the intermediate value strategy is not selected (i.e., φ ≤ rand ()), then we use the standard way
to modify the value, i.e., with ±2i or ±2i × д delta.

The motivation for this equation is that the number of the mutations and their results would
help to infer the performance of recent mutation operations. We want to apply a high φ in two
cases: either a gene has just started to be mutated (e.g., u < 3), and so we want to collect info on it
(i.e., the use of the chosen boundary and its impact on the fitness), or it has been mutated often but
without any recent fitness improvement (i.e., r > 3), and so it might be worth trying a different
kind of mutation operators (e.g., a larger jump) to possibly escape from local optima. Otherwise,
we still want to apply a not too low φ (i.e., pm) when either not too many mutations (i.e., u ∈ [3, 5],
and so we still want to collect more fitness impact info) have been applied so far, or there was no
immediate improvement in its latest mutation (i.e., r > 1). In all other cases, e.g., when there has
been a recent improvement (i.e., r = 0) after at least a few mutations (i.e., u > 5, and so no major
need to collect further fitness impact info), then we want to avoid having large jumps (and so a
low pl), as those could be too disruptive.

In addition, such mutation would still need to be controlled with a consideration of the current
stages of the search. For instance, if focused search starts, there might be a need to reduce the prob-
ability (i.e., φ) of applying the mutation, to better reward the exploitation of the search landscape.
Note that, in this case, dpcφ (pm ,pl) = pl and dpcφ (ph ,pm) = pm .

The choice of having three levels (i.e., low, medium, and high), and the choices for the u and r
ranges, were based on some basic preliminary experiments during the development and design of
the techniques presented in this article. However, a proper empirical analysis would be needed to
further tune them.

In some aspects, our value mutation approach has some similarities with the Alternating Vari-

able Method (AVM) [57], which it takes as inspiration. AVM is a local search strategy, where
modifications are increased (e.g., double the added delta) each time the fitness improves, and reset
to the starting delta (e.g., ±1) otherwise. Due to the constraint of system testing (i.e., extremely
large search landscape, large number of objectives to optimize for, high cost of fitness evaluations,
and possibly a non-negligible amount of genes with no effects on the phenotype), local search
strategies might not be suitable, which led to the design of our hypermutation with history.

6.3.2 String. Integrated with testability transformations, mutating a String needs to be handled
with respects to specializations and its value. Regarding specializations, we apply collected impacts
to guide the mutation. More specifically, employSpecialization is used to decide whether to mutate
the specialization or the value. In addition, once the specialization mutation is selected, the mu-
tation can either replace the currently applied specialization or mutate the current specialization.
Moreover, the replacement of specialization can employ the impact-based solution to select one

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:25

ALGORITHM 3: Update Boundary for a Variable Regarding a Specific Target (boundaryUpdate)

Input : Default boundary (min,max), Derived boundary (dmin,dmax , t , r), Latest value l , Mutated
valuem, Is mutated better? b

Output : Updated derived boundary (dmin,dmax)

1 t ← t + 1

2 if b then

3 r ← 0

4 else

5 r ← r + 1

6 if b & (m < dmin | |m >dmax) then

7 dmin ←min

8 dmax ←max

9 else

10 if (b & m > l) | | (!b & m < l) then

11 dmin ← (m + l)/2.0

12 else

13 dmax ← (m + l)/2.0

from existing ones based on specializationImpacts. Furthermore, mutating the current specializa-

tion can be converted to the mutation of the type of specialization, e.g., Date.
Regarding value, a String value can be formalized as a sequence of chars, i.e., v = {ci |ci ∈

characters and i = 0..n} where n is the length of the value and characters is a set of available
candidates of characters. In addition, the char can be read as an integer based on its binary rep-
resentation, and so characters can be treated as an integer boundary. Thus, mutating the value
of String can be converted to Number mutation (as discussed in Section 6.3.1), i.e., either modify
the length n or modify an integer ci from the sequence. With the history, we update the bound-
ary of length and boundaries for each of character. For the value, its mutation strategy strongly
depends on the employed fitness function for String. For instance, currently in EvoMaster the
Left-Alignment distance [34] is employed as the fitness function as follows:

f (v,v∗) =
1.0

1.0 + |n − n∗ | × 65536 +
∑min (n,n∗)

i |ci − c∗i |
, (5)

that calculates the distance by comparing the length and chars at same index from the left. There-
fore, to mutate the length, we remove or append characters from the right. To mutate a char, we
employ weight-based selection to choose the index, and the weights are calculated based on the
boundary, i.e., fewer candidates, higher weights. Once the index is decided, we treat the char as an
integer with the updated boundary. Note that if a char at an index might achieve its optimal value
(i.e., an empty boundary), then we will not mutate this char. Pseudo-code of adaptively mutating
a String gene is represented in Algorithm 8 in the Appendix.

7 ADAPTIVE WEIGH-BASED HYPERMUTATION

In this section, we present our novel adaptive weigh-based hypermutation, which integrates all of
the above proposed techniques. Our novel mutation can be employed by many-objective search
algorithms, such as MIO, for white-box system test generation (e.g., for REST APIs).

Algorithm 4 presents the pseudo-code of mutating an individual (also referred to as a test) with
our hypermutation. The mutation mainly addresses three problems, i.e., selecting genes to mutate
(lines 1−2), mutating the selected genes (lines 4−6), and evaluating the impact of the mutated genes

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:26 M. Zhang and A. Arcuri

ALGORITHM 4: Pseudo-Code of Mutating an Individual with Adaptive Hypermutation

Input :Candidates Genes to Mutate G, TargetsT , Evaluated Individual I , SQL special handling SQL, A
percentage of candidates to mutate ρ, Enabling of gene weights EGW , Probability of enabling
of archive-based solution PA, Enabling of adaptive gene value mutation EAM

Output : Mutated Gene S∗

1 Z ← extractNonSqlGenes (G)

2 S ← selectGene (G, Z , T , I , EGW , PA > rand (), SQL, ρ) // refer to Algorithm (5)

3 EA← PA > rand ()

4 foreach element д of S do

5 д∗ ←mutate (д, T , I , EGW , EGW & EA,EAM & EA) // refer to Algorithm (7)

6 if PA > 0 then

7 M ← extractImpacts (G, I)

8 M∗ ← impactCollect (T , S∗, S, M) // refer to Algorithm (2)

ALGORITHM 5: Pseudo-Code of Selecting a Subset of Genes S from G to Mutate (SelectGene)

Input : Candidate Genes to Mutate G, Non-SQL Genes Z , Targets T , Evaluated Individual I , Enabling
of Gene Weight EGW , Enable of impact-based adaptive weights EAW , SQL special handling
SQL, A percentage of candidates to mutate ρ

Output : Selected Genes S

1 S ← {}
2 if ¬EGW then

3 if SQL then

4 k ← |Z |
5 else

6 k ← |G |
7 m ← 1/k

8 while |S | = 0 do

9 foreach element д of G do

10 if m > rand () then

11 S ← S ∪ {д}
12 else

13 while |S | = 0 do

14 if SQL & |Z | > 0 & |G | − |Z | > 0 then

15 S ← S ∪ SelectSubsetByWeiдht (Z ,T , I ,EAW , 2)

16 S ← S ∪ SelectSubsetByWeiдht (G \ Z ,T , I ,EAW , 2)

17 else

18 S ← S ∪ SelectSubsetByWeiдht (G,T , I ,EAW , 1)

with respects to the targets (lines 7−8). In addition, the mutation can be configured with whether
to select genes with SQL special handling SQL (Section 5.5), whether to enable weight-based hyper-
mutation to select genes to mutate EGW (Section 5), a probability of employing adaptive mutation
PA, and whether to apply adaptive gene value mutation EAM (Section 6). The adaptive solution is
controlled with the PA parameter, as lines 2−3 (PA > rand ()) shows in the algorithm.

Algorithm 5 shows the pseudo-code of selecting genes from the individual to mutate. Lines
2−11 implement the default selection with a standard mutation rate in EvoMaster, i.e., 1/k . For
the default implementation, the mutation rate is calculated only with a number of genes from rest
actions if the SQL special handling is applied (as done in [12]). Lines 13−18 implement our novel

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:27

ALGORITHM 6: Pseudo-Code of Selecting Genes to Mutate with Weight-Based Solutions (SelectSub-

SetByWeights)

Input : Candidate Genes to Select X , Targets T , Evaluated Individual I or WeightsW , Enabling of
impact-based adaptive weights EAW , Number of Set of Genes N , A percentage of candidates
to mutate ρ

Output : Selected Genes S

1 S ← {}
2 if |W | = 0 then

3 W ← {1, . . . , 1}
4 foreach element д of X do

5 if EAW then

6 Wд ← adaptiveWeiдht (д,T , I) // refer to Equation (2)

7 else

8 Wд ← дeneWeiдht (д) // refer to Table (1)

9 � ← 1/N

10 if ρ > 0 then

11 s ←max (1, ρ × |X |)
12 t ← dpct (s, �)

13 foreach element д of X do

14 m ← � × (d/|X | + (1 − d) ×Wд/
∑
W) // refer to Equation (1)

15 if m > rand () then

16 S ← S ∪ {д}

ALGORITHM 7: Pseudo-Code of Mutating a Selected Gene (mutate)

Input : A Gene to Mutate д, Targets T , Evaluated Individual I , Enabling of gene weights EGW ,
Enabling of impact-based adaptive weights EAW ,Enabling of adaptive gene mutation EAM

Output : Mutated Gene д∗

1 C ← extractInternalGenes (д)

2 if |C | = 0 then

3 if EAM then

4 д∗ ← adaptiveMutation(д) // refer to Table 3

5 else

6 д∗ ← standardMutation(д)

7 else

8 дs ← { }
9 if EWG then

10 дs ← дs ∪ selectSubSetByWeiдhts (C,T , I ,EAW , 1, 0)

11 else

12 дs ← дs ∪C
13 дc ← random(дs) // select one of дs at random

14 д∗c ←mutate (дc ,T , I ,EGW ,EAW ,EAM)

proposed weight-based selection. If the SQL special handling (Section 5.5) is enabled (line 14), the
selection is divided into two independent selections for Non-SQL genes (line 15) and SQL genes
(line 16), respectively.

The weight-based selection for the hypermutation is implemented as Algorithm 6. At lines 2−8
in the algorithm, weights can be from W , or calculated based on EAW configuration. For the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:28 M. Zhang and A. Arcuri

Table 3. Proposed Techniques for Each Type of Genes that Includes Applicable

Selection Strategies when Mutating a Structured gene, and Value Mutation

GeneType #Internal Genes
Selection Strategy
for Internal Genes

Value Mutation

NumberGene 0 - Standard, AWM
BooleanGene 0 - Standard, AWM
StringGene ≥ 0 - Standard, AWS+AWM
DateGene 3 Random, AWS -
TimeGene 3 Random, AWS -
DateTimeGene 2 Random, AWS -
EnumGene 0 - Standard, AWS
MapGene ≥ 1 Random, WS, AWS AWS for length
ArrayGene ≥ 1 Random, WS, AWS AWS for length
ObjectGene ≥ 1 Random, WS, AWS -
DisruptiveGene ×p + 1 0, 1 - -
OptionalGene 0, 1 - AWS for present
AnyCharacterRxGene 0 - -
CharacterClassEscapeRxGene 0 - -
CharacterRangeRxGene 0 - -
DisjunctionRxGene ≥ 1 Random, WS, AWS -
DisjunctionListRxGene ≥ 1 Random, WS, AWS -
QuantifierRxGene ≥ 1 Random, WS, AWS -
RegexGene 1 - -

Note that Random means to select one of the internal genes at random; WS is to select an
internal with the weights based on their types; AWS is to select an internal with the weights
based on their impacts; Standard is to apply a standard value mutation on the gene; and AWM

is to apply our adaptive value mutation on the gene. For the value mutation, AWS is also
applicable for some genes, e.g., Enum or whether to mutate a length of ArrayGene (i.e.,
remove/add elements).

calculation, the weights can be decided with either pre-defined weights based on gene types (in
Table 1) or adaptive weights based on collected impacts. An average number of genes � to mutate
is calculated at lines 9−12. � is determined with a configuration ρ which is a percentage of a
number of all mutable genes, and with a dpc for controlling exploration/exploitation (Section 5.3).
At the beginning of the search, a higher mutation rate (led by higher �) would be helpful for the
exploration of the search landscape. However, as discussed in Section 2.4, in order to cover more
targets, the algorithm should enable a focused search, i.e., focus on exploiting promising areas
(i.e., reached targets), which is achieved with a lower random sampling probability and a lower
mutation rate (i.e., � = 1). Lines 13−16 deal with the selection of genes with weight-based mutation
rate, calculated as discussed in Section 5.4.

Algorithm 7 is used to mutate the genes selected with Algorithm 5. A gene might consist of a set
of internal genes, and so weight-based selection can be applied to determine an internal gene to
mutate (at lines 8−13). Note that hypermutation is only applied on root gene selection in terms of
an individual, i.e., if a selected root gene has internal genes, we only select one of the internal genes
to be mutated. Regarding gene value mutation (lines 2−6), either adaptive or standard mutation
can be employed, as controlled by the parameter EAM .

