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A B S T R A C T

This paper presents a novel deep learning architecture for identifying outliers in the context of intelligent
transportation systems. The use of a convolutional neural network with an efficient decomposition strategy
is explored to find the anomalous behavior of urban traffic flow data. The urban traffic flow data set is
decomposed into similar clusters, each containing homogeneous data. The convolutional neural network is
used for each data cluster. In this way, different models are trained, each learned from highly correlated data.
A merging strategy is finally used to fuse the results of the obtained models. To validate the performance of
the proposed framework, intensive experiments were conducted on urban traffic flow data. The results show
that our system outperforms the competition on several accuracy criteria.
. Introduction

Urban traffic flow data have recently piqued the curiosity of re-
earchers. [1–3], in particular, numerous deep learning and computer
ision systems [4–6] have been implemented to analyze and understand
rban traffic flow data in the context of intelligent transportation, and
mart city based applications.

Urban traffic flow data consists of observations such as the number
nd speed of cars or other vehicles at specific locations, as deter-
ined by installed sensors. These numbers represent the flow of traffic,
hich is related to the capacity of roads and the demand on the

ransportation system. Urban planners are interested in the effects
f various factors on traffic flow that result in unexpected patterns
alled outliers. In addition, we hope to learn from the behavior of
ndependent participants (bicyclists, cars, trucks, and public transit)
nder different conditions (weather, events, road maintenance) to help
rban planners and managers make decisions about roadway design,
egulatory systems (e.g., traffic signals), and public transit routes, as
ell as temporary invasive building placement decisions.

.1. Motivation

Existing techniques for detecting anomalies in urban traffic flow
ata [7,8] consider the entire urban traffic flow data for building
he learning models. This degrades the overall performance of such
pproaches, especially for large and diversified urban traffic flow data
here traffic flow variations are high throughout the year. Several

∗ Corresponding author.
E-mail address: jerrylin@ieee.org (J.C.-W. Lin).

works have been developed to deal with heterogeneous urban traffic
flow data [9,10]. Even the advanced deep learning architectures with
more layers show great improvement, but still suffer from both ac-
curacy and inference runtime. Recently, the decomposition strategies
have attracted great interest in the deep learning community [11–
13]. The idea is to partition the heteregenous training space and work
with more focused regions, and homogeneous sub-spaces. This research
work follows this direction and explores decomposition for outlier
detection in traffic flow.

1.2. Contribution

This paper addresses the shortcomings of existing methods in the
literature for detecting outliers in urban traffic flow data processing and
proposes a new framework for processing large and comprehensive data
to find anomalies from urban traffic flow data. The main contributions
of the paper are listed below:

1. We propose an efficient improvement of the convolutional neu-
ral network by exploring the decomposition strategy to partition
the data into similar clusters.

2. We develop a merging strategy to fuse the different outputs of
the trained models and accurately detect outliers.

3. We evaluate the proposed framework on two urban traffic flow
data and with different metrics. The results show a clear superi-
ority of the proposed system compared to the baseline methods.
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1.3. Outline

The remainder of the article is organized as follows. Section 2
discusses known strategies for detecting anomalies in an intelligent
transportation system. Section 3 summarizes the proposed strategy and
its main components. Section 4 summarizes the experimental setup and
results. Section 5 summarizes the main results of applying the proposed
methodology to urban traffic flow data. Section 6 gives an outlook on
the future development of the proposed framework. Finally, Section 7
concludes the paper.

2. Related work

Algorithms for detecting outliers in urban traffic can be divided
into different classes. Classical methods, which use traditional machine
learning methods, and advanced methods, which are based on deep
learning. In this section we will discuss solutions of both classes.

2.1. Classical machine learning based solutions

Ngan et al. [14] study the Chinese restaurant process to create an
endless number of clusters for the flow values. All the flow values be-
longing to the cluster with the most elements are considered as inliers,
while the other flow values are considered as outliers. Gu et al. [15]
proposed an intelligent model for passenger flow anomalies. First, a
hybrid k-means and hierarchical clustering algorithm is performed to
identify the passenger flow represented by time series data. Anomaly
detection indices are generated to represent the different types of
outliers in the passenger flow. The different detected anomalies are
reported to the city planners as alarms.

