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A B S T R A C T

The integration of 5G and Beyond 5G (B5G)/6G in Machine-to-Machine (M2M) communications, is making
Industry 4.0 smarter. However, the goal of having a sustainable self-monitored industry has not been reached
yet. State-of-the-art deep learning-based Fault Detection algorithms cannot handle heterogeneous data, meaning
that more than one fault detection computational device has to be used for each data format, in addition
to the inability to take advantage of the combination of all the information available in different formats
to derive more accurate conclusions. Moreover, these algorithms rely on inefficient hyper-parameters tuning
strategies. In this paper, we propose an Advanced Deep Learning framework for Fault Diagnosis in Industry
4.0 (ADL-FDI4), which combines Long Short Term Memory (LSTM), Convolutional Neural Networks (CNN)
and graph CNN (GNN), to handle heterogeneous data. Furthermore, our novel framework uses a Branch-and-
Bound procedure to guide the learning process. Our experimental results show that ADL-FDI4 outperforms the
state-of-the-art solutions in terms of detection rate and running time, and for that, it consumes less energy. In
addition to handling heterogeneous data, which implies that one computational device is sufficient to handle
all data formats.
. Introduction

The developments in 5G and Beyond 5G (B5G)/6G technologies
nd the start of their deployment lead to huge advances in the In-
ernet of Things (IoT) and Machine-to-Machine (M2M) communica-
ions. This has benefited industrial automation, increased productiv-
ty, reduced production costs, and created new industrial ecosystems
Industry 4.0) [1–7].

The Fourth Industrial Revolution (Industry 4.0) is a concept of major
nterest to the business, industrial, and academic research communities
ince 2014 [8–10]. Researchers are developing new technologies to
ake this new industry smart, autonomous, and sustainable. Thanks

o the enabled ubiquitous sensing and actuation in distributed IoT
latforms with the integration of (B5G)/6G, fault detection is currently
hot research topic that concerns itself with the identification and

ocalization of faults in systems and processes.
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However, the state-of-the-art deep learning-based fault detection
algorithms cannot handle heterogeneous data, while the data collected
from the various sensors and smart devices can be of different formats,
it can for instance be images, videos, time series, or even graphs. This
might lead to the necessity of using a lot of fault detection compu-
tational devices to handle all the received data formats. In addition
to this, it is very common to have different types of sensor data and
information available about an industrial event; and taking advantage
of the combination of these different data formats may significantly
help derive a more accurate classification of the observation/event. In
this paper, we also show that the state-of-the-art algorithms are slow
and therefore require more computational resources than necessary.
Also, these algorithms rely on exhaustive search strategies for hyper-
parameter tuning in the training phase, which is not the most efficient
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strategy. In this work, we propose an Advanced Deep Learning frame-
work for Fault Diagnosis in Industry 4.0 (ADL-FDI4) to address these
issues.

1.1. Motivations

Fault detection is a very important area of research in the 6G in-
dustry, especially when considering faults resulting from cyber-attacks;
which we imagine are of primordial concern in such connected envi-
ronments, and the risks they can represent. But the process of detecting
faults can be costly and far from being sustainable, in addition to
not being very reliable. In this modern industry, it is usually the
case that data is very much available, the only problem is that it is
usually available in different formats and not fully exploited. Using
different data formats, and thus combining as much as possible of the
information we can obtain about the same industry event, can greatly
improve the classification accuracy of that event into a particular faultt
category, or not into a fault. And improving the learning process by
better choosing the hyper-parameters can significantly decrease the
running time, and thereby make the model more sustainable.

1.2. Contributions

The main contributions of this research are listed as follows:

1. We propose a novel framework, named ADL-FDI4 (Advanced
Deep Learning framework for Fault Diagnosis in Industry 4.0).
This framework takes as input different types of data formats
about the same industrial event: images, videos, time series, and
graphs, and combines all the information available in these dif-
ferent formats to output the most accurate set of fault diagnoses
about this event that is possible to get with the inputs. The model
relies on the combination of LSTMs, CNNs and graph CNNs, to
handle the heterogeneous data.

2. We propose a branch-and-bound optimization strategy for hy-
perparameters tuning of the different deep learning architec-
tures involved in the model. The strategy considers the hyper-
parameters space and intelligently explores the enumeration tree
using a heuristic instead of the exhaustive search-based methods.