In Table 3, we also present the applicable mutation techniques for each type of gene. For String

value mutation, its adaptive mutation implementation is presented in Algorithm 8. Note that
adaptive gene selection and adaptive gene value mutation (AWM) are controlled with the con-
figurable parameter PA. This means that other available techniques can also be selected to mutate
the gene.

Note that all of our novel techniques, presented in this article, do increase the computational
cost of the search algorithm. Collecting and analyzing the history of the mutations is not free. On
one hand, this could be a problem for unit testing, where the fitness evaluations could be relatively

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:29

Table 4. Descriptive Statistics of the Case Studies with a Number of Classes (#Classes),

Lines of Codes (LOCs), a Number of Endpoints (#Endpoints), a Number of Genes

Extracted from REST Actions, and Interactions with Database

Name #Classes LOCs #Endpoints
#Rest Genes

Root(IG = 0, #O/#IG ≥ 1)
Database

N/Y (#T, #C)
rest-ncs 9 602 6 14 (0, 0/14) N
rest-scs 13 859 11 26 (0, 0/26) N
rest-news 10 718 7 10 (1, 2/9) Y (1, 5)
catwatch 69 5,442 13 34 (2, 1/32) Y (5, 45)
feature-service 23 2,347 18 33 (0, 4/33) Y (6, 20)
proxyprint 68 7,534 74 64 (4, 14/60) Y (15, 92)
scout-api 75 7,479 49 108 (0, 19/108) Y (14, 70)

Regarding #Rest Genes, we further show the genes based on a number of its contained internal genes (#IG). For
the genes which contain more than one gene, we also report a number of gene which is Object or contains Object.
Regarding Database, a number of tables (#T) and a total number of columns (#C) are also reported.

cheap compared with such overhead. On the other hand, in system testing most of the computation
cost is in the fitness evaluation. For example, when doing an HTTP call to a REST API, not only
there is the cost of (de)serializing data sent over a TCP connection, but also for all the computation
done in the SUT (e.g., accessing databases). In our context of testing REST APIs, such overheads
introduced by our techniques are simply negligible (not even 1% compared with the cost of a fitness
evaluation, albeit this depends on the employed hardware and SUT).

8 EMPIRICAL STUDY

In this article, we have carried out an empirical study aimed at answering the following research

questions (RQs):

RQ1: How does SQL special handling affect mutation for testing RESTful web services?
RQ2: How does weight-based hypermutation perform in terms of code coverage?
RQ3: How does adaptive mutation perform in terms of code coverage?
RQ4: How does exploration/exploration control affect the adaptive hypermutation?
RQ5: How much improvement (if any) in coverage and fault detection do our novel techniques

achieve compared with existing work?

8.1 Case Studies

To evaluate the proposed approach, we conducted an empirical study with seven RESTful APIs14

that we have used in our previous work [6, 7, 12, 13, 68]. All of the case studies are Java/Kotlin
open-source projects that can be compiled to JVM bytecode.

Table 4 shows descriptive statistics of these case studies, including their number of Java/Kotlin
class files (#Class), LOCs, #Endpoints, and whether they interact with a database (Y/N for #Data-
base). In addition, to study the proposed mutation approach for the genes, we also report the
number of mutable root genes that exist for the endpoints. Moreover, the number of root genes
are categorized into two groups in terms of the number of their internal genes, i.e., none (#IG = 0),
and not less than one (#IG ≥ 1). For #IG ≥ 1, we also report the number of object (#O) genes.

Regarding the case studies, three of them are artificial, i.e., REST Numerical Case Study (rest-

ncs), REST String Case Study (rest-scs), and rest-news. rest-ncs and rest-scs are based on code

14https://github.com/EMResearch/EMB.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://github.com/EMResearch/EMB

2:30 M. Zhang and A. Arcuri

Table 5. Description of the Experiment Settings

EGW SQL d ρ PA EAM Pr FS Count
E1 F {F ,T } - - - - 0.5 0.5 2
E2 T {F ,T } {0.2, 0.5, 0.8} 0.0 0.0 F 0.5 0.5 6
E3 T E2 {0.2, 0.5, 0.8} {0.2, 0.5} 0.0 F 0.5 0.5 6
E4 T E2 E3 E2 ∨ E3 {0.5, 0.8} {F ,T } 0.5 0.5 8
E5 T E2 E3 E4 E3 ⊕ E4 E4 {0.2, 0.5} {0.5, 0.8} 4
E6 F E1 - - - - {0.2, 0.5} {0.5, 0.8} 4

Table 6. Description of Experiment Tasks with Respects to RQs, along with Corresponding

Techniques, Settings, and Employed Case Studies

RQs Tasks Techniques Settings Case Studies

RQ1
study an effect of SQL special handling for mutation
config. parameter: SQL

Base E1 5
(Database = Y)MIO-WH E2

RQ2
study performance of weight-based hypermutation
config. parameter: d and ρ

MIO-WH E3

7
RQ3

study performance of adaptive weight-based hypermuation
config. parameter: PA and EAM

MIO-WH∗ E4

RQ4
study effects of different settings on
exploration/exploitation control for mutation
config. parameter: Pr and FS

Base E5

MIO-WH∗ E6

RQ5 compare proposed technique with baseline technique MIO-WH∗ vs. Base Best config.

The detailed configuration for the settings can be found in Table 5.

examples previously introduced for experiments on solving numerical [9] and string [2] problems
in the context of unit testing. rest-news was developed for educational purposes on enterprise
development in a university course of one of the authors.15 The remaining four case studies are
real RESTful web service projects, i.e., features-service, proxyprint, scout-api, and catwatch. These
APIs were selected by analyzing projects on the widely used open-source repository GitHub. In
previous work, we searched for projects that included OpenAPI schemas, and that were possible
to compile, build, and run without problems (e.g., due to missing dependencies, compilation errors,
or requiring third-party services/tools that no longer exist). This was a time-consuming manual
effort, as GitHub does not provide an easy way to list all projects that are RESTful APIs. Every
time we found a new suitable API, we added it to our selection of APIs for experimentation.

8.2 Experiment Design

To evaluate the proposed techniques and answer the five RQs, we conducted an empirical study
as shown in Table 5 (for experiment settings) and Table 6 (for experiment design).

In the study, we employed our novel weight-based hypermutation (WH ∗) on MIO (named MIO-
WH ∗), and further compared the MIO-WH ∗ with default MIO (named Base) in terms of three
metrics, i.e., a number of covered targets (#Target), line coverage (%Lines), and branch cov-

erage (%Branch). Table 6 presents the experiment tasks with related configurable parameters,
experiment settings and case studies for each of the RQs. The configurable parameters are ex-
plained in detail as follows:

• EGW represents whether to enable the weight-based mutation rate that controls the prereq-
uisite for weight-based mutation;
• SQL represents whether to enable SQL special handling when selecting genes to mutate;

15https://github.com/arcuri82/testing_security_development_enterprise_systems.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://github.com/arcuri82/testing_security_development_enterprise_systems

Adaptive Hypermutation for Search-Based System Test Generation 2:31

• d ∈ [0, 1] is a tunable value (see Equation (1)) that can be used to control a ratio of weights
for the mutation rate calculation, e.g., d = 1 means that weights are not used to calculate
the mutation rate;
• ρ ∈ [0, 1] is a parameter to configure hypermutation, e.g., ρ = 0 implies the mutation of only

one gene on average, whereas ρ = 0.5 would lead to mutate 50% of genes in an individual
on average;
• PA is the probability to control the application of adaptive mutation;
• EAM represents whether to mutate gene value adaptively, and enabled adaptive mutation

(i.e., PA > 0) is its prerequisite;
• Pr and FS are used to control the tradeoff between exploration and exploitation in MIO [6].

In the context of RESTful web services, we propose SQL special handling that distinguishes
SQL genes from all mutable genes when selecting genes to mutate. To study the effects of apply-
ing such handling, we conducted an experiment for SQL with default MIO and the newly proposed
technique (RQ1 in Table 6). In addition, regarding proposed techniques, we defined WH and WH ∗

by whether adaptive strategies are enabled/controlled by PA. To investigate the performance of
different configurations of WH, we study the tuning of d regarding mutation rate and ρ regarding
hypermutation. Moreover, we performed experiments with different settings of PA and EAM in
order to identify the best way to involve adaptive strategies in gene mutation. Furthermore, bud-
gets assigned to exploration and exploitation of the search landscape might have an impact on
adaptive mutation since it requires to collect impacts with mutations. Therefore, we performed
further experiments with different settings on exploration and exploitation control in MIO (RQ4).
The idea is that, with hypermutation, it might be beneficial to decrease the probability of random
sampling (exploration), and also delay the start of focus search (exploitation).

Last, but not the least, we compared our new technique with the selected baseline technique
MIO (RQ5), which is the current default setting in EvoMaster. We do not compare with other
tools, because, as of the current moment, to the best of our knowledge EvoMaster is the only tool
that can do white-box testing of REST APIs, and that can handle SQL data insertions directly from
the tests.

Regarding the experiment settings, for EGW = T ∧ SQL ∈ {F ,T } ∧ d ∈ {0.2, 0.5, 0.8} ∧ ρ ∈
{0, 0.2, 0.5} ∧ PA ∈ {0, 0.5, 0.8} ∧ EAM ∈ {F ,T } ∧ Pr ∈ {0.2, 0.5} ∧ FS ∈ {0.5, 0.8} there would be
1× 2× 3× 3× 3× 2× 2× 2 = 432 possible configurations. In addition, due to the stochastic nature
of the search algorithms, each of the configurations should be repeated several times, and 30 is
a typically recommended number of repetitions [10], which we used in this study. So, assuming
that we use a search budget of 100,000 HTTP calls on each of the seven case studies, it would
require running 432 × 30 × 100k × 7 = 9072m HTTP calls. However, it would not be viable to
conduct such experiments, even considering the cluster of computers we have access to for exper-
imentation. Therefore, to reduce the number of configurations to experiment with, we defined the
experiment settings as shown in Table 5. Each of the settings can be employed to study the best
configuration, which can then be used in the following experiments. For example, the choice of
whether to activate SQL handling (T) or not (F) in E3 is based on the setting that gives best results
in the previous set of experiments E2. Similarly, the choice of d in E4 is based on the best one out
of the three values experimented in the previous E3, and so on, as shown in Table 5. With such
design, there exist 30 configurations in total, which is a more manageable number, i.e., repeat each
of the configurations 30 times with 100k HTTP calls on each of the used case studies (for a total of
630 million HTTP calls).

Due to the very high cost of running experiments on system test generation, there is a limit
on the number of configuration settings we could experiment with. The choice of values for the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:32 M. Zhang and A. Arcuri

Table 7. Average #Targets, %Lines, and %Branches and Their Ranks

with SQL ∈ {F ,T } in E1 Experiment Setting

SUT
#Targets %Lines %Branches

F T F T F T
rest-news 344.50(1) 342.14(2) 53.51%(1) 52.89%(2) 26.31%(2) 26.37%(1)

catwatch 1178.20(2) 1182.92(1) 31.55%(2) 31.67%(1) 17.24%(2) 17.54%(1)

features-service 486.83(1) 451.07(2) 42.15%(1) 38.84%(2) 13.47%(1) 11.38%(2)
proxyprint 1545.47(2) 1909.67(1) 21.73%(2) 26.39%(1) 6.92%(2) 10.59%(1)

scout-api 1819.57(2) 1838.83(1) 38.45%(2) 38.79%(1) 20.36%(2) 20.40%(1)

Average rank 1.60 1.40 1.60 1.40 1.80 1.20

Friedmantest χ 2 = 0.2, p-value = 0.655 χ 2 = 0.2, p-value = 0.655 χ 2 = 1.8, p-value = 0.180
Rank with the value 1 represents the highest achievement, and values in bold are the highest in the case study. In
addition, we also report the χ 2 and p-value of the Friedman test for variance analysis by the ranks. Moreover, we
compared SQL settings (T vs. F) using Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney effect
sizes (Â12), and results in details are reported in Table 16. In this table, statistical significant comparison results
(p-values < 0.05) are denoted with and . indicates that SQL = T is statistically better than SQL = F

(Â12 > 0.5), and indicates that SQL = F is statistically better than SQL = T (Â12 < 0.5).

different parameters was based on our experience in this kind research, where we tried to have a
balance between low (i.e., 0.2), medium (i.e., 0.5), and high (i.e., 0.8) values, to give the readers a
high-level overview of how those values may impact the search effectiveness. But other options
could have been possible (e.g., 0.1 for representing low values). At the end, any given choice is
bound to be rather arbitrary. Fine tuning of those parameters might lead to better results in our
experiments, but there is always the possible issue of overfitting to the used case study [11].

8.3 Experiment Results

8.3.1 Results for RQ1. To answer RQ1, we compared the performance of two configurations
(SQL = F/T) of MIO and MIO-WH on five case studies which interact with a database.

