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Abstract

In this paper, we present a novel paradigm for disease detection. We build an artifi-

cial intelligence based system where various biomedical data are retrieved from dis-

tributed and homogeneous sensors. We use different deep learning architectures

(VGG16, RESNET, and DenseNet) with ensemble learning and attention mechanisms

to study the interactions between different biomedical data to detect and diagnose

diseases. We conduct extensive testing on biomedical data. The results show the

benefits of using deep learning technologies in the field of artificial intelligence of

medical things to diagnose diseases in the healthcare decision-making process. For

example, the disease detection rate using the proposed methodology achieves 92%,

which is greatly improved compared to the higher-level disease detection models.
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1 | INTRODUCTION

The rapid growth of the Internet of Things (IoT) and the demand for distributed intelligence in sensor systems have raised some new issues in

managing massive biomedical health data collected by various healthcare monitoring sensors (Kumar et al., 2021; Ma & Pang, 2019; Mansour

et al., 2021). Artificial intelligence of medical things (AIoMT) is a future advancement toward an Internet of medical things that combines medical

sensors and the artificial IoTs (Kumar et al., 2022; Nandy et al., 2022; Singh et al., 2022). AIoMT technology can be very relevant in prescribing

potential treatments (Flynn, 2019) and preventing further damage through remote monitoring by doctors and self-monitoring by monitored indi-

viduals (Adly et al., 2020). AIoMT is particularly useful for disease detection (Alrefaei et al., 2022; Guo et al., 2020; Kumar et al., 2022), which is

the main area of this research.

1.1 | Motivation

Technologies for disease control, management, and detection have attracted considerable interest in the past 2 years, especially after the onset of

the COVID-19 pandemic (Akay et al., 2022; Yeo et al., 2021). The pandemic has highlighted the importance of developing new intelligence tech-

nologies for early disease detection. Advanced deep learning architectures such as VGG16, RESNET, and DenseNet are examples of artificial

intelligence-based technologies that have great potential in this area and in biomedical healthcare applications in general (Hu et al., 2020;
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Krishnaswamy Rangarajan & Purushothaman, 2020; Roy & Bhaduri, 2022). These deep learning models are capable of extracting visual features

directly from massive amounts of data, not just for learning. The deep learning community is interested in analysing biomedical health data, espe-

cially disease detection (Khan et al., 2022; Wang et al., 2022; Wang, Jin, et al., 2021; Wang, Kang, et al., 2021) COVID-19 samples were used, for

example, to create an intelligent model to determine infection rates (Wang, Jin, et al., 2021). The latter study used both supervised and

unsupervised learning approaches, resulting in a 40% increase in detection speed. Pathogen frames were analysed using transfer learning, and

COVID-19 examples were validated using common virus-based pneumonia (Wang, Kang, et al., 2021). The result highlights the importance of

using intelligent methods to diagnose COVID-19. A 2D-CNN network and a new biomarker are proposed for automatic detection of major

depressive disorder (Khan et al., 2022). The proposed biomarker is created by using different signal processing techniques that revolve around

estimating the wavelet coherence between the default mode network of the brain. This solution achieves an accuracy of 98.1%, a sensitivity of

98.0%, and a specificity of 98.2% in a small dataset of 60 patients. Another study (Wang et al., 2022) presents a microfluidic imaging device with

an embedded computer that is self-contained and portable. A portable microfluidic image acquisition module, light source module, embedded

computer and control module, micropump module, touch control panel module, and power supply module are all included in the fully self-

contained bio-sample detection system.

In the new field of distributed deep learning, we also see examples that are being actively explored by exploring different types of deep learn-

ing models for disease detection based on biomedical data (Balachandar et al., 2020; Dwivedi et al., 2021; Ku et al., 2022; Roy et al., 2020; Xu

et al., 2022).