3. For performance evaluation purposes, our model is compared in
terms of accuracy and running time to the state-of-the-art fault
detection algorithms in Industry 4.0 (B5G)/6G environments,
using four benchmarks.

1.3. Outline

The rest of this paper is organized as follows. Section 2 gives an
in-depth related work-study in fault diagnosis for Industry 4.0 in a
(B5G)/6G environment. Section 3 presents a detailed explanation of
the ADL-FDI4 framework. A performance evaluation of the ADL-FDI4
framework is provided in Section 4, which is followed by the conclusion
in Section 5.

2. Literature review

2.1. Related studies

Jeon et al. [11] developed a smart machine software for Industry
4.0 in a systematic way instead of ad-hoc technologies. It allows to
check all stakeholders’ constraints, and implement them into auto-
matic operations. It also incorporates the digital twin technology [12]
which considerably helps the manufacturing process in visualizing
the detected anomalies. Kiangala et al. [13] transformed the multi-
variate time series data collected from Industry 4.0 sensors to the
set of images for predictive maintenance using the Gramian Angular
Field [14]. The obtained images are trained using the convolution
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neural network with an adapted rectifier linear unit activation func-
tion. Dalzochio et al. [15] established a systematic analysis of 38
relevant research works in the applications of artificial intelligence
techniques for predictive maintenance. This study reveals that the
heterogeneity and computational resources are open challenges for
predictive maintenance in Industry 4.0. Silvestri et al. [16] studied the
interaction among the maintenance tasks and the different predictive
maintenance and fault diagnosis strategies in Industry 4.0 context.
They argued that the existing solutions for Industry 4.0 missed the
incorporation of artificial intelligence and visualization techniques for
better predictive maintenance operations. Kufner et al. [17] dealt with
a large amount of data in production, and suggested a vertical-based
solution while merging sensors data in a distributed cloud environment.
Kaupp et al. [18] identified various kinds of contextual faults in a
log of data collected from sensors in a smart factory system. The first
kind is a compressor failure where lack of air pressure will harm the
manufacturing process without stopping its functionalities. The second
kind of contextual fault is the high delay of production time by doing
a manual inspection. The third kind of contextual fault is performed
during the pressing stage where the behavior of the manufacturing
process is slightly changed once the assembling operator is executed.
Natesha et al. [19] employed fog computing in the industrial internet of
things environment for fault diagnosis. The industrial controller is used
to process abnormal machine sounds. The malfunctioning machines are
observed by the supervised machine learning architectures by train-
ing the linear prediction coefficients. Rahman et al. [20] developed
a privacy-preserving solution to handle microservices in educational
settings. The approach used blockchain strategy which aims to ensure
integrity and confidentiality over different entities in the education
system. The fault diagnosis process is also used to identify abnormal
behaviors from microservices data. Long et al. [21] explored the visual
features for motor fault diagnosis. The correlation between the anoma-
lies and the visual features is studied using a matching process. This
method is a fly-based solution where only the training data with small
sizes is required. Liu et al. [22] suggested the use of distributed artificial
intelligence to assist Industrial Internet of Things (IIoT) systems in
predicting faults and anomalies. The feature selection is performed to
reduce the searching space and execute the predictive maintenance
framework in real-time. Yu et al. [23] proposed a multi-objective
algorithm for handling imbalanced data of fault diagnosis scenarios. An
adaptive loss function based on various misclassification metrics was
used to learn the minority population. Hazra et al. [24] investigated
the use of reinforcement learning for decision making in the Industrial
Internet of Things (IIoT). The developed model can easily learn the
different rules for controlling industrial networks, and then be able to
deal with multi-user requests. Hazra et al. [25] improved the previous
solution by developing the provisioning-based approach to process
multiple fog devices. A task partitioning policy was also suggested.
Adhikari et al. [26] reviewed several types of intrusion detection on the
internet of vehicles systems. It also suggested some solutions to mitigate
such attacks. Adhikari et al. [27] improved the previous solution by
developing a reinforcement learning-based process. The support vector
machine was also used to analyze the CyberTwin data.