Regarding MIO with E1 setting, Table 7 reports effectiveness of the two configurations with
#Targets, %Lines, and %Branches, and comparisons between the two configurations are shown in
Table 7. Based on the results, for the artificial case study rest-news, the configuration SQL = F is
slightly better than SQL = T in terms of #Targets and %Lines, but not for %Branches. For the other
SUTs, in catwatch and scout-api, we observed better performance on SQL = T than SQL = F , i.e.,
positive relative improvement, but the difference is not significant p > 0.05. In proxyprint, there
exists a significantly improvement with SQL = T compared with SQL = F (i.e., high Âxy = 0.96,
high relative = +23.57% and low p < 0.001), but the results for feature-service are the opposite.

Regarding MIO-WH with E2 setting, we conducted the same analysis as for MIO, and results are
shown in Tables 8 and 17. With these results, we found that, except for catwatch, the configuration
SQL = T is overall better than SQL = F in the other four case studies, especially for proxyprint

case study.
The main idea for proposing special SQL handling was to avoid a low mutation rate for HTTP

genes when the number of SQL genes is large. Based on the obtained results, with SQL = T
configuration we found that both Base and MIO-WH achieved a strong improvement on prox-

yprint. As can be seen in Table 4, proxyprint has the most endpoints to be tested that interact
with a database, which has the most tables and columns. Thus, for proxyprint, there might exist a
relative high probability of including a large number of SQL genes in a test. This might be a rea-
son for the strong improvement with the enabled special SQL handling. However, with Base, the
SQL handling shows its limitation in feature-service. In Base, the handling is implemented by only

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:33

Table 8. Average #Targets, %Lines, and %Branches and Their Ranks

with d ∈ {0.2, 0.5, 0.8} and SQL ∈ {F ,T } in E2 Experiment Setting

SUT d
#Targets %Lines %Branches

F T F T F T

rest-news

0.2 341.60(5) 342.40(3) 53.52%(4) 53.61%(3) 26.02%(5) 26.14%(4)
0.5 343.70(2) 342.04(4) 53.74%(2) 53.49%(5) 26.22%(3) 26.32%(2)
0.8 340.18(6) 344.07(1) 53.34%(6) 53.75%(1) 26.00%(6) 26.42%(1)

catwatch

0.2 1181.29(1) 1160.44(6) 31.50%(2) 31.04%(6) 17.37%(2) 17.00%(5)
0.5 1180.21(2) 1164.00(4) 31.55%(1) 31.08%(5) 17.39%(1) 16.98%(6)
0.8 1177.57(3) 1163.03(5) 31.47%(3) 31.12%(4) 17.34%(3) 17.06%(4)

features-service

0.2 478.18(5) 498.66(1) 41.40%(5) 43.09%(1) 13.11%(5) 13.91%(1)

0.5 477.93(6) 480.96(4) 41.33%(6) 41.52%(4) 13.01%(6) 13.23%(4)
0.8 487.27(2) 486.00(3) 42.10%(2) 42.03%(3) 13.31%(3) 13.59%(2)

proxyprint

0.2 1626.20(5) 1874.79(2) 22.76%(4) 25.97%(2) 7.63%(5) 10.52%(2)
0.5 1629.83(4) 1885.96(1) 22.76%(5) 26.13%(1) 7.89%(4) 10.53%(1)

0.8 1544.40(6) 1825.61(3) 21.65%(6) 25.29%(3) 6.75%(6) 9.61%(3)

scout-api

0.2 1800.90(6) 1811.50(5) 37.96%(6) 38.12%(5) 20.30%(6) 20.47%(3)
0.5 1823.30(2) 1819.13(3) 38.36%(2) 38.29%(3) 20.33%(5) 20.54%(2)
0.8 1815.03(4) 1833.37(1) 38.18%(4) 38.67%(1) 20.41%(4) 20.77%(1)

Average rank

0.2 3.86 3.14 4.00 3.43 4.29 3.14
0.5 3.00 3.00 3.00 3.29 3.14 2.57

0.8 4.57 3.43 4.29 3.00 4.71 3.14
Friedmantest χ 2 = 3.91, p-value = 0.562 χ 2 = 2.91, p-value = 0.714 χ 2 = 6.84, p-value = 0.233

Rank with the value 1 represents the highest achievement, and values in bold are the highest in the case study. In
addition, we also report the χ 2 and p-value of the Friedman test for variance analysis by the ranks. Moreover, we
compared SQL settings (T vs. F) using Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney effect
sizes (Â12), and results in details are reported in Table 17. In this table, statistical significant comparison results
(p-values < 0.05) are denoted with and . indicates that SQL = T is statistically better than SQL = F (Â12 > 0.5),
and indicates that SQL = F is statistically better than SQL = T (Â12 < 0.5).

employing HTTP genes to calculate a mutation rate that results in a higher exploration and limits
the performance of focused search. Thus, such handling might underperform on the case study
which requires more exploitation such as feature-service, which has the second lowest number of
endpoints, second lowest number of SQL tables and columns. Besides, since MIO-WH controls the
mutation rate when focused search starts (recall Section 5.5), the limitation on feature-service is not
shown in MIO-WH. Regarding MIO-WH, the special SQL handling shows a significant limitation
on catwatch with d = 0.5, but the relative decrease in performance of target coverage is small,
i.e., −1.37% (see Table 17 in Appendix). As shown in Table 4, catwatch has the lowest number
of tables and second lowest number of columns, which might be a possible reason for this small
underperformance.

Based on these overall results, we can conclude that:

RQ1: Our SQL special handling is effective overall in improving mutation for testing RESTful web

services.

8.3.2 Results for RQ2. RQ2 is used to study the performance of weight-based hypermutation
(MIO-WH), which is related to the tunable d and ρ. Table 9 presents the overall performance in
terms of average #Targets, %Lines, and %Branches, with their ranks. Given that table, we can see
that test cases produced by MIO-WH are capable of achieving up to 87.80% line coverage and

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:34 M. Zhang and A. Arcuri

Table 9. With SQL = T , Average #Targets, %Lines, and %Branches and Their Ranks

with d ∈ {0.2, 0.5, 0.8} and ρ ∈ {0.2, 0.5} in E3 Experiment Setting

SUT d
#Targets %Lines %Branches

ρ = 0.2 ρ = 0.5 ρ = 0.2 ρ = 0.5 ρ = 0.2 ρ = 0.5

rest-ncs

0.2 619.73(4) 622.57(1) 87.40%(4) 87.70%(2) 65.23%(5) 65.72%(1)

0.5 619.73(4) 622.50(2) 87.39%(6) 87.69%(3) 65.23%(5) 65.70%(2)
0.8 619.70(6) 622.50(2) 87.40%(4) 87.73%(1) 65.23%(5) 65.69%(3)

rest-scs

0.2 790.87(4) 828.17(2) 76.02%(4) 79.11%(2) 46.00%(4) 48.10%(2)
0.5 780.27(6) 826.73(3) 75.25%(6) 78.96%(3) 45.08%(6) 47.77%(3)
0.8 781.30(5) 830.80(1) 75.34%(5) 79.40%(1) 45.19%(5) 48.36%(1)

rest-news

0.2 345.10(1) 334.63(6) 53.86%(1) 51.37%(6) 26.50%(2) 25.92%(6)
0.5 338.15(4) 335.37(5) 51.67%(4) 51.46%(5) 26.63%(1) 26.02%(5)
0.8 344.10(2) 339.17(3) 53.75%(2) 53.01%(3) 26.37%(3) 26.05%(4)

catwatch

0.2 1,193.71(2) 1,161.07(6) 31.08%(2) 30.30%(6) 16.93%(3) 16.93%(4)
0.5 1,167.75(3) 1,163.57(4) 30.40%(3) 30.37%(4) 16.79%(6) 16.98%(2)
0.8 1,260.50(1) 1,162.06(5) 32.64%(1) 30.36%(5) 17.37%(1) 16.89%(5)

features-service

0.2 497.52(4) 499.95(3) 43.07%(4) 43.20%(3) 14.11%(4) 14.45%(3)
0.5 484.77(6) 503.82(2) 41.85%(6) 43.62%(2) 13.39%(6) 14.75%(2)
0.8 505.83(1) 490.68(5) 43.79%(1) 42.32%(5) 14.89%(1) 13.94%(5)

proxyprint

0.2 1,849.20(6) 1,854.15(5) 25.61%(6) 25.66%(5) 9.94%(4) 9.78%(6)
0.5 1,860.50(4) 1,882.65(2) 25.75%(4) 26.06%(3) 9.92%(5) 10.12%(3)
0.8 1,882.33(3) 1,951.37(1) 26.06%(2) 26.95%(1) 10.45%(2) 11.29%(1)

scout-api

0.2 1,794.13(6) 1,810.35(5) 37.81%(6) 38.11%(5) 20.45%(3) 20.42%(4)
0.5 1,815.77(4) 1,828.70(2) 38.26%(4) 38.44%(2) 20.29%(6) 20.59%(2)
0.8 1,824.30(3) 1,858.17(1) 38.38%(3) 39.02%(1) 20.32%(5) 20.65%(1)

Average rank

0.2 3.93 4.00 3.93 4.14 3.57 3.71
0.5 4.50 2.93 4.71 3.14 5.00 2.71

0.8 3.00 2.64 2.64 2.43 3.14 2.86
Friedmantest χ 2 = 5.53, p-value = 0.354 χ 2 = 8.2, p-value = 0.146 χ 2 = 7.03, p-value = 0.218

In each of the case studies, Rank with the value 1 represents the highest achievement which is also in bold. In addition,
we also report the χ 2 and p-value of the Friedman test for variance analysis by the ranks. Moreover, we compared ρ

settings (0.5 vs. 0.2) using Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney effect sizes (Â12), and
results in details are reported in Table 19. In this table, statistical significant comparison results (p-values < 0.05) are
denoted with and . indicates that ρ = 0.5 is statistically better than ρ = 0.2 (Â12 > 0.5), and indicates that
ρ = 0.2 is statistically better than ρ = 0.5 (Â12 < 0.5).

65.87% branch coverage for the artificial SUTs, and up to 43.79% line coverage and 20.57% branch
coverage for other SUTs.

Regarding the 6 configurations (3 × 2), based on results of Friedman test, there does not exist a
significant best configuration on all case studies. We also applied pair comparison ford and ρ using
Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney effect sizes (Â12). The detailed
comparison results ford and ρ are reported in Tables 18 and 19, respectively. Regarding the tunable
d , based on the results in Table 18, d = 0.8 is either statistically better than or equal to d = 0.2 and
d = 0.5. Thus, we can choose 0.8 for d . Regarding the parameter ρ for the hypermutation, based on
the results shown in Tables 9 and 19, we can see that an higher hypermutation setting (ρ = 0.5) is
more effective than lower one (ρ = 0.2) on rest-ncs, rest-scs, feature-service, proxyprint, and scout-

api, while the lower hypermutation setting (ρ = 0.2) is more effective on rest-news and catwatch.
Therefore, we select 0.5 for ρ, because ρ = 0.5 is better on more SUTs than ρ = 0.2. In addition, to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:35

Table 10. Pair Comparison on whether to Enable Hypermutation with #Target, %Lines, and %Branches

using Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Â12)

SUT
T (ρ=0.5) #Targets %Lines %Branches
F (ρ=0.0) Â12 p-value relative Â12 p-value relative Â12 p-value relative

rest-ncs T vs. F 0.56 0.421 +0.12% 0.43 0.321 +0.05% 0.58 0.314 +0.40%
rest-scs T vs. F 0.99 <0.001 +14.64% 1.00 <0.001 +12.68% 0.95 <0.001 +15.52%

rest-news T vs. F 0.38 0.097 −1.42% 0.38 0.087 −1.37% 0.43 0.330 −1.40%
catwatch T vs. F 0.64 0.069 −0.08% 0.64 0.054 +0.01% 0.61 0.156 +1.03%
features-service T vs. F 0.56 0.396 +0.96% 0.52 0.726 +0.69% 0.53 0.707 +2.60%
proxyprint T vs. F 0.76 <0.001 +6.89% 0.76 <0.001 +6.56% 0.72 0.003 +17.48%

scout-api T vs. F 0.67 0.016 +1.35% 0.65 0.038 +0.91% 0.54 0.564 −0.57%
T indicates that the hypermutation is enabled with ρ = 0.5, while F indicates that the hypermutation is not enabled
with ρ = 0.0. Values in bold indicate that the setting with T is significantly better than the setting with F (i.e., p-value
< 0.05 and Â12 > 0.5).

further investigate the effectiveness of the hypermutation, we compare the selected hypermutation
setting ρ = 0.5 with the disabled hypermutation setting ρ = 0.0. The results are reported in
Table 10. With the results for all of the SUTs, the mutation with the enabled hypermutation shows
a statistically better or equivalent performance in all coverage metrics.

Thus, we can conclude that:

RQ2: MIO-WH is capable of automatically generating tests that cover up to 43.79% of lines in real

REST APIs and 87.80% of lines in the artificial REST APIs. Our recommended configuration for

weight-based mutation is with d = 0.8 and ρ = 0.5.