Data variability in terms of training sample size and label distribution across institutions is a well-known fact that can significantly reduce the

performance of distributed learning models for medical imaging. In this context, Balachandar et al. (2020) presented modifications to mitigate per-

formance degradation caused by introducing variability in training sample sizes and label distributions across institutional training splits, and they

test their effectiveness on simulated distributed tasks for detecting and classifying abnormal chest radiographs. An interesting study reported in

Dwivedi et al. (2021) proposes a method for training a distributed Covid-19 detection model on biomedical images using edge-cloud collaboration.

A distributed lightweight model-based training algorithm is developed by edge computing and cloud computing collaboration to improve training

efficiency and ensure model accuracy. A resource allocation algorithm is also developed during training to jointly minimize the time cost and

energy consumption.

The main goal of these technologies, especially distributed technologies, is to detect diseases and help biomedical personnel make fair and

acceptable biomedical decisions. Disease detection is complicated by a variety of factors, the most important of which is data complexity. Dis-

eases can take many different forms and be located in different regions, making them difficult to diagnose. To overcome these drawbacks, we are

exploring a complete AIoMT framework based on the incorporation of deep learning, ensemble learning, and attention mechanisms.

1.2 | Contribution

To our knowledge, this is the first study to investigate a detailed combination of deep learning and attention mechanism in AIoMT for disease

detection. Here is an overview of the main contributions:

1. NUMERATE (detectioN Using enseMble dEep leaRning And aTtention mEchanism) presents a new paradigm that uses deep learning and

attention mechanisms to identify diseases. Different deep learning architectures (VGG16, RESNET, and DenseNet) are used to learn from bio-

medical health training data and different viral infections.

2. We show how ensemble and attention learning can be combined to process complex biomedical health data. In addition, many improvements

have been proposed, such as improved batch normalization, which ensures that deep learning is mature in processing biomedical

healthcare data.

3. The usefulness of NUMERATE has been demonstrated by extensive experimental results. When training large biomedical healthcare data,

results showed that NUMERATE almost outperformed other known disease detection algorithms in terms of quality of returned results and

computational time.

1.3 | Outline

The remainder of the paper is organized as follows. Section 2 reviews related disease detection studies in more detail. Section 3 provides a thor-

ough overview of the proposed methodology. Section 4 provides a performance review of the proposed framework. The important implications

of this research study for biomedical health data are discussed in Section 5, as are future prospects for the research. Finally, Section 6 concludes

the paper.
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2 | RELATED WORK

Nawaz et al. (2021) uses pattern mining in biomedical disease analytics. Each patient is represented by a transaction, and each COVID-based

information associated with the patient is represented by an item, and the set of COVID patient data is converted into a set of transactions. The

set of transactions is then subjected to a pattern mining technique to extract important patterns. This has been used to identify diseases based on

correlated aspects of biomedical data. Wang, Jin, et al. (2021) explored deep learning-based architectures for segmentation and classification and

automated the image evaluation process. This enabled a decent evaluation of the COVID-19 infection rate. Ahuja et al. (2021) collected COVID-

19 of medical lung CT-scan data and used four deep learning architectures (ResNet18, ResNet50, ResNet101, and SqueezeNet). The models are

pre-trained on a large number of photographs from different areas. The COVID-19 instances were learned from medical data using the transfer

learning mechanism. Hirano et al. (2021) used a deep learning model to classify the different diseases. Three types of biomedical healthcare

images were used to create the classification models: photographs, X-ray chest images, and retinopathy images. Then, three applications were

studied: Skin cancer, diabetic referral, and pneumonia. The adversarial neural network was also used to implement transfer learning. The adversar-

ial network can deal with both non-targeted and targeted attacks and can also detect fake medical images. This is due to the mechanism of trans-

fer learning, which can be used to train the model using various biomedical healthcare sources. Zhang et al. (2022) propose the use of a

generative adversarial network for brain diseases. A novel hybrid loss function is implemented to monitor the training process of brain data. This

algorithm can be used as a data completion method for multimodal Alzheimer's disease diagnosis. Gupta et al. (2022) proposed an ensemble

method for the detection and classification of brain tumours and their phases. A modified inception model and a pre-trained resnet model are