Lin et al. [16] develop a method for predicting road traffic speeds
based on Gaussian aggregation. To augment the training data, speed
measurement data is first combined with tweet and trajectory data.
The entire framework is then built using a mixture of a disaggregation
model and a Gaussian process. Munoz-Organero et al. [17] present a
method to filter out driving locations associated with unpredictable
traffic situations, such as congestion, from infrastructure road features.
Mahalanobis distance is used to determine the similarity of individual
traffic flows recorded at each second within different time frames.
Shi et al. [18] proposed a dynamic neighborhood-based technique
to identify local anomalies in spatiotemporal traffic flow data. The
dynamic flow is first represented by the real-time vehicle speed data.
Then, the dynamic neighborhood structure is established by calculating
the similarity of the spatio-temporal flows.

2.2. Advanced deep learning based solutions

Nguyen et al. [19] proposed two stepwise solutions for vehicle
anomaly detection. The process starts with vehicle detection using
multiple adaptive vehicle algorithms. The detected vehicles are trained
in a convolutional neural network to identify anomalous events. Bai
et al. [20] developed a three-stage algorithm for traffic anomaly detec-
tion. First, traffic flow is analyzed to determine both road segmentation
and stationary regions. The perspective map is then generated from the
data obtained in the first step. Finally, the spatio-temporal information
matrix is created to identify all anomalies.

Zhu et al. [21] developed a convolutional neural network to find
anomalies in urban traffic. The image database is generated from traffic
data observations, with each image representing a particular state of
the traffic situation in the city. The convolutional neural network
is used to identify anomalies, and each image is classified into two
categories: normal or abnormal traffic flow. Huang et al. [22] studied
the causality of traffic in a large urban network. They consider a
visible outlier index as a probabilistic indicator of traffic anomalies
by injecting the spatiotemporal anomalies into the deep autoencoder
learning model. The proposed solution is able to detect contours around
 d
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the zones that cause anomalies in the network, which helps urban
planners to get an accurate understanding of such areas.

Based on this brief literature review, urban traffic flow anomaly
detection strategies can be divided into two groups (classical and
advanced). The classical methods can be divided into two categories.
The first category is statistical methods, where inlier flows are assumed
to follow a common statistical process, while outlier flows deviate
from this statistical mechanism. The second group of approaches is
based on similarity. These approaches use distance measurements and
methods for computing neighborhoods, as well as traditional methods
for identifying outliers cited in [23,24]. Normal flows are assumed
to produce dense regions, while deviant flows produce sparsely pop-
ulated regions. Statistical methods are extremely sensitive to outliers,
i.e., outliers affect the fit of the model. In addition, they rely on a
particular statistical model, and it is often unclear whether or not that
model accurately represents the true distribution of traffic flow data. By
using a non-parametric approach, similarity-based techniques solve the
latter problem. However, they are very sensitive to the distance used to
calculate the neighborhoods. The advanced methods are based on deep
learning and use different deep architectures such as recurrent neural
networks, convolutional neural networks, and autoencoder models to
solve the problems of the classical solutions.

However, these systems still have a low detection rate because
the entire database is considered/used in the learning process, even
in distributed environments. Moreover, tuning the hyperparameters of
deep learning models is not trivial. Given the success of cluster-based
algorithms [25,26], in the next section, we present a hybrid fusion
technique that combines decomposition and CNN to efficiently explore
traffic flow data in a distributed environment system.

3. DCNN-TFO: Deep convolution neural network for traffic flow
outliers

In this section, we present a novel deep learning algorithm for
identifying anomalies in urban traffic data. It is a convolutional neural
network that takes images as input and is applied to urban traffic
data. As shown in Fig. 1, the process begins by collecting data from
traffic sensors and generating traffic flow data. These are decomposed
to create homogeneous clusters. The input of the convolutional neural
network is the clusters generated by the decomposition algorithm. As a
result, different models are generated, each of which is associated with
a cluster of the urban traffic data. The main difference between the
proposed convolutional neural network and the generic networks is that
the proposed architecture is able to handle large and heterogeneous
data. This is very difficult to achieve without decomposition. In the
following, we describe the main steps of the DCNN-TFO, followed by
its pseudocode shown in Algorithm 1.