8.3.3 Results for RQ3. RQ3 is used to investigate the performance of the proposed adaptive
mutation, which can be configured with PA and EAM . Table 11 reports the overall performance in
terms of average #Targets, %Lines, and %Branches, with their ranks. Considering that table, test
cases produced by MIO-WH are capable of achieving up to 87.72% line coverage and 66.64% branch
coverage for the artificial SUTs, and up to 42.88% line coverage and 21.41% branch coverage for
other SUTs.

Regarding different configurations, in terms of %Branches, there exist a best configuration
PA = 0.5 and EAM = T based on significant p-value (i.e., < 0.05) with Friedman test and the
best average rank over all case studies (i.e., 1.57). In addition, we report pair comparisons for the
related parameters, i.e., PA and EAM in Tables 20 and 21. Regarding a probability of enabling
adaptive strategies PA, with results in Table 20, we select PA = 0.5 because PA = 0.5 is equal or
better in performance than PA = 0.8. Regarding EAM used to control whether to enable adaptive
gene mutation (recall Section 6.3), with the results in Table 21, we can observe that adaptive gene
mutation achieved a significant better coverage in four out of the seven SUTs, i.e., rest-ncs, cat-

watch, proxyprint, and scout-api. In rest-scs and feature-services, significant differences do not exist
between the two settings. In rest-news, adaptive strategies shows a decrease in performance in
target coverage and line coverage with PA = 0.8. However, PA = 08 is not our selected configu-
ration for PA. In addition, to study the effectiveness of adaptive handling, we compared MIO-WH
and MIO-WH∗ based on the test cases produced by their best configurations for the coverage met-
rics. Comparison results are shown in Table 12. Based on those results, MIO-WH∗ shows a clear
improvement on rest-ncs, catwatch, proxyprint, and scout-api, based on lowp-values and high effect
sizes in the coverage metrics. For the remaining SUTs, there does not exist significant difference
in their performance. Therefore, we can conclude that:

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:36 M. Zhang and A. Arcuri

Table 11. Average #Targets, %Lines, and %Branches and Their Ranks with PA ∈ {0.5, 0.8}
and EAM ∈ {F ,T } in E4 Experiment Setting

SUT PA
#Targets %Lines %Branches

F T F T F T

rest-ncs
0.5 621.83(4) 627.55(1) 87.65%(4) 87.70%(2) 65.55%(4) 66.64%(1)

0.8 622.29(3) 627.27(2) 87.72%(1) 87.69%(3) 65.59%(3) 66.54%(2)

rest-scs
0.5 824.47(4) 828.21(3) 78.83%(4) 79.19%(2) 47.32%(4) 47.67%(2)
0.8 829.53(1) 829.17(2) 79.10%(3) 79.79%(1) 48.12%(1) 47.45%(3)

rest-news
0.5 337.73(3) 341.66(2) 53.19%(2) 53.11%(3) 25.56%(4) 26.48%(2)
0.8 346.31(1) 333.15(4) 53.80%(1) 52.25%(4) 26.66%(1) 25.86%(3)

catwatch
0.5 1,184.00(3) 1,217.03(1) 30.91%(3) 31.73%(1) 17.08%(4) 17.44%(1)

0.8 1,182.86(4) 1,203.72(2) 30.87%(4) 31.34%(2) 17.21%(3) 17.41%(2)

features-service
0.5 495.11(3) 495.60(2) 42.78%(3) 42.81%(2) 14.05%(2) 14.21%(1)

0.8 497.74(1) 484.83(4) 42.88%(1) 41.79%(4) 14.04%(3) 13.56%(4)

proxyprint
0.5 1,949.65(3) 2,079.35(2) 26.88%(3) 28.56%(2) 11.17%(3) 12.16%(2)
0.8 1,914.53(4) 2,089.82(1) 26.45%(4) 28.67%(1) 10.48%(4) 12.17%(1)

scout-api
0.5 1,854.54(4) 1,949.51(1) 39.00%(4) 40.68%(1) 20.53%(4) 21.28%(2)
0.8 1,864.76(3) 1,940.95(2) 39.23%(3) 40.04%(2) 20.85%(3) 21.41%(1)

Average rank
0.5 3.43 1.71 3.29 1.86 3.57 1.57

0.8 2.43 2.43 2.43 2.43 2.57 2.29
Friedmantest χ 2 = 6.26, p-value = 0.100 χ 2 = 4.37, p-value = 0.224 χ 2 = 8.66, p-value = 0.034

In the case study, Rank with the value 1 represents the highest achievement with different configuration which is also in
bold. In addition, we also report the χ 2 and p-value of the Friedman test for variance analysis by the ranks. Moreover,
we compared EAM settings (T vs. F) using Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney effect
sizes (Â12), and results in details are reported in Table 21. In this table, statistical significant comparison results
(p-values < 0.05) are denoted with and . indicates that EAM = T is statistically better than EAM = F (Â12 > 0.5),
and indicates that EAM = F is statistically better than EAM = T (Â12 < 0.5).

Table 12. Pair Comparisons on whether to Employ Adaptive Handling with #Target, %Lines, and

%Branches using Mann–Whitney–Wilcoxon U-Tests (p-value) and Vargha–Delaney Effect Sizes (Â12)

SUT
#Targets %Lines %Branches

Â12 p-value relative Â12 p-value relative Â12 p-value relative
rest-ncs MIO-WH* vs. MIO-WH 0.85 <0.001 +0.81% 0.54 0.432 −0.03% 0.78 <0.001 +1.44%
rest-scs MIO-WH* vs. MIO-WH 0.46 0.481 −0.31% 0.46 0.490 −0.27% 0.42 0.198 −1.42%
rest-news MIO-WH* vs. MIO-WH 0.55 0.332 +0.73% 0.53 0.589 +0.19% 0.59 0.125 +1.65%
catwatch MIO-WH* vs. MIO-WH 0.81 <0.001 +4.73% 0.81 <0.001 +4.54% 0.74 <0.001 +3.30%
features-service MIO-WH* vs. MIO-WH 0.52 0.676 +1.00% 0.54 0.420 +1.17% 0.53 0.538 +1.90%
proxyprint MIO-WH* vs. MIO-WH 0.91 <0.001 +6.56% 0.91 <0.001 +5.99% 0.87 <0.001 +7.73%
scout-api MIO-WH* vs. MIO-WH 0.92 <0.001 +4.92% 0.90 <0.001 +4.25% 0.74 <0.001 +3.06%

MIO-WH∗ indicates that the adaptive handling is employed with its recommended configuration, while MIO-WH
indicates that the adaptive handling is not employed with its recommended configuration (see RQ2). Values in bold
indicate that MIO-WH* is significantly better than MIO-WH (i.e., p-value < 0.05 and Â12 > 0.5).

RQ3: MIO-WH∗ is capable of automatically generating tests that cover up to 42.88% of lines in

real-world REST APIs and 87.72% of lines in artificial REST APIs. Our recommended configuration

for weight-based mutation with adaptive handling (i.e., MIO-WH∗) is with PA = 0.5 and EAM = T .

Besides, adaptive handling helps the mutation operator to achieve a better performance in coverage.

8.3.4 Results for RQ4. RQ4 is used to study the effects of exploration/exploitation control on
the mutation operator, with the Base and MIO-WH∗ configurations. With the two techniques,

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:37

Table 13. Applying Base Technique, Average #Targets, %Lines, and %Branches and Their Ranks with

Pr and ∈ {0.2, 0.5} and FS ∈ {0.5, 0.8} in E5 Experiment Setting

SUT FS
#Targets %Lines %Branches

0.2 0.5 0.2 0.5 0.2 0.5

rest-ncs
0.5 623.14(2) 623.38(1) 87.79%(1) 87.74%(2) 65.55%(2) 65.73%(1)

0.8 622.03(4) 622.17(3) 87.68%(4) 87.69%(3) 65.45%(4) 65.55%(3)

rest-scs
0.5 735.37(4) 751.28(1) 71.15%(4) 72.40%(1) 42.37%(4) 44.39%(1)

0.8 745.33(2) 744.43(3) 72.24%(2) 71.85%(3) 42.94%(3) 43.67%(2)

rest-news
0.5 343.44(1) 341.83(2) 53.72%(1) 53.04%(2) 26.16%(3) 26.21%(2)
0.8 335.29(4) 340.75(3) 51.47%(4) 52.39%(3) 26.06%(4) 26.63%(1)

catwatch
0.5 1,151.80(4) 1,181.76(1) 30.02%(4) 30.86%(1) 16.68%(4) 17.19%(1)

0.8 1,159.27(3) 1,172.13(2) 30.25%(3) 30.61%(2) 16.87%(3) 16.95%(2)

features-service
0.5 464.00(2) 456.15(4) 40.02%(2) 39.28%(4) 12.01%(2) 11.61%(4)
0.8 461.83(3) 464.80(1) 39.92%(3) 40.14%(1) 11.98%(3) 12.12%(1)

proxyprint
0.5 1,953.70(1) 1,898.58(2) 27.01%(1) 26.24%(2) 11.21%(1) 10.35%(3)
0.8 1,882.86(4) 1,895.36(3) 26.12%(4) 26.15%(3) 10.37%(2) 10.26%(4)

scout-api
0.5 1,789.67(3) 1,839.95(2) 37.86%(3) 38.75%(2) 19.52%(4) 20.52%(2)
0.8 1,785.87(4) 1,853.50(1) 37.63%(4) 38.90%(1) 19.73%(3) 20.58%(1)

Average rank
0.5 2.43 1.86 2.29 2.00 2.86 2.00

0.8 3.43 2.29 3.43 2.29 3.14 2.00

Friedmantest χ 2 = 5.57, p-value = 0.134 χ 2 = 5.06, p-value = 0.168 χ 2 = 4.37, p-value = 0.224
Rank 1 represents the highest achieved coverage, and values in bold are the highest in the case study.

exploration/exploitation is controlled by the probability of applying random sampling Pr and the
percentage of budget used to start a focused search FS .

Regarding Base, Table 13 shows the average #Target, %Lines, and %Branches produced by all
settings (Pr ∈ {0.2, 0.5} combined with FS∈ {0.5, 0.8}) for each of the SUTs. The results show
that the best configuration is Pr = 0.5 with FS = 0.5 based on attainment of the best ranks in all
coverage metrics, but the variance among the case studies is not significant with the Friedman
test. In addition, as seen in the pair comparison results for Pr and FS, we found that, (1) for Pr ,
compared with Pr = 0.2, Pr = 0.5 shows an equal or better performance in all coverage metrics (see
Table 22), and (2) for Fs , compared with FS = 0.8, FS = 0.5 shows an equal or better performance in
all coverage metrics. Therefore, for Base, a balanced exploration/exploitation setting (i.e., Pr = 0.5
and FS = 0.5) obtains consistently equal or better performance in all coverage metrics for all SUTs.

Regarding MIO-WH∗, Table 14 shows the average #Target, %Lines, and %Branches produced
by all settings (Pr ∈ {0.2, 0.5} combined with FS∈ {0.5, 0.8}) for each of the case studies. Based
on the average ranks, Pr = 0.5 with FS = 0.5 is the best for all of the three coverage metrics,
but the variance among the case studies is not significant based on Friedman test. In addition, to
study Pr and FS on the case studies, we further report the pair comparison results among their
different configurations in Tables 25 and 24. Based on these comparison results, we found that
only for catwatch, the decreased probability of random sampling (Pr = 0.2) achieved a better
performance. Regarding FS, with Pr = 0.5, the delayed focused search setting FS = 0.8 shows a
clear limited performance on feature-service and proxyprint case studies, and there does exist any
positive upside. Therefore, based on the overall results, we would recommend that:

RQ4: With Base and MIO-WH∗, a balanced exploration/exploitation setting (Pr = 0.5 and FS = 0.5)

suits most of case studies for maximizing the coverage metrics.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:38 M. Zhang and A. Arcuri

Table 14. Applying MIO-WH∗ Technique, Average #Targets, %Lines, and %Branches and Their Ranks with

Pr ∈ {0.2, 0.5} and FS ∈ {0.5, 0.8} in E6 Experiment Setting

SUT FS
#Targets %Lines %Branches

0.2 0.5 0.2 0.5 0.2 0.5

rest-ncs
0.5 626.57(4) 627.42(3) 87.62%(4) 87.67%(3) 66.46%(4) 66.64%(3)
0.8 628.46(1) 627.90(2) 87.86%(1) 87.68%(2) 66.67%(2) 66.77%(1)

rest-scs
0.5 830.76(2) 834.86(1) 79.39%(2) 79.45%(1) 47.74%(3) 48.59%(1)

0.8 826.17(3) 826.17(4) 79.16%(3) 78.96%(4) 47.30%(4) 47.74%(2)

catwatch
0.5 1,247.76(1) 1,197.67(3) 32.55%(1) 31.30%(3) 17.51%(2) 17.38%(3)
0.8 1,231.83(2) 1,194.79(4) 32.11%(2) 31.06%(4) 17.63%(1) 17.26%(4)

features-service
0.5 508.03(1) 505.60(2) 43.84%(1) 43.77%(2) 14.79%(2) 15.08%(1)

0.8 480.62(4) 488.07(3) 41.48%(4) 42.15%(3) 13.38%(4) 13.56%(3)

proxyprint
0.5 2,071.67(2) 2,117.30(1) 28.47%(2) 29.02%(1) 12.20%(2) 12.62%(1)

0.8 2,054.53(4) 2,056.20(3) 28.25%(4) 28.30%(3) 11.78%(4) 11.82%(3)

scout-api
0.5 1,924.66(4) 1,961.32(1) 40.33%(4) 40.86%(1) 21.06%(4) 21.38%(1)

0.8 1,948.17(3) 1,951.27(2) 40.74%(2) 40.62%(3) 21.31%(2) 21.27%(3)

Average rank
0.5 2.33 1.83 2.33 1.83 2.83 1.67

0.8 2.83 3.00 2.67 3.17 2.83 2.67
Friedmantest χ 2 = 3, p-value = 0.392 χ 2 = 3.4, p-value = 0.334 χ 2 = 3.4, p-value = 0.334

Rank 1 represents the highest achieved coverage, and values in bold are the highest in the case study.