used for tumour detection. After tumour diagnosis, the cancer stage is determined using a combination of the pre-trained deep learning models

and a random forest tree covering glioma, meningioma, and pituitary cancer. Singh et al. (2021) worked on constructing a hybrid disease detection

model based on both decomposition and deep learning. Using the k-means algorithm on medical data, a set of segments is created. These seg-

ments are then fed into a convolutional neural network to predict disease from biomedical images. Sedik et al. (2021) demonstrated the efficiency

of using both the convolutional neural network and long-term short-term memory for COVID-19 related problems. The authors acquired biomedi-

cal data for the study from many sources, including tomographies and X-ray scans, which demonstrated the usefulness of multimodal data.

Krishnaswamy Rangarajan and Purushothaman (2020) identified four primary diseases caused by pests and pathogens. Under ideal conditions,

these pathogens caused significant damage to the selected crops. Images of isolated leaf samples were captured using various smartphone cam-

eras under laboratory conditions to create a dataset for the detection of these diseases. For training, VGG16 is used with some data augmentation

techniques such as rotation and translation. Although this solution improved the state of the art, the detected leaves are in a darkened area,

resulting in poor discrimination between Epilachna beetles and two spotted spider mites. Mansour et al. (2021) developed a deep learning-based

disease detection model for hearing diseases and diabetes using artificial intelligence and the IoTs. The IoTs, such as wearables and sensors,

enables real-time data collection, while deep learning algorithms use the data to detect diseases. The proposed disease detection technique uses

a cascaded long-term memory model based on a crow-search optimization algorithm. The crow-search optimization technique is used to fine-tune

the ‘weights’ and ‘bias’ parameters of the cascaded short-term memory model to achieve improved categorization of biological health data.

Dhere and Sivaswamy (2022) proposed the use of hierarchical classification for COVID disease detection from biomedical healthcare data. They

trained the model with residual learning at many scales and a novel loss function based on conicity. It began by distinguishing pneumonia cases

from normal instances using a DenseNet-derived model and then used the multiple-attention residual learning architecture to distinguish COVID

from non-COVID pneumonia cases.

As the above brief literature review shows, many research papers have addressed the use of deep learning to identify diseases using biomedi-

cal healthcare data. To address the lack of biomedical healthcare data, these models combined transfer learning and data augmentation with pre-

trained models. The adversarial neural networks were also used to secure the training process and handle sensitive biomedical healthcare data.

This is being investigated especially for distributed platforms. These strategies still have a long way to go to become acceptable in the field of bio-

medical healthcare, especially in AIoMT situations. This research explores an intelligent framework based on deep learning, ensemble learning,

and attention mechanisms to provide a mature solution for disease detection in AIoMT.

3 | NUMERATE: DETECTION USING ENSEMBLE DEEP LEARNING AND ATTENTION
MECHANISM

3.1 | Principle

We start with the main functions of NUMERATE (detectioN Using enseMble dEep leaRning And aTtention mEchanism). As shown in Figure 1,

NUMERATE is a combination of several innovative solutions to solve the challenge of disease detection. Three different deep learning architec-

tures with attention mechanism are used in the training process to identify the diseases from the biomedical healthcare data. Ensemble learning is

DJENOURI ET AL. 3 of 13
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then performed to refine the trained models and deliver the best results to the biomedical teams. The components of NUMERATE are explained

in the following sections.

3.2 | RESNET

The accuracy of a neural network should theoretically improve as more layers are added. In reality, this turns out to be a misunderstanding. As the

depth of the network is increased, the accuracy tends to saturate and then rapidly decrease. This is called the degradation problem. Overfitting is

not the cause of the degradation problem. It is caused by the disappearing/exploding gradients in deep neural networks. Due to repeated multipli-

cation during the backpropagation phase, gradients become infinitesimally small in the vanishing gradient problem, resulting in negligible parame-

ter updates. Exploding gradients are a problem when gradients build up and lead to unusually high parameter updates during training. This