2.2. Discussion

From this literature review, we can see that the existing technologies
for fault diagnosis have several drawbacks. The first one is that they
are not able to handle heterogeneous data with different data formats.
While different types of data can be collected from the sensors in the
Industry 4.0 environment, such as images, videos, and also graphs and
time series. The second issue is that they rely on exhaustive search
strategies for hyper-parameters optimization, where many parameters
should be fixed and tuned in the training phase. In the next section, we
present a new Advanced Deep Learning framework for Fault Diagnosis
in Industry 4.0 (ADL-FDI4) to address the drawbacks mentioned above.
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Fig. 1. ADL-FDI4 framework.
Fig. 2. ADL-FDI4 simplified visualization.
. ADL-FDI4: advanced deep learning for fault diagnosis in Indus-
ry 4.0

.1. Principle

Let us begin by introducing the main components of ADL-FDI4.
ig. 1 illustrates the designed framework which is based on differ-
nt smart technologies, namely, Branch-and-Bound and different Deep
earning architectures, which are: Long Short Term Memory (LSTM),
onvolutional Neural Networks (CNN), and graph CNN, to deal with

ndustry 4.0 data. The data is first extracted from different sensors.
he deep learning is then executed to detect the faults in the system
nd trigger alarms which will notify the Industry 4.0 monitoring system
f the detected faults. In this context, different deep learning architec-
ures are combined to handle the heterogeneous data: long short-term
emory for time series, a convolution neural network for images,

nd a graph convolution neural network for graph data. A Branch-
nd-Bound optimization strategy is proposed for the hyper-parameters
uning of the different deep learning models. The strategy considers the
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hyper-parameters space and intelligently explores the enumeration tree
using a heuristic instead of the exhaustive search-based methods. Fig. 2
shows a simplified visualization of the model developed in this paper.
In the remainder of this section, we describe the detailed ADL-FDI4
components.

3.2. ADL-FDI4 components

3.2.1. Long Short Term Memory
LSTM is the most known and most used recurrent neural network

(RNN) architecture. It is very effective in learning from sequential and
time-series data, therefore it is very used in Industry 4.0 applications.
LSTM was specially designed to deal with the exploding/vanishing gra-
dient problems that we may encounter when training traditional RNN.
The LSTM architecture proposed in this research work is composed of
four units:
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1. The prediction unit: Is a neural network that receives an input
vector and predicts an output vector. The prediction gets better
the more the whole architecture is trained.

2. An attention mechanism: Is another neural network that is
trained separately to learn to ignore some predictions (that will
come from the first unit) that are not relevant at the moment,
so they do not cloud the predictions in memory when going
forward.

3. A memory unit: Another neural network that learns what to
keep in memory and what to forget. Memorized information can
then be combined with the coming predictions from the two first
units to make a better prediction based on previously seen data.

4. A selection unit: Another neural network trained to filter and
select only the final prediction to send as output and keep the
memories in.

here are two types of gates that make all of this work together:

• The element by element addition gate.
• The element by element multiplication gate.

.2.2. Convolution neural network
CNN is used in computer vision to handle images or videos. The

ain idea behind a convolution neural network is to filter each input
mage to extract certain features (the features that help the most in
istinguishing the object we are looking for) before training the fully
onnected layers. To filter, we use what is called filter matrices (or
ilters). A filter is a set of multipliers; for example, if we have a filter
atrix 𝐹 of size 3 × 3, and the matrix 𝑀 of the pixels of an image,
e compute the new value of a pixel 𝑥 in 𝑀 by building a matrix 𝐴

of its neighbors (𝑥 is in the center of this matrix 𝐴 of size 3 × 3), and
hen we compute the element-wise product of 𝐹 and 𝐴, the new value
f 𝑥 is the sum of all the products we obtained; we do this for all the
lements of 𝑀 to obtain the filtered image matrix. These filters are
earned in the convolutional layer of a convolution neural network. In
his layer a pre-selected number of randomly initialized filters will pass
ver each input image, the results are sent to the neural network and
his is how the best filters are learned. This process is called feature
xtraction. The architecture of a convolution neural network can also
ontain pooling layers. Pooling is a way of compressing an image, by
rouping some pixels in the image in sets and replacing each set with a
ubset of pixels. For example, max-pooling 2 × 2 groups the image into
ets of 2 × 2 pixels and replaces each set by the largest pixel it contains,
he image will then be reduced to a quarter of its original size.