3.1. Decomposition

Decomposition is first used to divide the set of urban traffic flows
into similar clusters. This allows the deep learning models to be easily
trained with homogeneous data. The goal is to determine a set of
clusters that we can assign to each urban traffic flow while minimizing
the distances between the urban traffic flow of the given cluster and its
centroid. We need to optimize the following function:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑘
∑

𝑖=1

∑

𝐹𝑗∈𝐶𝑖

𝐷(𝐹𝑗 , 𝑔𝑖), (1)

here 𝐹𝑗 is the urban traffic flow data, 𝐶𝑖 is the 𝑖th cluster, and 𝑔𝑖 is
he centroid of the 𝐶𝑖.

To solve this problem, we use the k-means heuristic. We start by ran-
omly initializing the centroids of the clusters. The distance between
he centroids and each urban traffic flow data is determined, and these
rban traffic flow data are assigned to the cluster with the smallest

istance value. After assigning all traffic flow data, the centroid of each
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Fig. 1. DCNN-TFO framework.
cluster is updated. This process is repeated until convergence or the
maximum number of iterations is reached. Convergence is achieved if
and only if the value of the convergence criterion described by Eq. (2)
is less than a given threshold.

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
𝑘
∑

𝑖=1

∑

𝐹𝑗∈𝐶𝑖

𝐷(𝐹𝑗 , 𝑔𝑖) (2)

3.2. Convolution neural network

This phase identifies anomalies in the input image data. We were
inspired by the Faster RCNN concept, which is widely considered to
be the most advanced method for object detection [27]. In our context,
the objects to be identified are anomalies from urban traffic data. Faster
RCNN mainly consists of the following steps:

1. Region Proposal Determination: This phase identifies the regions
of interest, or possible areas marked by bounding boxes, to
which the element can be assigned. The traditional RCNN [28]
uses the selective search technique described in [29]. This tech-
nique generates a large number of bounding boxes for each
image, making the whole process tedious and memory intensive.
Faster RCNN is a more efficient approach to determine the
bounding boxes by using a convolutional neural network. The
neural network is then used to suggest bounding boxes using the
training images as a basis.

2. Fast RCNN: This stage focuses on classifying parts of images as
objects and refining their boundaries. Classification and regres-
sion techniques are also used in this step.

In this study, we extend the Faster RCNN to detect anomalies in
urban traffic data. First, we train the Faster RCNN model using transfer
learning on each cluster of urban traffic data obtained in the previous
phase. We train our Faster RCNN on the Imagenet dataset1 and then
apply the trained model to the urban traffic data clusters. This step
generates hard negatives that are used to augment the models during
the training process. The combination of multiscale training and feature
chaining is used to improve the performance of the trained model. Our
adaptation is described as follows:

1 http://www.image-net.org/.
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1. Feature Concatenation: Faster RCNN performs region-of-interest
pooling at the last feature map level to create region-specific
features. This technique is insufficient and omits several critical
elements, resulting in a loss of accuracy. To solve this problem,
we combine the feature maps of many convolutional layers with
features from different layers. We follow the same idea [30]
by concatenating and rescaling the pooling results of multiple
feature maps using L2 normalization to obtain the final pooling
features for recognition tasks.

2. Hard Negative Mining: This method identifies hard negatives,
i.e., places where the models make incorrect predictions. To
improve the performance of our models, we incorporate hard
negatives into them via reinforcement learning. During the sec-
ond iteration of our training process, we extract hard negatives,
where a region is called a hard negative if its intersection with
the ground truth region is less than 40%.

3. Multi-Scale Training: The traditional Faster RCNN generates
bounding boxes at a fixed scale. In real-world applications, such
as urban traffic data, the objects to be detected have a range
of sizes. In this study, we investigate five different scales for
bounding boxes (tiny, small, medium, large, and very large)
to detect objects of different sizes. Thus, five different groups
are formed, each consisting of identical bounding boxes. In
this context, for each group of bounding boxes, the process of
determining the region is initiated. At the end of this step, the
created bounding boxes are combined with the convolutional
neural network for classification and regression.