8.3.5 Results of RQ5. Table 15 shows the results of comparing our best configuration MIO-WH ∗

with the baseline technique (Base = default MIO) in terms of three coverage metrics. Based on the
results on average coverage and ranks, compared with Base, except rest-ncs in %Lines, MIO-WH ∗

achieves the best rank for the rest of case studies in the coverage metrics. In addition, the significant
variance by Friedman test demonstrates the effectiveness of the proposed techniques in target cov-
erage and branch coverage. In Table 15, we also report the results with Mann–Whitney–Wilcoxon
U-tests (p-value) and Vargha–Delaney effect sizes (Âxy). As it can be seen in that table, except rest-

news, MIO-WH∗ shows a clear and strong improvement in six out of the seven case studies, based
on high effect sizes, high positive relative improvements, and low p-values. For rest-news, the dif-
ference between the two techniques is not significant.

For automated testing approaches, fault detection is another important metric to evaluate. In
our context, faults can be identified based on the HTTP status codes (i.e., 500) and unexpected
responses. In Table 15, we report a further metric, i.e., the number of ‘‘potential’’ faults detected by
Base and MIO-WH∗ (note that, in HTTP, not all 500 responses are due to software faults). Results
demonstrate that MIO-WH∗ achieved a significant improvement in all of the four non-artificial
REST APIs with p-values < 0.01 and Â12 > 0.8. For the three artificial REST APIs, MIO-WH∗ was
better only on rest-scs. For the rest-ncs and rest-news, there appear to be some downsides, but the
differences were not statistically significant.

To provide more details on the performance of the techniques, Figure 10 plots the average num-
ber of covered targets over time during the search, for all the seven case studies. Compared with
Base, MIO-WH ∗ has a clear large margin, except for catwatch in the first 5% of the budget, and
for rest-news in the last 5% of the budget. Besides, with MIO-WH∗, the covered targets before fo-
cused search starts (i.e., the first 50% of the budget) grow faster for all of the case studies. This
can be used to demonstrate the effectiveness of our novel hypermutation to solve our addressed
problem. Moreover, during the focused search, on catwatch and feature-service, MIO-WH∗ main-
tains a steady growth of the covering targets.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:39

Table 15. Results of Comparing MIO-WH∗ with the Selected Baseline Technique (Base = default

MIO) in Three Coverage Metrics (i.e., #Target, %Lines, and %Branches) and Fault detection

SUT Coverage
Techniques A=MIO-WH∗ vs. B=Base
Base MIO-WH∗ Âab p-value relativea−b/b

rest-ncs

#Target 623.4(2) 627.4(1) 0.81 <0.001 +0.65%

%Lines 87.74%(1) 87.67%(2) 0.52 0.786 −0.07%
%Branches 65.73%(2) 66.64%(1) 0.77 <0.001 +1.39%

#Faults 5.1(1) 5.0(2) 0.46 0.154 −1.71%

rest-scs

#Target 751.3(2) 834.9(1) 0.95 <0.001 +11.13%

%Lines 72.40%(2) 79.45%(1) 0.97 <0.001 +9.73%

%Branches 44.39%(2) 48.59%(1) 0.88 0.002 +9.45%

#Faults 9.3(2) 10.6(1) 0.79 0.016 +13.97%

rest-news

#Target 342.1(2) 342.9(1) 0.50 1.000 +0.21%
%Lines 52.89%(2) 53.40%(1) 0.61 0.193 +0.96%

%Branches 26.37%(2) 26.54%(1) 0.54 0.673 +0.67%
#Faults 7.1(1) 6.8(2) 0.40 0.138 −5.41%

catwatch

#Target 1,182.9(2) 1197.7(1) 0.68 0.022 +1.25%

%Lines 31.67%(2) 31.30%(1) 0.67 0.027 +1.33%

%Branches 17.54%(2) 17.38%(1) 0.61 0.154 +1.12%
#Faults 19.8(2) 21.8(1) 0.93 <0.001 +10.08%

feature-service

#Target 451.1(2) 505.6(1) 0.86 <0.001 +12.09%

%Lines 38.84%(2) 43.77%(1) 0.86 <0.001 +12.69%

%Branches 11.38%(2) 15.08%(1) 0.85 <0.001 +32.51%

#Faults 33.6(2) 34.4(1) 0.80 <0.001 +2.28%

proxyprint

#Target 1,909.7(2) 2117.3(1) 0.98 <0.001 +10.87%

%Lines 26.39%(2) 29.02%(1) 0.98 <0.001 +9.94%

%Branches 10.59%(2) 12.62%(1) 0.96 <0.001 +19.24%

#Faults 102.4(2) 109.8(1) 0.88 <0.001 +7.19%

scout-api

#Target 1,838.8(2) 1961.3(1) 0.96 <0.001 +6.66%

%Lines 38.79%(2) 40.96%(1) 0.94 <0.001 +5.57%

%Branches 20.40%(2) 21.38%(1) 0.85 <0.001 +4.78%

#Faults 102.9(2) 113.8(1) 0.91 <0.001 +10.54%

Average Rank

#Target 2.00 1.00 χ 2 = 7, p-value = 0.008

%Lines 1.86 1.14 χ 2 = 3.57, p-value = 0.059
%Branches 2.00 1.00 χ 2 = 7, p-value = 0.008

#Faults 1.71 1.29 χ 2 = 1.29, p-value = 0.257
The results are reported with average coverage metrics, average number of detected fault, and their rank.
Rank 1 represents the highest achieved coverage, and values in bold are the highest in the case study. We
also represent comparison results, i.e., if better than baseline (i.e., Â12 > 0.5 and p-values < 0.05), and the χ 2

and p-value of the Friedman test.

Thus, we can conclude that:

RQ5: Our proposed technique MIO-WH∗ (i.e., weight-based hypermutation with adaptive

handling), with our best configuration settings, significantly outperformed the selected baseline

technique in target coverage, line coverage, branch coverage, and fault detection.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:40 M. Zhang and A. Arcuri

Fig. 10. Average covered targets (y-axis) with Base and MIO-WH∗ throughout the search, reported at 5%

intervals of the used budget allocated for the search (x-axis).

8.4 Results Discussion

The experiments presented in this article show with high confidence that our novel techniques do
improve performance significantly. These good results can be explained if our initial hypothesis
is indeed true, i.e., if in this problem domain a non-negligible amount of genes in the evolved indi-
viduals have little to no impact on their phenotype. Our adaptive hypermutation seems effective
at identifying those types of gene, mutate them less often, while concentrating on the important
genes.

For practitioners, besides higher code coverage and higher fault detection, there is no direct im-
pact. These novel techniques are now the default in EvoMaster, and not something that needs to
be activated manually. In other words, this kind of algorithmic improvements should be something
transparent to users of test case generation tools.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:41

Our novel techniques were evaluated in the context of system test generation, specifically for
RESTful APIs. However, they could be used for other kinds of web services as well, like for example
SOAP, GraphQL, and gRPC. But they could be used as well in other system test generation contexts,
like for web and mobile applications. For example, when having to fill an HTML form as part of an
interaction with a web page, there could be many fields that need to be filled before the form can
be submitted to the server. But many of these fields might not impact much the control flow in the
SUT. Furthermore, when testing web applications, might still need to generate SQL data directly
in their databases (if any). However, without a sound empirical investigations, we cannot claim
for sure that our novel techniques would be still effective in these other problem domains.

In future work, the scalability of our approach will need to be further investigated, with a larger
selection of SUTs. For example, with 92 columns in 15 different SQL tables, proxyprint is the SUT
with the most SQL data in our empirical study (recall Table 4). But how would our techniques fare
on SUTs with even more SQL tables? Without empirical investigations, it is hard to say for sure.
However, RESTful APIs, especially when used in microservice applications (which is a common
practice in industry), tend to be small [59]. It is a common practice nowadays to avoid large ‘‘mono-
lith’’ applications, and rather split them in separated smaller components (e.g., RESTful APIs) that
communicate with each other (i.e., a microservice architecture). In this context, it is a common
practice that each REST API will have its own databases, which are not directly accessible from
the other APIs in the microservice. Therefore, when testing services in isolation, such scalability
would likely be not a major concern. But, if one had to test a whole microservice (which could be
composed of hundreds of RESTful APIs [59]) then the scalability of test case generation techniques
would be of paramount importance.

9 THREATS TO VALIDITY

Conclusion validity. This threat is related to results obtained by our experiments for answering
the RQs. The experiments are in the context of search-based software engineering. By following
the guidelines to conduct experiments in such context [10], first, we repeated the experiments for
each configuration at least 30 times. This is done to prevent the drawn conclusions being negatively
affected by chance, as the search algorithms are stochastic in nature. Furthermore, we illustrated
the results by reporting average values, ranks, and line plots. Moreover, to properly analyze the
data and draw sound conclusions, we use statistical methods, i.e., the Friedman test for analyzing
variance of case studies by technique, and the Mann–Whitney U-test at significance level α = 0.05
for analyzing differences pairwise, with effect size computed with the Vargha–Delaney Â12.

Construct validity. The threat is related to the generalization of the outputs of the employed
techniques. In our context, the outputs can be regarded as test coverage and fault findings achieved
by the generated tests. To prevent bias in such outputs by the search algorithms, we set the same
stopping criterion for all the algorithms and configurations, as suggested in the literature (e.g., [1]).
Besides, in our context, executing HTTP calls are required for evaluating tests during the search,
and such executions can be quite expensive (compared with the computation cost of the algorithms
themselves). Thus, time spent by the execution may vary by operating environment, e.g., hardware
and OS, while the number of HTTP calls is independent of the execution environment. To make
the outputs replicable, we employed a fixed number of HTTP calls (i.e., 100k) to define the stopping
criterion for the search.

Internal validity. This threat is related to our implementation. First, most of our proposed ap-
proaches are illustrated in this article with pseudo-code, which makes them assessable. Besides, all
of our code implementation and case studies are open-source and freely available online, which
allows anyone to review them and replicate the experiments.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:42 M. Zhang and A. Arcuri

External validity. The threat is related to the generalization of our results to other case studies.
In this work, we conducted our empirical study with seven SUTs that include three artificial REST
APIs and four real-world REST APIs from Github. More REST APIs would help to better general-
ize our results. However, experiments on system testing are computational expensive, which limit
the number of SUTs that can be used in a viable amount of time for experimentation. Further-
more, although REST APIs are widely popular in industry, they are less common in open-source
repositories, which makes finding new suitable SUTs for experimentation harder.

10 CONCLUSION

REST web services are widely used in industry. However, testing such services is challenging.
In this article, we proposed an adaptive weight-based hypermutation to enhance the mutation
of evolutionary algorithms for generating system-level white-box tests for RESTful web services.
In the context of testing REST APIs, considering the large amount of genes and their different
types, we designed weight-based hypermutation to determine which genes to mutate, based on their
characteristics and impacts on the evaluated testing targets. Besides, we developed an adaptive

gene value strategy to mutate the selected genes with consideration of the collected impacts on
their internal genes and mutation history.

Our approach takes advantage of EvoMaster which is capable of analyzing coverage at runtime,
provides different evolutionary algorithms for test generation and is integrated with advanced
techniques for testing, e.g., SQL handling and testability transformations. To assess our techniques,
we implemented our novel mutation operator (named MIO-WH∗) in the MIO algorithm designed
for system test generation, whose effectiveness for REST APIs has been demonstrated in our re-
cent work. Then, we empirically compared MIO-WH∗ with the default version of MIO in EvoMas-
ter, on seven open-source RESTful APIs. Results showed that MIO-WH∗ achieved a significant
improvement in coverage on six out of the seven case studies. Relative improvements are up to
+12.09% for target coverage, +12.69% for line coverage, and +32.51% for branch coverage.