.2.3. Graph convolution neural network
Graph Convolution Neural Network (GNN) is a deep learning ar-

hitecture that operates on graph-structured data. We want to take
dvantage of the convolutional layer of a CNN to operate on arbitrary
raphs (graphs of any structure, cyclic or not, and with any number
f nodes and edges) instead of images. We can see images as ‘‘grid
raphs’’ (each node is a pixel, and the pixels’ matrix of the image is
he adjacency matrix of the grid graph that this image is). To apply the
ame idea of filtering an image on graphs; instead of having a pixel
or which we use the information contained in its neighboring pixels
o update its value, we have a node for which we use its neighboring
odes to update its features.

In a GNN, we can either classify each node independently, or classify
he graph as a whole, or we can classify the edges or investigate the
xistence of a link between two nodes. To build a GNN, we start by
onstructing the adjacency matrix 𝐴 of the graph: For example, in a
on oriented graph we can take 𝐴𝑖𝑗 = 1 (with 𝐴𝑖𝑗 being an element of
he adjacency matrix A, also called the neighboring matrix) if there
s a link between node 𝑖 and node 𝑗, and 𝐴𝑖𝑗 = 0 if 𝑖 and 𝑗 are

not linked. We also construct the node matrix 𝐻 , which contains the
message or information stored in each node, and then build the matrix
𝐻 ′ = 𝜎

(

�̂�−1�̂�𝐻𝑊
)

where 𝑊 is a learnable node-wise shared linear
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transformation (which is a linear layer in a deep learning framework),
𝜎 is a nonlinear function such as ReLU, �̂� = 𝐴 + 𝐼 (this matrix �̂�
s included to not discard the central node, it enforces that a node
s always connected to itself), �̂� is the degree matrix, this matrix
ives the degree of each node, �̂�−1 is integrated into the equation to
ormalize the adjacency matrix and force the features not to explode
hen summing. This is called the mean-pooling update rule. If we use

he symmetric normalization:
′ = 𝜎

(

�̂�−1∕2�̂��̂�−1∕2𝐻𝑊
)

(1)

We obtain the graph convolutional network (GCN) update rule. This
s currently the most popular graph convolutional layer. Or in a more
eneralized representation, nodes can send arbitrary messages along
he edges ⃖⃖⃖⃗𝑒𝑖𝑗 , a node then aggregates all the messages it receives using
permutation-invariant function (such as a sum).

Let 𝑚𝑖𝑗 be the message sent from node 𝑖 to node 𝑗, calculated using
message function 𝑓𝑒:

⃖⃖⃖⃖⃖⃗𝑚𝑖𝑗 = 𝑓𝑒
(

⃖⃖⃗ℎ𝑖, ⃖⃖⃖⃗ℎ𝑗 , ⃖⃖⃖⃗𝑒𝑖𝑗
)

, (2)

then all messages entering a node are aggregated using a readout
function as:

𝑓𝑣 ∶ ⃖⃖⃖⃗ℎ′𝑖 = 𝑓𝑣

(

⃖⃖⃖⃗ℎ𝑣,
∑

𝑗∈𝑁𝑖

⃖⃖⃖⃖⃖⃗𝑚𝑗𝑖

)

, (3)

where 𝑁𝑖 is the set of the neighbors of node i.
This gives the message-passing neural network (MPNN), that is in

practice only applicable to small graphs. 𝑓𝑒 and 𝑓𝑣 are usually small
multilayer perceptrons. A more general form is:

⃖⃖⃖⃗ℎ′𝑖 = 𝜎

(

∑

𝑗∈𝑁𝑖

𝛼𝑖𝑗𝑊 ⃖⃖⃖⃗ℎ𝑗

)

, (4)

where 𝛼𝑖𝑗 is a coefficient that is either defined explicitly which causes
ome shortcomings, or

𝑖𝑗 =
exp

(

𝑎𝑖𝑗
)

∑

𝑘∈𝑁𝑖
exp

(

𝑎𝑖𝑘
) , (5)

where

𝑎𝑖𝑗 = 𝑎
(

⃖⃖⃖⃗ℎ𝑣, ⃖⃖⃖⃗ℎ𝑗 , ⃖⃖⃖⃗𝑒𝑙𝑗
)

, (6)

in which a is a learnable, shared, self-attention mechanism. This is
called the graph attention network update rule.