3.3. Fusion model

The goal of this step is to merge the results obtained from the
models. A voting strategy is used to find the final result of the proposed
framework. We assume 𝑘 different models {𝑀1,𝑀2,… ,𝑀𝑘}, where
each model 𝑀𝑖 gives an output 𝑂𝑖 indicating for a given input whether
it is an outlier or not. We assume that 𝑂𝑖 is set to 1 if the model 𝑀𝑖
considers the current input to be an outlier, and 0 otherwise. We first
sum all the outputs of the 𝑘 models shown in Eq. (3):

𝑂 =
𝑘
∑

𝑂𝑖 (3)

𝑖=1

http://www.image-net.org/
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If 𝑂 is less than 𝑘
2 , then the current input is considered normal urban

raffic flow data, otherwise it is considered an outlier. Eq. (3) is the
ggregation of the results of all trained models. There is no guarantee
hat the correct output will be found, but our aim is to minimize the
odel errors and converge to the correct result. This is implemented
sing Eq. (3), where the decision is made by a voting mechanism. The
ecision will be the most the common decision of all models.

Algorithm 1 DCNN-TFO Algorithm
1: Input: 𝐹 = {𝐹1, 𝐹2,… , 𝐹𝑛}: the set of 𝑛 traffic flow used for the

training stage. 𝐹 ′ = {𝐹 ′
1 , 𝐹

′
2 ,… , 𝐹 ′

𝑚}: the set of 𝑚 traffic flow used
in the inference stage.

2: Output: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠: the best models generated in the training
phase. 𝑂: the set of outliers from the traffic flow in 𝐹 ′.

3: 𝐺 ← 𝑘𝑚𝑒𝑎𝑛𝑠(𝐹 );
4: 𝐻𝑁𝑀 ← 𝐻𝑎𝑟𝑑𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑀𝑖𝑛𝑖𝑛𝑔(𝐹 );
5: 𝐹𝐶 ← 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(𝐹 );
6: 𝑀𝑆𝑇 ← 𝑀𝑢𝑙𝑡𝑖𝑆𝑐𝑎𝑙𝑒𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝐹 );
7: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠 ← ∅;
8: for 𝐺𝑖 in 𝐺 do
9: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ← 𝐹𝑎𝑠𝑡𝑒𝑟𝑅𝐶𝑁𝑁(𝐺𝑖,𝐻𝑁𝑀,𝐹𝐶,𝑀𝑆𝑇 );

10: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠 ← 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠 ∪ 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙;
11: end for
12: 𝑂 ← ∅;
13: for 𝐹 ′

𝑖 ∈ 𝐹 ′ do
14: 𝑂𝑖 ← 0;
15: for 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 ∈ 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠 do
16: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙(𝐹 ′

𝑖 );
17: 𝑂𝑖 ← 𝑂𝑖 + 𝑟𝑒𝑠𝑢𝑙𝑡;
18: end for
19: if 𝑂𝑖 >

|𝐺|

2 then
20: 𝑂 ← 𝑂 ∪ 𝑂𝑖;
1: end if
2: end for
3: return (𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠, 𝑂).

3.4. Pseudo-code

Algorithm 1 shows the pseudocode of the developed DCNN-TFO.
The input data is the set of 𝑛 traffic flow used for training. This data is
accompanied by the ground truth. Each ground truth indicates whether
a particular traffic flow in the training data is an outlier or a normal
traffic flow. To test the trained models, we used a set of 𝑚 traffic flows
that also have ground truth. In this way, the accuracy of the developed
models can be calculated. The results are the best trained models
and the outliers identified from the testing set. The process begins by
creating clusters of training data using the k-means algorithm. The
models are then trained, with each model using a previously created
cluster of traffic flow data. As a result of the training phase, the
weights of the best trained models, noted 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠, are stored. In
the inference phase, the weights of the 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙𝑠 for each test data are
propagated to identify the anomalies. The fusion operation is performed
to calculate the outlier score and then decide whether the current traffic
flow is an outlier or not. The algorithm returns the best models as
well as the set of outliers of the test data. We note that the training
phase, which is performed only once regardless of the amount of data
in the inference, is a very time-consuming task that involves multiple
optimizations. However, the inference step contains only one loop and
requires simple propagation of the models learned in the training phase.