In the future, to study the generalization of our approach, we plan to conduct additional experi-
ments with more evolutionary algorithms on more case studies. In addition, to further investigate
our approach with different budgets, we plan to conduct experiments with more budget settings
and study the performance with different budgets on different case studies. Our novel techniques
were evaluated in the context of test generation for REST APIs, but they might be effective as
well in other system-level testing scenarios (e.g., search-based test generation for mobile and web
frontend applications).

To enable replicated studies and future tool comparisons, EvoMaster and the employed
benchmark are freely available online as open-source. For more details, visit our webpage at
www.evomaster.org.

APPENDIX

This appendix contains additional algorithms and several tables which show results in detail for
the empirical analyses carried out in this article.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:43

ALGORITHM 8: Pseudo-Code of Mutating a String (adaptiveStringMutation)

Input : Targets T , String gene to mutate д, Impacts of the specializations M , Impacts of
whether to employ a specialization E, Evaluated Individual I , Updated boundary for
the length ul , Update boundaries for chars UC , Other genes as raw strings O

Output : Mutated Gene д∗

1 S ← дetSpecializations (G)
2 e ← дetEmployedSpecialization(G)
/* select True or False based on their impacts with Algorithm 6, and дetF

and дetT are to get impacts for False and True respectively */
3 w ← random(selectSubSetByWeiдhts ({False,True},T , {дetF (E),дetT (E)},True, 1, 0))
4 if |S | > 0 & w then
5 if e < 0 then
6 e ← random(0, |S | − 1)// select one at random
7 else

/* select a specialization from S with weights Algorithm 6 */
8 дs ← random(selectSubSetByWeiдhts (S,T ,M,True, 1, 0))
9 if дs == S[e] then

10 д∗s ←mutate (дs ,T , I , True, True,True)
11 else
12 e ← indexO f (S,дs)
13 else
14 дv ← дetValue (д)
15 if e ≥ 0 then
16 e ← −1
17 else
18 r ← random()
19 if 0.02 > r & |O | > 0 then
20 д∗v ← random(O)
21 else

/* a probability to mutate the length with dpc where there is a
relative high probablity to mutate a length at the begining of
the search */

22 p ← dpc (0.6, 0.2)
23 MC ← extractMutableChars (дv)
24 if isOptimal (L) | | (r < (1.0 − p) & |дv | > 0 & |MC | > 0) then

// weights are defined based on dmax − dmin
25 WMC ← extractWeiдhts (MC, UC)
26 i ← random(selectSubSetByWeiдhts (MC,WMC ,True, 1, 0))
27 дv [i]∗ ← дetChar (sample (UCi))
28 else
29 l ← дetInt (sample (ul))
30 if l < |дv | | | |дv | ==maxLenдth | | l == |дv | & r < 1.0 − p/2.0 then
31 д∗v ← dropLast (дv , 1)
32 else
33 д∗v ← append (дv , randomChar ())

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:44 M. Zhang and A. Arcuri

Table 16. RQ1: Pair Comparison for SQL ∈ {F ,T } Setting with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects
A (SQL = F), B (SQL = T)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-news 0.45 0.537 −0.69% 0.37 0.127 −1.16% 0.51 0.938 +0.23%
catwatch 0.55 0.535 +0.40% 0.55 0.536 +0.36% 0.59 0.301 +1.72%
features-service 0.25 0.001 −7.35% 0.24 0.002 −7.85% 0.26 0.003 −15.51%
proxyprint 0.96 <0.001 +23.57% 0.96 <0.001 +21.48% 0.95 <0.001 +53.00%
scout-api 0.61 0.131 +1.06% 0.61 0.162 +0.91% 0.57 0.546 +0.19%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

Table 17. RQ1: For Each Setting of d , Pair Comparison for SQL ∈ {F ,T } Settings with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects d
A (SQL = F), B (SQL = T)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-news
0.2 0.52 0.383 +0.23% 0.52 0.738 +0.16% 0.52 0.577 +0.46%
0.5 0.49 0.893 −0.49% 0.49 0.936 −0.47% 0.51 0.933 +0.35%
0.8 0.58 0.353 +1.14% 0.55 0.392 +0.76% 0.58 0.210 +1.63%

catwatch
0.2 0.35 0.052 −1.76% 0.36 0.063 −1.46% 0.32 0.020 −2.09%
0.5 0.34 0.039 −1.37% 0.34 0.037 −1.50% 0.33 0.028 −2.36%
0.8 0.36 0.078 −1.23% 0.34 0.036 −1.11% 0.37 0.089 −1.60%

features-service
0.2 0.63 0.093 +4.28% 0.59 0.227 +4.08% 0.60 0.177 +6.14%
0.5 0.52 0.682 +0.64% 0.51 0.948 +0.45% 0.52 0.744 +1.63%
0.8 0.52 0.975 −0.26% 0.51 0.977 −0.19% 0.53 0.615 +2.12%

proxyprint
0.2 0.89 <0.001 +15.29% 0.88 <0.001 +14.09% 0.87 <0.001 +37.78%
0.5 0.91 <0.001 +15.72% 0.91 <0.001 +14.78% 0.86 <0.001 +33.33%
0.8 0.92 <0.001 +18.21% 0.92 <0.001 +16.81% 0.92 <0.001 +42.39%

scout-api
0.2 0.60 0.376 +0.59% 0.58 0.371 +0.42% 0.57 0.242 +0.84%
0.5 0.46 0.537 −0.23% 0.47 0.581 −0.18% 0.49 0.927 +1.01%
0.8 0.56 0.299 +1.01% 0.57 0.150 +1.29% 0.56 0.144 +1.75%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y is
statistically significant better than x .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:45

Table 18. RQ2: With SQL = T , Pair Comparison for d Settings for Each Setting of ρ with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects ρ
A (d = 0.2), B (d = 0.5), C (d = 0.8)

Âba p-valueba relativeb−a/a Âca p-valueca relativec−a/a Âcb p-valuecb relativec−b/b

#Targets

rest-ncs
0.2 0.50 1.000 +0.00% 0.50 1.000 −0.01% 0.50 1.000 −0.01%
0.5 0.49 0.572 −0.01% 0.49 0.786 −0.01% 0.49 0.943 +0.00%

rest-scs
0.2 0.37 0.199 −1.34% 0.38 0.116 −1.21% 0.49 0.813 +0.13%
0.5 0.49 0.902 −0.17% 0.53 0.629 +0.32% 0.55 0.276 +0.49%

rest-news
0.2 0.30 0.010 −2.02% 0.51 0.849 −0.29% 0.66 0.037 +1.76%
0.5 0.51 0.741 +0.22% 0.64 0.174 +1.36% 0.59 0.263 +1.13%

catwatch
0.2 0.30 0.038 −2.17% 0.87 <0.001 +5.60% 0.96 <0.001 +7.94%
0.5 0.51 0.829 +0.22% 0.56 0.456 +0.09% 0.54 0.562 −0.13%

features-service
0.2 0.44 0.430 −2.56% 0.60 0.189 +1.67% 0.63 0.034 +4.35%
0.5 0.51 0.729 +0.78% 0.45 0.398 −1.86% 0.44 0.130 −2.61%

proxyprint
0.2 0.51 0.861 +0.61% 0.57 0.360 +1.79% 0.55 0.477 +1.17%
0.5 0.58 0.241 +1.54% 0.72 <0.001 +5.24% 0.64 0.038 +3.65%

scout-api
0.2 0.59 0.156 +1.21% 0.65 0.116 +1.68% 0.57 0.365 +0.47%
0.5 0.59 0.209 +1.01% 0.76 <0.001 +2.64% 0.65 0.121 +1.61%

%Lines

rest-ncs
0.2 0.49 1.000 −0.01% 0.50 NaN +0.00% 0.51 1.000 +0.01%
0.5 0.49 1.000 −0.01% 0.52 0.346 +0.03% 0.53 0.149 +0.04%

rest-scs
0.2 0.40 0.165 −1.02% 0.40 0.147 −0.90% 0.50 0.991 +0.12%
0.5 0.47 0.688 −0.20% 0.55 0.544 +0.36% 0.58 0.091 +0.56%

rest-news
0.2 0.10 <0.001 −4.07% 0.47 0.720 −0.21% 0.88 <0.001 +4.02%
0.5 0.52 0.761 +0.18% 0.79 <0.001 +3.20% 0.77 <0.001 +3.02%

catwatch
0.2 0.32 0.027 −2.17% 0.87 <0.001 +5.04% 0.96 <0.001 +7.37%
0.5 0.53 0.676 +0.20% 0.61 0.156 +0.17% 0.56 0.450 −0.03%

features-service
0.2 0.41 0.237 −2.82% 0.57 0.341 +1.68% 0.65 0.049 +4.64%
0.5 0.53 0.547 +0.96% 0.43 0.325 −2.04% 0.39 0.053 −2.97%

proxyprint
0.2 0.51 0.918 +0.56% 0.57 0.411 +1.77% 0.55 0.393 +1.20%
0.5 0.59 0.154 +1.55% 0.73 <0.001 +5.03% 0.62 0.073 +3.42%

scout-api
0.2 0.59 0.112 +1.17% 0.64 0.141 +1.49% 0.55 0.360 +0.32%
0.5 0.59 0.301 +0.85% 0.74 <0.001 +2.39% 0.64 0.125 +1.52%

%Branches

rest-ncs
0.2 0.50 NaN +0.00% 0.50 NaN +0.00% 0.50 NaN +0.00%
0.5 0.50 1.000 −0.02% 0.48 1.000 −0.04% 0.49 1.000 −0.02%

rest-scs
0.2 0.40 0.133 −2.00% 0.40 0.132 −1.75% 0.54 0.729 +0.25%
0.5 0.46 0.829 −0.68% 0.53 0.847 +0.54% 0.55 0.471 +1.23%

rest-news
0.2 0.53 0.674 +0.48% 0.49 0.909 −0.51% 0.46 0.596 −0.98%
0.5 0.52 0.663 +0.37% 0.53 0.745 +0.51% 0.51 0.837 +0.14%

catwatch
0.2 0.44 0.293 −0.79% 0.74 0.003 +2.61% 0.77 <0.001 +3.43%
0.5 0.52 0.532 +0.32% 0.48 0.788 −0.23% 0.46 0.581 −0.55%

features-service
0.2 0.42 0.271 −5.13% 0.60 0.172 +5.47% 0.65 0.024 +11.18%
0.5 0.54 0.592 +2.05% 0.45 0.368 −3.52% 0.40 0.098 −5.46%

proxyprint
0.2 0.49 0.861 −0.20% 0.59 0.327 +5.09% 0.59 0.186 +5.30%
0.5 0.61 0.097 +3.50% 0.74 <0.001 +15.46% 0.62 0.067 +11.55%

scout-api
0.2 0.42 0.380 −0.79% 0.47 0.726 −0.65% 0.57 0.588 +0.14%
0.5 0.55 0.653 +0.83% 0.63 0.135 +1.11% 0.58 0.925 +0.28%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y is
statistically significant better than x .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:46 M. Zhang and A. Arcuri

Table 19. RQ2: With SQL = T , Pair Comparison for ρ Settings for Each Setting of d with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects d
A (ρ = 0.2), B (ρ = 0.5)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.2 0.64 0.071 +0.46% 0.61 0.109 +0.35% 0.62 0.012 +0.75%
0.5 0.64 0.082 +0.45% 0.61 0.106 +0.35% 0.62 0.013 +0.73%
0.8 0.63 0.079 +0.45% 0.62 0.085 +0.37% 0.60 0.012 +0.70%

rest-scs
0.2 0.87 <0.001 +4.72% 0.89 <0.001 +4.06% 0.72 0.005 +4.56%
0.5 0.93 <0.001 +5.96% 0.90 <0.001 +4.93% 0.77 <0.001 +5.96%
0.8 0.95 <0.001 +6.34% 0.94 <0.001 +5.39% 0.90 <0.001 +7.00%

rest-news
0.2 0.20 <0.001 −3.04% 0.09 <0.001 −4.63% 0.39 0.122 −2.21%
0.5 0.43 0.337 −0.82% 0.45 0.473 −0.41% 0.39 0.142 −2.31%
0.8 0.39 0.114 −1.43% 0.37 0.060 −1.37% 0.44 0.380 −1.20%

catwatch
0.2 0.28 0.007 −2.73% 0.28 0.008 −2.49% 0.50 0.970 −0.01%
0.5 0.52 0.797 −0.36% 0.51 0.912 −0.12% 0.58 0.342 +1.11%
0.8 0.00 <0.001 −7.81% 0.00 <0.001 −7.01% 0.26 <0.001 −2.78%

features-service
0.2 0.58 0.243 +0.49% 0.54 0.561 +0.30% 0.55 0.504 +2.37%
0.5 0.62 0.083 +3.93% 0.64 0.038 +4.21% 0.64 0.034 +10.13%
0.8 0.43 0.345 −3.00% 0.40 0.135 −3.37% 0.40 0.141 −6.36%

proxyprint
0.2 0.51 0.904 +0.27% 0.51 0.923 +0.21% 0.50 1.000 −1.67%
0.5 0.57 0.325 +1.19% 0.58 0.238 +1.20% 0.60 0.166 +1.98%
0.8 0.67 0.017 +3.67% 0.66 0.021 +3.41% 0.65 0.036 +8.03%

scout-api
0.2 0.54 0.533 +0.90% 0.52 0.776 +0.79% 0.45 0.457 −0.14%
0.5 0.54 0.585 +0.71% 0.53 0.643 +0.48% 0.57 0.286 +1.49%
0.8 0.64 0.042 +1.86% 0.63 0.057 +1.68% 0.61 0.119 +1.63%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y is
statistically significant better than x .