problem was solved before the discovery of residual networks by using normalized initialization and intermediate normalization layers. The resid-

ual network (RESNET for short) is a CNN design with a residual block as the main building block. To mitigate the problem of degradation, a resid-

ual block uses jump connections, which can be defined as connections that skip one or more layers. If the coefficient of the regular connection

converges to zero during the training phase, the residual shortcut ensures the integrity of the network. Alternative connections strengthen the

network by allowing the user to select these shortcuts as needed. Our RESNET is a pre-trained model on the ImageNet data collection.1 Using a

pre-trained model allows for higher accuracy while saving time by using a minimal amount of data. By using skip connections, our RESNET is able

to handle the degradation problem and achieve higher accuracy, and it enjoys the benefits of this pre-trained model.

3.3 | DenseNet

Rather than relying on very deep or broad architectures for representational performance, DenseNets exploit the potential of the network via fea-

ture reuse, resulting in condensed models that are easy to train and parametrically efficient. Concatenating features learned in different layers

increases efficiency and diversity of input to subsequent layers. This difference between DenseNets and ResNets is critical. DenseNets are more

straightforward and efficient than inception nets, which combine features from multiple layers. Each layer in our DenseNet undergoes non-linear

F IGURE 1 NUMERATE framework: The set of input images is first trained using channel attention and the various deep learning
architectures (RESNET, DenseNet, and VGG16). Ensemble learning with a voting strategy is then used to identify whether the given image
represents a disease or not

4 of 13 DJENOURI ET AL.
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modification, which can be the result of a combination of operations such as stack normalization, rectified linear units (ReLu), pooling, and convo-

lution. We propose direct connections between each layer and all subsequent layers to further improve the information flow between them. Our

DenseNet design divides the network into several dense blocks that are tightly connected to support downsampling. Layers between the blocks,

such as a batch normalization layer, a 1 � 1 convolutional layer, and a 2 � 2 average pooling layer, are referred to as transition layers.

3.4 | VGG16

VGG16 is a CNN architecture developed by the Visual Geometry Group at Oxford for the ImageNet competition. Briefly, the design supports

input images with a resolution of 224 � 224 pixels. The filters are 3 � 3 and padding is used to maintain the resolution of the intermediate

results. There are a total of 13 convolution layers and three dense layers. The activation function on all layers is ReLu. Each of the penultimate

two layers has 4096 hidden nodes, while the last layer contains 1000 output nodes, which is the number of ImageNet classes. We attempted to

load the VGG with 16 pre-trained weights and construct an N-dimensional output layer corresponding to the N diseases to be identified in this

study. Convolutional layer, pooling layer, fully linked layer and output layer are the four main components of CNN in this study. A pooling layer is

used to reduce the size of the feature map after each block of a layer or convolutional layer. When redundant details are omitted, the important

information is preserved. Placing features in the input photos reduces the model's sensitivity to distortion and displacement. The feature map set

is obtained by pooling and successive convolutional layers. Each neuron in the fully linked layer performs an input–output operation. The softmax

activation function is obtained by applying the output layer of each node's results.

3.5 | Attention mechanism

In computer vision, the attention mechanism is used to treat information differently in different regions of the input image. When images of dis-

eases are input to a conventional convolutional neural network, the feature map generated by the sequence of convolutional operations of the

network model often contains a considerable amount of channel information, which can lead to duplication of information across channels. More-

over, in the conventional convolutional neural network technique, each point of the feature map is considered equally. On the other hand, the

importance of the features of different channels and locations is different, and the features of certain locations and channels are important for

assessing the severity of a disease. Therefore, we propose a novel method to consider channels. It highlights the most important and representa-

tive elements of an image. The three dimensions of channels, height and width are represented in the feature map of a convolutional neural net-

work for each layer. It compresses the spatial information contained in the feature map to create an attention mechanism specific to the channel

area. The compression technique pools the global information for each channel of the feature map using a global average pooling layer. Disease

patterns have a variety of shapes and relatively low severity variations, leading the channel attention module to capture additional nonlinear infor-

mation to extract such differentiated features. Two convolutional layers of size 1 � 1 are added to improve the channel attention process, and

the input features are sampled twice and then resampled to ensure that the feature map obtained after channel attention has the same size as

the feature map obtained before channel attention.