In short, a given graph is encoded in three matrices: 𝐴 (the ad-
jacency matrix), 𝐻 (the node matrix), 𝐷 (the degree matrix), and a
scalar 𝑊 . With these parameters, a matrix 𝐻 ′ is calculated following
the chosen update rule equation. Feeding this graph as an input to the
GNN means providing a deep neural network with this matrix 𝐻 ′ as an
input, for it to output a vector of the classification of the input, just as
in any other deep neural network that gets a matrix as an input. The
specification in a GNN is in the manner of encoding the graph into a
matrix 𝐻 ′.

3.3. Branch-and-Bound for hyperparameters optimization

Hyper-parameters optimization is a primordial task when develop-
ing deep learning models. In this research work, we used a Branch-
and-Bound (BB) strategy to intelligently optimize the different hyper-
parameters of the different deep learning architectures used in our
model. BB is a well-known algorithm for discrete optimization prob-
lems, combinatorial optimization problems and also for mathematical
optimization. Where we need to keep track of what the lowest bound
yet found is, to compare it with the possible solutions and only keep a
possible solution and consider it the new lowest bound if it is inferior
to the lowest bound yet found. From here we can deduce that we can
only solve minimization problems, but any maximization problem can
be formulated as a minimization problem by multiplying the objective
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function by −1. The only problems for which we can guarantee to find
the global optimum are the convex problems. Branching consists of
forming a rooted tree of the possible solutions to the problem. Then
we can do an exhaustive search (explore all the branches of the tree),
or get rid of some branches that we know cannot be solutions and not
explore them (this is called pruning). When we have a convex problem,
we can prune if we have one of these scenarios (if the problem is not
convex, these conditions may lead to pruning too early and maybe miss
a local optimum or miss the global optimum) :

1. Infeasibility of the value of a variable (a constraint). So we get
rid of all the branches that are linked to that value. Because by
going down we are only adding more constraints so if one is
already infeasible no need to go further.

2. We have reached an objective that is worse than the best solu-
tion.

3. A solution is found. Going down cannot make us find a better
solution (because we are just adding more constraints). Now we
just compare this solution to the best one yet found.

There remains concerns on which variable to branch on. We give the
xample of a binary problem (a binary problem here is an optimization
roblem where the vector X of the variables 𝑥𝑖 for 𝑖 = {1, 2, 3,… , 𝑛} is

such that 𝑋 ∈ {0, 1}𝑛 where 𝑛 is the number of variables in the problem)
relaxed to 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = {1, 2, 3,… , 𝑛} that first gives this solution
: 𝑋 = [0.1, 0.6, 1, 0, 1], here we better branch on the variable for which
the value is the closest to 0.5 (in this example it is 𝑥2). In non binary
problems it is more difficult to decide.

There are two main exploration strategies: depth first (walk a branch
to the bottom until we cannot go any further and then work our way
up). Or breadth first (at each depth explore different branches and
then go deeper and do the same again until we reach the bottom).
Usually, depth first is a better strategy, because forcing more and more
constraints usually forces a solution faster, and once we have a solution
we can compare it to others and this helps us prune faster.

4. Performance evaluation

In this section, we provide an intensive numerical analysis of the
proposed solution, comparing it with different baseline methods, using
different data sources. In addition, a well-known evaluation measure is
used to compute the accuracy performance. In the following section, we
present the experimental settings used for the evaluation of the model.

4.1. Experimental settings

4.1.1. Data
Four fault diagnosis benchmarks are processed and analyzed for

evaluation purposes. A detailed description of these benchmarks is
given in the following:

1. Microsoft Azure Predictive Maintenance [28]: It can be used
for both fault diagnosis and predictive maintenance evaluations.
It contains several operating conditions with failure and repair
archives of a machine. It contains 90,000 samples, each sample
is identified by a timestamp.

2. NASA Milling Dataset [29]: It contains an analysis of runs of
milling machines with several executing constraints. Three kinds
of sensors are used including acoustic emission, vibration, and
current sensors. Different cases are generated with increasing
the number of runs. It contains 167 cases separated by a unique
timestamp. From these cases, we generate 50,000 samples. Each
of which simulates one case from 167 cases.

3. Preventive to Predictive Maintenance [30]: It deals with the
practice-relevant degradation process. It is generated from differ-
ent scenarios that do usually match the normal situation. Several
configurations are implemented to achieve better evaluation. It

contains 20,480 samples represented by timestamps.
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4. CWRU Bearing Dataset [31]: It contains time series for motor
fault diagnosis. The deficiency is introduced at every single value
and measured in inches. Different deficiency diameter sizes are
observed, and these deficiencies are located in different parts:
ball, inner and outer races. It contains 48,967 samples with
different features. The projection on the anomaly class with the
timestamp is done as a preprocessing step.