Table 20. RQ3: Pair Comparison for PA Settings for Each Setting of EAM with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects EAM
A (PA = 0.5), B (PA = 0.8)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
F 0.52 0.763 +0.07% 0.51 0.832 +0.09% 0.51 0.884 +0.06%
T 0.46 0.405 −0.05% 0.47 0.445 −0.01% 0.46 0.399 −0.15%

rest-scs
F 0.56 0.333 +0.61% 0.55 0.647 +0.35% 0.57 0.205 +1.68%
T 0.52 0.891 +0.12% 0.62 0.345 +0.76% 0.46 0.757 −0.46%

rest-news
F 0.67 0.133 +2.54% 0.64 0.193 +1.16% 0.67 0.124 +4.29%
T 0.32 0.004 −2.49% 0.35 0.015 −1.61% 0.39 0.069 −2.34%

catwatch
F 0.58 0.295 −0.10% 0.58 0.267 −0.11% 0.56 0.402 +0.76%
T 0.43 0.259 −1.09% 0.42 0.191 −1.25% 0.49 0.828 −0.17%

features-service
F 0.53 0.687 +0.53% 0.49 0.925 +0.24% 0.50 0.972 −0.07%
T 0.41 0.136 −2.17% 0.41 0.115 −2.39% 0.42 0.193 −4.55%

proxyprint
F 0.48 0.803 −1.80% 0.49 0.875 −1.63% 0.43 0.352 −6.13%
T 0.56 0.253 +0.50% 0.54 0.454 +0.37% 0.44 0.243 +0.10%

scout-api
F 0.57 0.376 +0.55% 0.60 0.193 +0.60% 0.61 0.149 +1.53%
T 0.39 0.013 −0.44% 0.20 <0.001 −1.57% 0.54 0.392 +0.59%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y is
statistically significant better than x .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:47

Table 21. RQ3: Pair Comparison for EAM Settings for Each Setting of PA with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects PA

A (EAM = F), B (EAM = T)
#Targets %Lines %Branches

Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.5 0.89 <0.001 +0.92% 0.56 0.223 +0.06% 0.85 <0.001 +1.65%
0.8 0.86 <0.001 +0.80% 0.52 0.709 −0.03% 0.79 <0.001 +1.44%

rest-scs
0.5 0.55 0.450 +0.45% 0.56 0.343 +0.46% 0.53 0.668 +0.73%
0.8 0.49 0.966 −0.04% 0.60 0.456 +0.87% 0.40 0.467 −1.39%

rest-news
0.5 0.58 0.300 +1.16% 0.50 1.000 −0.14% 0.65 0.053 +3.59%
0.8 0.25 0.010 −3.80% 0.23 0.005 −2.88% 0.35 0.124 −3.00%

catwatch
0.5 0.68 0.002 +2.79% 0.68 0.002 +2.68% 0.66 0.005 +2.12%
0.8 0.64 0.066 +1.76% 0.64 0.054 +1.51% 0.60 0.189 +1.17%

features-service
0.5 0.51 0.824 +0.10% 0.51 0.888 +0.08% 0.52 0.707 +1.08%
0.8 0.40 0.169 −2.59% 0.42 0.290 −2.55% 0.44 0.403 −3.45%

proxyprint
0.5 0.92 <0.001 +6.65% 0.92 <0.001 +6.25% 0.88 <0.001 +8.87%
0.8 0.94 <0.001 +9.16% 0.94 <0.001 +8.40% 0.88 <0.001 +16.10%

scout-api
0.5 0.92 <0.001 +5.12% 0.91 <0.001 +4.31% 0.80 <0.001 +3.64%
0.8 0.97 <0.001 +4.09% 0.81 <0.001 +2.07% 0.72 <0.001 +2.68%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

Table 22. RQ4: With E5 Experiment Setting, for Each of FS, Pair Comparison Pr with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects FS
A (Pr = 0.2), B (Pr = 0.5)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.5 0.53 0.465 +0.04% 0.54 0.559 −0.05% 0.56 0.239 +0.27%
0.8 0.52 0.758 +0.02% 0.59 0.288 +0.01% 0.53 0.543 +0.15%

rest-scs
0.5 0.59 0.265 +2.16% 0.59 0.258 +1.76% 0.66 0.038 +4.78%
0.8 0.49 0.880 −0.12% 0.46 0.607 −0.54% 0.56 0.510 +1.72%

rest-news
0.5 0.47 0.713 −0.47% 0.37 0.084 −1.27% 0.51 0.923 +0.20%
0.8 0.64 0.076 +1.63% 0.69 0.014 +1.78% 0.60 0.210 +2.21%

catwatch
0.5 0.68 0.024 +2.60% 0.66 0.044 +2.78% 0.71 0.007 +3.04%
0.8 0.56 0.234 +1.11% 0.54 0.269 +1.18% 0.53 0.605 +0.47%

features-service
0.5 0.45 0.440 −1.69% 0.44 0.413 −1.85% 0.43 0.303 −3.29%
0.8 0.53 0.459 +0.64% 0.52 0.580 +0.55% 0.52 0.685 +1.18%

proxyprint
0.5 0.40 0.156 −2.82% 0.39 0.124 −2.84% 0.43 0.292 −7.67%
0.8 0.53 0.678 +0.66% 0.51 0.886 +0.12% 0.50 0.955 −1.10%

scout-api
0.5 0.69 0.008 +2.81% 0.65 0.029 +2.34% 0.69 0.008 +5.15%
0.8 0.88 <0.001 +3.79% 0.87 <0.001 +3.39% 0.72 0.007 +4.33%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

2:48 M. Zhang and A. Arcuri

Table 23. RQ4: With E5 Experiment Setting, for Each of Pr , Pair Comparison FS with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects Pr

A (FS = 0.5), B (FS = 0.8)
#Targets %Lines %Branches

Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.2 0.45 0.507 −0.18% 0.48 0.761 −0.12% 0.48 0.806 −0.15%
0.5 0.45 0.474 −0.19% 0.54 0.587 −0.05% 0.45 0.513 −0.27%

rest-scs
0.2 0.58 0.289 +1.36% 0.60 0.218 +1.53% 0.55 0.466 +1.34%
0.5 0.48 0.808 −0.91% 0.47 0.733 −0.76% 0.44 0.452 −1.62%

rest-news
0.2 0.28 0.009 −2.37% 0.08 <0.001 −4.19% 0.48 0.812 −0.39%
0.5 0.47 0.697 −0.32% 0.38 0.098 −1.24% 0.57 0.329 +1.60%

catwatch
0.2 0.52 0.469 +0.65% 0.51 0.459 +0.77% 0.57 0.197 +1.14%
0.5 0.40 0.220 −0.81% 0.38 0.114 −0.80% 0.39 0.166 −1.38%

features-service
0.2 0.46 0.758 −0.47% 0.48 0.820 −0.25% 0.49 0.891 −0.24%
0.5 0.56 0.406 +1.90% 0.57 0.316 +2.18% 0.59 0.208 +4.38%

proxyprint
0.2 0.33 0.025 −3.63% 0.33 0.025 −3.31% 0.34 0.034 −7.51%
0.5 0.47 0.718 −0.17% 0.46 0.596 −0.37% 0.44 0.442 −0.92%

scout-api
0.2 0.48 0.711 −0.21% 0.44 0.530 −0.63% 0.55 0.819 +1.08%
0.5 0.59 0.236 +0.74% 0.54 0.586 +0.39% 0.54 0.631 +0.30%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

Table 24. RQ4: With E6 Experiment Setting, for Each of Pr , Pair Comparison FS with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects FS
A (Pr = 0.2), B (Pr = 0.5)

#Targets %Lines %Branches
Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.5 0.60 0.148 +0.13% 0.56 0.334 +0.06% 0.59 0.154 +0.27%
0.8 0.55 0.507 −0.09% 0.49 0.861 −0.21% 0.56 0.460 +0.14%

rest-scs
0.5 0.56 0.660 +0.49% 0.49 0.952 +0.07% 0.61 0.389 +1.79%
0.8 0.52 0.838 −0.00% 0.46 0.632 −0.26% 0.57 0.391 +0.93%

catwatch
0.5 0.28 0.003 −4.01% 0.30 0.005 −3.84% 0.43 0.317 −0.78%
0.8 0.30 0.011 −3.01% 0.29 0.006 −3.27% 0.37 0.104 −2.09%

features-service
0.5 0.47 0.699 −0.48% 0.50 0.975 −0.16% 0.50 1.000 +2.02%
0.8 0.50 0.994 +1.55% 0.51 0.894 +1.61% 0.52 0.837 +1.31%

proxyprint
0.5 0.81 <0.001 +2.20% 0.79 <0.001 +1.92% 0.75 <0.001 +3.45%
0.8 0.52 0.934 +0.08% 0.53 0.905 +0.18% 0.53 0.847 +0.34%

scout-api
0.5 0.75 <0.001 +1.90% 0.68 0.006 +1.30% 0.61 0.082 +1.48%
0.8 0.52 0.577 +0.16% 0.45 0.432 −0.28% 0.49 0.470 −0.21%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

Adaptive Hypermutation for Search-Based System Test Generation 2:49

Table 25. RQ4: With E6 Experiment Setting, for Each of FS, Pair Comparison Pr with #Targets using

Mann–Whitney–Wilcoxon U-tests (p-value) and Vargha–Delaney Effect Sizes (Âxy)

projects Pr

A (FS = 0.5), B (FS = 0.8)
#Targets %Lines %Branches

Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a Âba p-valueba relativeb−a/a

rest-ncs
0.2 0.65 0.019 +0.30% 0.58 0.115 +0.27% 0.62 0.082 +0.32%
0.5 0.54 0.561 +0.08% 0.50 0.970 +0.01% 0.54 0.556 +0.19%

rest-scs
0.2 0.43 0.445 −0.55% 0.46 0.709 −0.29% 0.47 0.489 −0.91%
0.5 0.37 0.295 −1.04% 0.40 0.402 −0.62% 0.38 0.351 −1.74%

catwatch
0.2 0.44 0.432 −1.28% 0.43 0.322 −1.35% 0.54 0.492 +0.66%
0.5 0.49 0.850 −0.24% 0.44 0.386 −0.76% 0.46 0.629 −0.67%

features-service
0.2 0.32 0.026 −5.40% 0.35 0.041 −5.37% 0.34 0.045 −9.49%
0.5 0.37 0.165 −3.47% 0.36 0.094 −3.70% 0.37 0.037 −10.11%

proxyprint
0.2 0.54 0.734 −0.83% 0.55 0.837 −0.78% 0.52 0.800 −3.48%
0.5 0.28 0.002 −2.89% 0.32 0.008 −2.47% 0.31 0.005 −6.38%

scout-api
0.2 0.67 0.028 +1.22% 0.64 0.076 +1.01% 0.59 0.212 +1.17%
0.5 0.43 0.258 −0.51% 0.38 0.076 −0.58% 0.45 0.431 −0.51%

Values in bold mean the setting x is statistically significant better than the setting y , whereas values in red mean y

is statistically significant better than x .

REFERENCES

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. 2010. A systematic review of the application and
empirical investigation of search-based test-case generation. IEEE Transactions on Software Engineering 36, 6 (2010),
742–762.

[2] Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test data generation for string data using
program-specific search operators. Software Testing, Verification, and Reliability 16, 3 (2006), 175–203. DOI:https://doi.
org/10.1002/stvr.v16:3

[3] Denis Antipov and Benjamin Doerr. 2020. Runtime analysis of a heavy-tailed (1+(λ, λ)) genetic algorithm on jump
functions. In International Conference on Parallel Problem Solving from Nature. Thomas Bäck, Mike Preuss, André
Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann (Eds.) Springer, 545–559.