3.6 | Ensemble learning

Ensemble learning is a popular and effective strategy for increasing overall performance by combining multiple learning algorithms. We used a

tuning strategy that increases the performance of disease detection. The results of each disease output are determined by majority voting. To

obtain an optimal disease detection result, our strategy starts by comparing a disease detection result in each detection model with the actual

label (disease or not). This results in a redefined label that affects the majority vote for each image and updates a new result. We consider the

new result as corrected data from our ensemble learning model if it matches the actual result. On the other hand, if the new result differs from

the actual result, it indicates that the model contains inaccurate data.

3.7 | Designed approach

Algorithm 1 shows the pseudocode of the NUMERATE algorithm. It takes as input the set of images I, the number of images n, the division ratio

sr, and a Boolean variable data_augmentation that indicates whether or not the data augmentation techniques are needed. The process starts by

dividing the set of input images I into two groups (Itrain for training and Itest for testing). This step takes two parameters, the number of images

DJENOURI ET AL. 5 of 13
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n and the split ratio sr � [0.1] (from line 7 to line 8). For small datasets, data expansion techniques such as rotation, flipping, translation, and satu-

ration are applied. This way you can create more images (from line 9 to line 14). Then two main steps are performed:

1. Training: The attention mechanism is first (line 16). Then, the RESNET, DenseNet, and VGG16 models are created and trained on the training

data Itrain using the attention mechanism (from line 17 to line 19). Finally, the tuning strategy is used to create the combined model, which is

stored for testing and deployment (line 20).

2. Testing: Finally, the prediction phase is started using the trained combined model to detect the diseases of each image in the testing data (from

line 22 to line 25).

The results of the algorithm are the trained combined model and the detection disease for the testing images, which will be returned in

line 26.

4 | PERFORMANCE EVALUATION

To verify the proposed NUMERATE methodology, thorough testing was performed on known biological healthcare datasets developed for dis-

ease detection applications. The studies were conducted on a desktop computer equipped with an Intel i7 CPU and 16 gigabytes of main memory.

All algorithms were implemented using PyTorch framework available in Python. We retrieved data from two biomedical health databases:

1. Kvasir (Pogorelov et al., 2017): It provides information on diseases affecting the human digestive system. The goal is to automate the identifi-

cation of endoscopic findings in the oesophagus, stomach, small intestine, and rectum. It contains 8000 photographs divided into eight catego-

ries showing anatomical landmarks, pathological findings, and endoscopic operations.

ALGORITHM 1 NUMERATE Pseudo Code1: Input: I = {I1, I2, ..., In}: Set of n images.

2: n: Number of images;

3: sr: Split ratio for training, and testing;

4: data_augmentation: boolean variable indicating if the data augmentation is needed;

5: Output: model: The trained model with its weights;

6: Dtest: Detected diseases for testing set;

7: Itrain split(I, n, sr);

8: Itest split(I, n, (1 sr));

9: if data_augmentation is True then

10: Itrain Itrain Rotate(Itrain);

11: Itrain Itrain Flipping(Itrain);

12: Itrain Itrain Translation(Itrain);

13: Itrain Itrain Saturation(Itrain);

14: end if

15: Training:

16: AM AttentionMechanism();

17: modelresnet RESNET(Itrain, AM);

18: modeldensenet DenseNET(Itrain, AM);

19: modelvgg16 ; VGG16(Itrain, AM);

20: model VotingStrategy(modelresnet, modeldensenet, modelvgg16);

21: Testing:

22: Dtest ;;
23: for Ii Itest do

24: Dtest Dtest Predict(model, Ii);

25: end for

26: return {model, Dtest}.