4. Performance evaluation

The proposed framework was validated through extensive experi-

mentation. Two types of data were used:
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1. Odense data: It is a real urban traffic data retrieved from Odense
Kommune (Denmark).2 The data are organized as a series of
rows, each of which provides information about the automobiles
identified at specific locations. The traffic data are from obser-
vations of traffic flow in Odense between 1st January 2017 and
30th April 2018, and include more than 12 million worth of cars
and motorcycles.

2. Beijing data: It is a recent urban traffic data obtained from the
Beijing traffic flow.3 They include about 900 million of traffic
flow values during a two-month period at a single site.

All implementations were performed on a computer equipped with a
64-bit Core i7 CPU running Windows 10 and 16 GB RAM and an Nvidia
Tesla C2075 GPU with 448 CUDA cores (14 multiprocessors with 32
cores each) and a clock speed of 1.15 GHz. It has a total memory
capacity of 2.8 GB, a shared memory capacity of 49.15 KB and a warp
size of 32. Simple precision is used on both CPU and the GPU. It is
evaluated using numerous metrics, including True Positive Rate (TPR),
True Negative Rate (TNR), and Area Under Curve (AUC), all of which
are commonly used to evaluate outlier detection systems. The TPR and
TNR metrics are described below:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(5)

Note that TP is the number of true positive, FP is the number of false
ositive, and TN is the number of true negatives. To compute AUC, we
sed TNR, and TPR values, and we calculate the cumulative sums of
ositives (or negatives) along the sorted outliers and the normal flows.

The first experiment aimed to adjust the number of clusters of
he DCNN-TFO. Intensive experiments were performed by varying the
umber of clusters from 1 to 100. The results show that the accuracy
f DCNN-TFO increases to stabilization at 35 clusters for the Odense
ata and 76 for the Beijing data. Therefore, we set up 35 clusters for
he data from Odense and 76 clusters for the data from Beijing in
he remaining experiments. For comparison, we also ran several tests
ith data from Odense and Beijing. We varied the amount of urban

raffic data used from 20% to 100% and applied the various measures
entioned above (TPR, TNR, and AUC). For comparison, we used two

ecent algorithms as baseline methods. The first is an improved version
f CNN (Convolution Neural Network) [31], a deep learning network
or identifying outliers, and the second combines both SVM (Support
ector Machine) and transfer learning [32] to infer the outliers. These
lgorithms show high accuracy in identifying outliers in urban traffic.
ig. 2 presents the true positive rate by varying the percentage of the
ata used as input from 20% to 100% on both Odense and Beijing
ata. The results reveal clear superiority of the proposed DCNN-TFO
ompared to CNN, and SVM. Indeed, the TPR of the DCNN-TFO does
ot go below 0.75, and exceed 0.85, where CNN does not exceed 0.82,
nd SVM does not exceed 0.70. Fig. 3 presents the true negative rate
y varying the percentage of the data used as input from 20% to
00% on both Odense and Beijing data. The results reveal again clear
uperiority of the proposed DCNN-TFO compared to CNN, and SVM.
ndeed, the TNR of the DCNN-TFO does not go below 0.80, and exceed
.90, where CNN does not exceed 0.80, and SVM does not exceed 0.75.
n terms of AUC, the results are shown in Fig. 4, the results validate
he obtained ones in the previous experiments, where superiority of the
CNN-TFO is validated on both data (Odense, and Beijing). Responsible

or these encouraging results is the efficient decomposition approach,
hich allows the whole data to be divided into homogeneous clusters.
his allows to better train the different models of the generated clusters.
VM and CNN-based solutions, which process all the data at once, do
ot ensure this process.

2 https://www.odense.dk/.
3 https://www.beijingcitylab.com/.

https://www.odense.dk/
https://www.beijingcitylab.com/


Y. Djenouri, A. Belhadi, H.-C. Chen et al. Computer Communications 189 (2022) 175–181

5

d
a

Fig. 2. TPR performance.

. Discussions

This section summarizes the main findings from the application of
ecomposition methods and deep learning to the problem of identifying
nomalies in urban traffic.

• The first discovery of the study is that the proposed framework
is able to handle large urban traffic datasets, such as those from
Beijing. This is in contrast to previous anomaly detection tech-
niques that require long execution times and evaluate the entire
traffic flow database throughout the outlier detection process.
The proposed framework is not only able to derive outliers from
urban traffic data, but also to explore the different correlations
between urban traffic data and identify different groups within
these data [33]. We argue that the inclusion of decomposition ap-
proaches during the pre-processing phase enables rapid derivation
and identification of outliers.