[4] Andrea Arcuri. 2018. EvoMaster: Evolutionary multi-context automated system test generation. In IEEE 11th Interna-

tional Conference on Software Testing, Verification and Validation. IEEE. DOI:10.1109/ICST.2018.00046
[5] Andrea Arcuri. 2017. An experience report on applying software testing academic results in industry: We need usable

automated test generation. Empirical Software Engineering 23, 2 (2017), 1–23.
[6] Andrea Arcuri. 2018. Test suite generation with the Many Independent Objective (MIO) algorithm. Information and

Software Technology 104 (2018), 195–206. DOI:https://doi.org/10.1016/j.infsof.2018.05.003
[7] Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster. ACM Transactions on Software

Engineering and Methodology 28, 1 (2019), 1–37.
[8] Andrea Arcuri. 2021. Automated blackbox and whitebox testing of RESTful APIs with EvoMaster. IEEE Software 38,

3 (2021), 72–78.
[9] A. Arcuri and L. Briand. 2011. Adaptive random testing: An illusion of effectiveness? In Proceedings of the 11th Inter-

national Symposium on Software Testing and Analysis. ACM, New York, NY, 265–275.
[10] A. Arcuri and L. Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software

engineering. Software Testing, Verification and Reliability 24, 3 (2014), 219–250.
[11] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An empirical investigation in search-

based software engineering. Empirical Software Engineering 18, 3 (2013), 594–623.
[12] Andrea Arcuri and Juan Pablo Galeotti. 2020. Handling SQL databases in automated system test generation. ACM

Transactions on Software Engineering and Methodology 29, 4 (2020), 1–31.
[13] Andrea Arcuri and Juan Pablo Galeotti. 2020. Testability transformations for existing APIs. In 2020 IEEE 13th Interna-

tional Conference on Software Testing, Validation and Verification. IEEE, 153–163. DOI:10.1109/ICST46399.2020.00025
[14] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2020. EvoMaster: A Search-Based System

Test Generation Tool. Zenodo. DOI:https://doi.org/10.5281/zenodo.4300745
[15] Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2021. EvoMaster: A search-based system

test generation tool. Journal of Open Source Software 6, 57 (2021), 2153.
[16] Vaggelis Atlidakis, Roxana Geambasu, Patrice Godefroid, Marina Polishchuk, and Baishakhi Ray. 2020.

Pythia: Grammar-based fuzzing of REST APIs with coverage-guided feedback and learning-based mutations.
arXiv:2005.11498. Retrieved from https://arxiv.org/abs/2005.11498.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://doi.org/10.1002/stvr.v16:3
https://doi.org/10.1109/ICST.2018.000461
https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1109/ICST46399.2020.00025
https://doi.org/10.5281/zenodo.4300745
https://arxiv.org/abs/2005.11498

2:50 M. Zhang and A. Arcuri

[17] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler: Stateful REST API Fuzzing. In Proceed-

ings of the 41st International Conference on Software Engineering . IEEE Press, 748–758. DOI:https://doi.org/10.1109/
ICSE.2019.00083

[18] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. 2018. An empirical evalua-
tion of evolutionary algorithms for unit test suite generation. Information and Software Technology 104 (2018), 207–235.
DOI:https://doi.org/10.1016/j.infsof.2018.08.010

[19] Leandro Nunes Castro, Leandro Nunes De Castro, and Jonathan Timmis. 2002. Artificial Immune Systems: A new

Computational Intelligence Approach. Springer Science & Business Media.
[20] Jun Chen and Mahdi Mahfouf. 2006. A population adaptive based immune algorithm for solving multi-objective opti-

mization problems. In International Conference on Artificial Immune Systems. H. Bersini and J. Carneiro (Eds.), Springer,
280–293.

[21] Chien-Wei Chu, Min-Der Lin, Gee-Fon Liu, and Yung-Hsing Sung. 2008. Application of immune algorithms on solv-
ing minimum-cost problem of water distribution network. Mathematical and Computer Modelling 48, 11-12 (2008),
1888–1900.

[22] Helen G. Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms

Having Continuous, Time-Dependent Nonstationary Environments. Naval Research Lab Washington DC.
[23] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When hypermutations and ageing enable artificial immune

systems to outperform evolutionary algorithms. Theoretical Computer Science 832 (2020), 166–185. DOI:https://doi.
org/10.1016/j.tcs.2019.03.002

[24] Vincenzo Cutello, Giuseppe Nicosia, and Mario Pavone. 2004. Exploring the capability of immune algorithms: A char-
acterization of hypermutation operators. In Artificial Immune Systems. Giuseppe Nicosia, Vincenzo Cutello, Peter J.
Bentley, and Jon Timmis (Eds.). Springer, Berlin, 263–276.

[25] Leandro N. De Castro and Fernando J. Von Zuben. 2002. Learning and optimization using the clonal selection principle.
IEEE Transactions on Evolutionary Computation 6, 3 (2002), 239–251.

[26] Benjamin Doerr and Carola Doerr. 2020. Theory of parameter control for discrete black-box optimization: Prov-
able performance gains through dynamic parameter choices. Theory of Evolutionary Computation (2020), 271–321.
DOI:10.1007/978-3-030-29414-4_6

[27] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-adjusting mutation rates with provably optimal suc-
cess rules. In Proceedings of the Genetic and Evolutionary Computation Conference. 1479–1487.

[28] Carola Doerr and Markus Wagner. 2018. Sensitivity of parameter control mechanisms with respect to their initial-
ization. In International Conference on Parallel Problem Solving from Nature. A. Auger, C. Fonseca, N. Lourenco, P.
Machado, L. Paquete, and D. Whitley (Eds.), Springer, 360–372.

[29] Carola Doerr and Markus Wagner. 2018. Simple on-the-fly parameter selection mechanisms for two classical discrete
black-box optimization benchmark problems. In Proceedings of the Genetic and Evolutionary Computation Conference.
943–950.

[30] S. Droste, T. Jansen, and I. Wegener. 1998. On the optimization of unimodal functions with the (1 + 1) evolutionary
algorithm. In Proceedings of the International Conference on Parallel Problem Solving from Nature. 13–22.

[31] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Automatic generation of test cases for REST
APIs: A specification-based approach. In 2018 IEEE 22nd International Enterprise Distributed Object Computing Confer-

ence. 181–190. DOI:10.1109/EDOC.2018.00031
[32] Á. E. Eiben, R. Hinterding, and Z. Michalewicz. 1999. Parameter control in evolutionary algorithms. IEEE Transactions

on Evolutionary Computation 3, 2 (1999), 124–141.
[33] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Disser-

tation. University of California, Irvine. UMI Order Number: AAI 9980887.
[34] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation for object-oriented software. In

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engi-

neering. 416–419.
[35] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite at the SBST 2013 Tool Competition. In 2013 IEEE 6th International

Workshop on Search-Based Software Testing. 406–409.
[36] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE Transactions on Software Engineering 39, 2

(2013), 276–291.
[37] Tobias Friedrich, Andreas Göbel, Francesco Quinzan, and Markus Wagner. 2018. Heavy-tailed mutation operators in

single-objective combinatorial optimization. In International Conference on Parallel Problem Solving from Nature. A.
Auger, C. Fonseca, N. Lourenco, P. Machado, L. Paquete, and D. Whitley (Eds.), Springer, 134–145.

[38] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. 2018. Escaping large deceptive basins of attraction with
heavy-tailed mutation operators. In Proceedings of the Genetic and Evolutionary Computation Conference. 293–300.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1016/j.tcs.2019.03.002
https://doi.org/10.1007/978-3-030-29414-4_6
https://doi.org/10.1109/EDOC.2018.00031

Adaptive Hypermutation for Search-Based System Test Generation 2:51

[39] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent REST API Data Fuzzing. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering. ACM, New York, NY, 725–736. DOI:https://doi.org/10.1145/3368089.3409719
[40] D. E. Goldberg. 1989. Genetic Algorithms in Search and Optimization. Addison-wesley.
[41] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based software engineering: Trends, tech-

niques and applications. ACM Computing Surveys 45, 1 (2012), 11.
[42] Zhengxin Huang and Yuren Zhou. 2020. Runtime analysis of somatic contiguous hypermutation operators in

MOEA/D Framework. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 2359–2366.
[43] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin Leyton-Brown. 2006. Performance prediction and au-

tomated tuning of randomized and parametric algorithms. In International Conference on Principles and Practice of

Constraint Programming. F. Benhamou (Eds.), Springer, 213–228.
[44] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2014. Algorithm runtime prediction: Methods &

evaluation. Artificial Intelligence 206 (2014), 79–111. DOI:https://doi.org/10.1016/j.artint.2013.10.003
[45] T. Jansen and C. Zarges. 2014. Reevaluating immune-inspired hypermutations using the fixed budget perspective. IEEE

Transactions on Evolutionary Computation 18, 5 (2014), 674–688. DOI:https://doi.org/10.1109/TEVC.2014.2349160
[46] Giorgos Karafotias, Mark Hoogendoorn, and Ágoston E. Eiben. 2014. Parameter control in evolutionary algorithms:

Trends and challenges. IEEE Transactions on Evolutionary Computation 19, 2 (2014), 167–187.
[47] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST: Property-based test generation of Ope-

nAPI described RESTful APIs. In IEEE 13th International Conference on Software Testing, Verification and Validation.
IEEE.

[48] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983),
671–680.

[49] Anton Kotelyanskii and Gregory M. Kapfhammer. 2014. Parameter tuning for search-based test-data generation
revisited: Support for previous results. In 2014 14th International Conference on Quality Software. IEEE, 79–84.
DOI:10.1109/QSIC.2014.43

[50] Johannes Lengler. 2019. A general dichotomy of evolutionary algorithms on monotone functions. IEEE Transactions

on Evolutionary Computation 24, 6 (2019), 995–1009.
[51] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. 2002. Learning the empirical hardness of optimization

problems: The case of combinatorial auctions. In International Conference on Principles and Practice of Constraint

Programming. P. Van Hentenryck (Eds.), Springer, 556–572.
[52] Q. Lin, J. Chen, Z. Zhan, W. Chen, C. A. C. Coello, Y. Yin, C. Lin, and J. Zhang. 2016. A hybrid evolutionary immune algo-

rithm for multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 20, 5 (2016), 711–729.
DOI:https://doi.org/10.1109/TEVC.2015.2512930

[53] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for android applications. In
Proceedings of the 25th International Symposium on Software Testing and Analysis. ACM, 94–105.

[54] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest: Black-box constraint-based testing of
RESTful Web APIs. In International Conference on Service-Oriented Computing. E. Kafeza, B. Benatallah, F. Martinelli,
H. Hacid, A. Bouguettaya, and H. Motahari (Eds.), Springer.

[55] P. McMinn. 2004. Search-based software test data generation: A survey. Software Testing, Verification and Reliability

14, 2 (2004), 105–156.
[56] Phil McMinn, Mark Harman, Kiran Lakhotia, Youssef Hassoun, and Joachim Wegener. 2011. Input domain reduc-

tion through irrelevant variable removal and its effect on local, global, and hybrid search-based structural test data
generation. IEEE Transactions on Software Engineering 38, 2 (2011), 453–477.

[57] Phil McMinn and Gregory M. Kapfhammer. 2016. AVMf: An open-source framework and implementation of the
alternating variable method. In International Symposium on Search Based Software Engineering. F. Sarro and K. Deb
(Eds.), Springer, 259–266.

[58] Vladimir Mironovich and Maxim Buzdalov. 2017. Evaluation of heavy-tailed mutation operator on maximum flow test
generation problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. 1423–1426.

[59] Sam Newman. 2015. Building Microservices. ‘‘O’Reilly Media, Inc.’’.
[60] Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2018. Automated test case generation as a many-objective

optimisation problem with dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2 (2018),
122–158.

[61] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017. A detailed investigation of the effective-
ness of whole test suite generation. Empirical Software Engineering 22, 2 (2017), 852–893.

[62] Abdel Salam Sayyad, Katerina Goseva-Popstojanova, Tim Menzies, and Hany Ammar. 2013. On parameter tuning in
search based software engineering: A replicated empirical study. In 2013 3rd International Workshop on Replication in

Empirical Software Engineering Research. IEEE, 84–90.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1109/TEVC.2014.2349160
https://doi.org/10.1109/QSIC.2014.43
https://doi.org/10.1109/TEVC.2015.2512930

2:52 M. Zhang and A. Arcuri

[63] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTESTGEN: Automated black-box test-
ing of RESTful APIs. In IEEE International Conference on Software Testing, Verification and Validation. IEEE.
DOI:10.1109/ICST46399.2020.00024

[64] Louis F. Williams. 1976. A modification to the half-interval search (binary search) method. In Proceedings of the 14th

Annual Southeast Regional Conference. ACM, New York, NY, 95–101. DOI:https://doi.org/10.1145/503561.503582
[65] D. H. Wolpert and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation 1, 1 (1997), 67–82.
[66] Furong Ye, Carola Doerr, and Thomas Bäck. 2019. Interpolating local and global search by controlling the variance of

standard bit mutation. In 2019 IEEE Congress on Evolutionary Computation. IEEE, 2292–2299.
[67] Shayan Zamani and Hadi Hemmati. 2019. Revisiting hyper-parameter tuning for search-based test data generation.

In International Symposium on Search Based Software Engineering. S. Nejati and G. Gay (Eds.), Springer, 137–152.
[68] Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2019. Resource-based test case generation for RESTful web

services. In Proceedings of the Genetic and Evolutionary Computation Conference. 1426–1434.

Received December 2020; revised March 2021; accepted May 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 1, Article 2. Publication date: September 2021.

https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1145/503561.503582