4.1.2. Evaluation metric
To evaluate the proposed framework, the detection rate 𝐷𝑅 is

calculated and used as a metric of comparison. This is widely used to
evaluate fault diagnosis algorithms and is defined by:

𝐷𝑅 = 𝐷𝐹
𝐴𝐹

× 100, (7)

where DF is the number of detected faults, and AF is the number of all
aults observed in the system.

.1.3. Baseline methods
In the experiments, we compare the ADL-FDI4 framework with the

ollowing baseline fault diagnosis solutions:

1. semi-DCNN (semi-deep Convolution Neural Network) [32]:
It is a hybrid method that combines support vector machine
with DCNN for multi-fault diagnosis systems. The multi-features
are automatically extracted by the DCNN, the support vector
machine then uses these features to decide the machine state.

2. FD-SAE (Feature Distance Stack AutoEncoder) [33]: The fea-
ture extraction is performed with the autoencoder mechanism
by respecting diversification with computing the distance among
the features. The support vector machine uses these features to
classify and identify the faults in the system.

3. GA-SVR (Genetic Algorithm with Support Vector Regres-
sion) [34]: It is a hybrid support vector regression and genetic
algorithm for identifying fault diagnosis in the industrial equip-
ment. The genetic algorithm is used to optimize the parameters
of the support vector regression.

.2. Parameters’ settings

The first experiment aims to tune the hyper-parameters of the
roposed ADL-FDI4 framework. As explained in Section 3.3, Branch-
nd-Bound plays the role of supervision of the different deep learning
odels developed in this research work. Parameters’ settings are an

mportant preliminary step where the hyper-parameters of the different
eep learning models should be carefully analyzed and tuned. The
ommon parameters of the deep learning models used in this work are
he number of epochs, the learning rate, and the number of batches.
o analyze such hyper-parameters, intensive experiments have been
arried out by launching the Branch-and-Bound optimization algorithm
or each execution. Thus, the number of epochs is varied from 1 to
100 with 1 step, the learning rate is varied from 0 to 1 with 0.1
step, and the number of batches is varied from 8 to 512 with 8 steps.
Branch-and-Bound explores the hyper-parameters space and finds the
best parameters for each dataset. The summary of the best parameters’
values is illustrated in Table 1. In the next two sections, our model uses
the best value of each hyper-parameter and is compared to the state-of-
the-art models on these four benchmark datasets in terms of accuracy
and running time.

4.3. Accuracy performance

Our initial experiments aimed at evaluating the accuracy of ADL-
FDI4 compared to the baseline fault diagnosis solutions: semi-DCNN,
FD-SAE, and GA-SVR. Using the four datasets mentioned above. By
varying the number of faults as input from 10 to 100, Fig. 3 shows

that ADL-FDI4 outperforms the three baseline algorithms in terms of
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Fig. 3. Accuracy of the ADL-FDI4 compared to the state-of-the-art fault diagnosis solutions.
Table 1
Best parameters of ADL-FDI4.

Dataset Epochs Learning rate Batches

Microsoft Azure Predictive Maintenance 53 0.67 16
NASA Milling 65 0.45 32
Preventive to Predictive Maintenance 73 0.62 8
CWRU Bearing 33 0.86 16

detection rate. The detection rate of the ADL-FDI4 reached 83% for
dealing with 100 faults of the Microsoft azure predictive maintenance
dataset. Whereas the detection rate for the other models goes under
71% for handling the same scenario. These results are obtained thanks
to the efficient combination between deep learning and the Branch-
and-Bound strategy for fault diagnosis. The Branch-and-Bound strategy
can efficiently tune the hyper-parameters of the different deep learning
models used in the ADL-FDI4.