• DCNN-TFO is an example of integrating data mining and ma-
chine learning research. In our scenario, artificial intelligence is
combined with outlier identification to manage large amounts of
urban traffic data and accelerate the mining process. This adap-
tation is done in stages, including decomposition and learning
processes.

• In addition, this study found that Deep Learning models ben-
efit from pre-treatment of data through decomposition. Since
179
Fig. 3. TNR performance.

each model uses comparable input, the recognition process is
accelerated.

• The last remark is that the framework is general and can be used
for any type of network data, unlike previous methods that are
limited to specific types of urban traffic data. The type of data
shown in this paper is just an illustration of how our framework
could be used. Our approach can also be used to solve different
types of urban traffic data, such as trajectories [34,35], time
series [36], and other [37,38].

6. Future perspectives

Different paths may be studied in light of the promising results
presented in this paper:

1. Improving the decomposition step: k-means algorithm exam-
ined in this research paper is only example of decomposition
technique in action. Numerous attempts should be made to
reduce and minimize the number of clusters sharing urban traffic
data. Therefore, incorporating additional decomposition tech-
niques, such as entity resolution and/or record linkage [39,40]
and/or the genetic algorithm [41], into the DCNN-TFO frame-
work is a possibility for the near future. A system for automatic
cluster size adjustment should also be developed. Multiple runs
to determine the optimal number of clusters is not an efficient
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Fig. 4. AUC performance.

method in practice. One way to solve this problem is to create a
knowledge base that contains each training set of urban traffic
data along with the optimal number of clusters, and then exam-
ine the correlation between the meta-features of the urban traffic
data (number of flow values, number of trajectories, etc.) and the
optimal number of clusters. This allows automatic prediction of
the optimal number of clusters in fresh urban traffic data.

2. Improving the deep learning step: By using high-performance
computing technologies such as GPUs [42], supercomputers
[43], and cluster computing [44], we aim to increase the per-
formance of DCNN-TFO and apply it to large-scale applications.
The goal in this context is to set up autonomous jobs for each
cluster of urban traffic data, while also addressing the difficulties
of high-performance computing such as synchronization, com-
munication, memory management, and load balancing. In this
context, strategic considerations of load balancing solutions are
also on our future agenda. One way to overcome this problem
is to develop decomposition algorithms that allow the identi-
fication of equivalent clusters based on the amount of urban
traffic data in each cluster. Another way is to find new ways to
repair clusters, such as identifying clusters with approximately
the same amount of urban traffic data.

3. Case studies: We have already presented a case study of a
DCNN-TFO application in intelligent transportation in this pub-
lication. Based on the promising results shown in this case study,
180
we intend to adapt DCNN-TFO to solve domain-specific compli-
cated problems that require the management of large amounts
of data. For example, this can be seen in the context of business
intelligence applications [45] or financial data mining [46]. In
automated trading systems, runtime speed is critical, as profits
are sometimes made by exploiting the volatility of stock or
currency prices in extremely short time intervals. Outlier de-
tection algorithms capable of detecting divergent patterns are
critical in these circumstances, as they enable the discovery of
new opportunities for smarter trading. Another potential appli-
cation is the processing of sensor data, especially for real-time
applications related to Internet of Things systems, such as smart
cities and related services [9,47,48], energy management in
smart buildings [49], smart environment [50], and intrusion
detection [51,52] where the process of outlier detection must
be performed with a very low latency.

7. Conclusion

In this paper, we explored decomposition and deep learning to ac-
curately retrieve the abnormal behavior of urban traffic flow data. The
data is first divided into clusters, each of which contains similar data.
This makes the training process of the convolutional neural network
simpler and more oriented to homogeneous behaviors. As a result of
this combination, several models are trained, each representing the data
of the corresponding cluster. A fusion model is developed to combine
the results of the trained models. Extensive testing was performed
to improve the validation procedure of the proposed framework. The
results obtained using urban traffic data show that the proposed ap-
proach outperforms state-of-the-art outlier identification algorithms
using many metrics.
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