4.4. Runtime performance

The second experiments aim at evaluating the runtime of the ADL-
FDI4 compared to the baseline fault diagnosis solutions: semi-DCNN,
FD-SAE, and GA-SVR using the four datasets mentioned above. By
varying the number of faults as input from 10 to 100, Fig. 4 shows that
ADL-FDI4 outperforms the three baseline models in terms of runtime.
However, the difference in performance for the three models is too
small for the Microsoft azure predictive maintenance dataset and it is
high for the other datasets. The difference in runtime between ADL-
FDI4 and the baseline algorithms does not exceed 10 milliseconds for
dealing with 100 faults of the Microsoft azure predictive maintenance

dataset. Whereas the difference in runtime between ADL-FDI4 and
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Table 2
Training performance of the ADL-FDI4 and the state-of-the-art fault diagnosis solutions
on Big Data.

Dataset X 100 ADL-FDI4 semi-DCNN FD-SAE GA-SVR

CPU Acc. CPU Acc. CPU Acc. CPU Acc.

Micro. Azure Pred. Maint. 1543 98 1432 96 896 92 906 89
NASA Mil. Data. 1633 95 1230 93 993 90 1076 88
Prev. Pred. Maint. 1549 99 1260 95 1120 94 998 91
CWRU Bear. Data. 1205 97 1006 96 879 93 976 92

the baseline algorithms reaches 25 milliseconds for handling the same
scenario on the CWRU Bearing dataset. These results are explained by
the fact that the other algorithms are complex methods that combine
both the deep learning architectures for extracting the features and the
traditional machine learning algorithms for the fault diagnosis process.

4.5. Training performance on big data

The last experiment is meant to show the ability to train the
proposed framework on Big Data. Table 2 presents the training per-
formance (the runtime in seconds, and the accuracy in percentage) of
the proposed solution and the state-of-the-art solutions for handling 100
times of the data described above. From these results, we can say that
the proposed framework gets a better accuracy than the other solutions,
whatever is the data used. For instance, it reaches 99% of accuracy
with 100 times the Preventive to Predictive Maintenance dataset, while
the other solutions do not exceed 95% for the same data and with the
same data size. This result is explained by the fact that the proposed
framework is more robust, by the fact that it contains three different

deep learning architectures. In addition, the efficient selection of the
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Fig. 4. Runtime of the ADL-FDI4 compared to the state-of-the-art fault diagnosis solutions.
hyper-parameters with the Branch-and-Bound allows for the increase of
the training accuracy performance. However, the proposed framework
needs more time to train compared to the other solutions. This is
explained by the fact that three architectures are used instead of one,
and also by the time required for the hyper-parameter optimization
process.

4.6. Discussion

This section shows the lessons learned from the investigation of the
ADL-FDI4 framework to solve the issue of sustainable fault diagnosis
in (B5G)/6G Industry 4.0 applications. The first finding of this study is
that the proposed framework is generic and can efficiently deal with
heterogeneous data, using a combination of different deep learning
architectures. Another finding is that the deep learning models benefit
from the Branch-and-Bound strategy for hyper-parameters tuning. The
enumeration search tree is first created, and then an efficient heuristic
is used to prune the irrelevant branches. We also show that ADL-FDI4
outperforms the state-of-the-art algorithms both in terms of detection
rate and running time, in addition to handling heterogeneous data,
which makes it a more sustainable approach.

5. Conclusion

In this paper, we proposed an Advanced Deep Learning framework
for Fault Diagnosis in (B5G)/6G Industry 4.0 applications (ADL-FDI4).
This framework addresses two issues in the current technologies for
fault diagnosis. The first issue is the non-ability of the state-of-the-art
algorithms to handle heterogeneous data, meaning that more than one
Fault Detection computational device has to be used to process all the

data formats, in addition to not exploiting all the information available
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that can help increase the accuracy of the model. And this raises
sustainability concerns. The second issue is that these algorithms rely
on inefficient exhaustive search hyper-parameters tuning strategies.
ADL-FDI4 aims at addressing the first issue by benefiting from the
combination of different deep learning architectures, which are LSTM
for handling time series, CNN for image processing, and graph CNN for
graph data. And solving the second issue by relying on a smart Branch-
and-Bound strategy to explore the parameters’ space and optimize the
parameters’ choice. For performance evaluation, our model is compared
to three state-of-the-art baseline fault diagnosis solutions using four
diagnosis benchmarks. The experimental results show that ADL-FDI4
outperforms the state-of-the-art solutions in terms of detection rate
and running time, and for that, it consumes less energy. In addition
to handling heterogeneous data, which implies that one computational
fault detection device is sufficient to handle all data formats. All of this
makes ADL-FDI4 a more sustainable fault detection approach.
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