6 of 13 DJENOURI ET AL.
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2. Plant disease recognition data2: It contains disease data for plants that will be useful for smart agriculture applications. This dataset contains

three plant-related labels: ‘Healthy’, ‘Powdery’, and ‘Rust’. In total, there are 1, 382 images divided into three sets: Train, Test, and Validation.

The total size of the plant disease detection data is 1.35 GB.

The NUMERATE performance is calculated using the accuracy and the F1 formulas which are defined as follows:

F1¼2�Precision�Recall
PrecisionþRecall

ð1Þ

and,

Accuracy¼ TPþTN
TPþTNþFNþFP

ð2Þ

such as,

Precision¼ TP
TPþFP

ð3Þ

and,

Recall¼ TP
TPþFN

ð4Þ

where,

1. True positive (TP) is determined by counting the number of corrected positive observations. An observation is called correct and positive if it

is a disease and the running model considers it as a disease.

2. True negative (TN) is determined by counting the number of corrected negative observations. An observation is called correct and negative if

it is not disease and the running model considers it as non disease.

3. False positive (FP) is determined by counting the number of wrongly positive observations. An observation is called wrong and positive if it is a

disease and the running model considers it as non disease.

4. False negative (FN) is determined by counting the number of wrongly negative observations. An observation is called wrong and negative if it

is not a disease and the running model considers it as a disease.

4.1 | NUMERATE versus state-of-the-art disease detection solutions

The quality of the results from NUMERATE and the baseline solutions (VGG16 [Krishnaswamy Rangarajan & Purushothaman, 2020], DenseNet

[Dhere & Sivaswamy, 2022], and RESNET [Ahuja et al., 2021]) are shown in Table 1.

For the Kvasir dataset, we varied the proportion of images used for training from 2000 to 8000 and for the Plant dataset from 2000 to 5130. The

quality of the results is then calculated using the F1 and accuracy formulas. The results show that NUMERATE outperforms the baseline solutions in all

TABLE 1 NUMERATE versus disease detection solutions

Dataset_jimagesj

NUMERATE VGG16 DenseNet RESNET

F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy

Kvasir_2000 0.61 0.63 0.51 0.54 0.53 0.51 0.50 0.52

Kvasir_4000 0.65 0.67 0.55 0.57 0.58 0.59 0.54 0.55

Kvasir_6000 0.69 0.72 0.57 0.58 0.60 0.63 0.61 0.62

Kvasir_8000 0.77 0.79 0.65 0.69 0.71 0.72 0.71 0.73

Plant_250 0.66 0.68 0.50 0.52 0.54 0.57 0.58 0.59

Plant_500 0.74 0.71 0.56 0.59 0.58 0.61 0.63 0.64

Plant_1000 0.81 0.85 0.61 0.64 0.66 0.67 0.68 0.70

Plant_1382 0.88 0.92 0.68 0.69 0.73 0.74 0.72 0.73

DJENOURI ET AL. 7 of 13
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cases. For example, when processing the entire set of images from the plant dataset, NUMERATE achieves 92% accuracy, while the three baseline solu-

tions achieve less than 75% accuracy when trained on the same data. This phenomenal success can be attributed to the efficient components of

NUMERATE, which include ensemble learning of the most promising architectures (VGG16, DenseNet, and RESNET) and the attention mechanism.

4.2 | NUMERATE for AIoMT settings

The purpose of the next experiment is to evaluate the scalability of NUMERATE compared to baseline methods in managing large amounts

of data. Xception (Jain et al., 2021) and SqueezeNet (Ahuja et al., 2021) are used for comparison. These algorithms have proven effective in

training large datasets. If you duplicate the datasets of Kvasir and Plan 1000, 10,000, and 100,000 times, respectively, you get large

datasets. Table 2 shows the runtime calculation of NUMERATE, Xception and SqueezeNet while varying the error loss to be optimized from

0.10 to 0.01. Based on these results, we can conclude that NUMERATE outperforms the other two methods in terms of training time. This

performance can be explained by the fact that NUMERATE employs both ensemble and attention mechanisms, converging quickly to ground

truth.

4.3 | Examples of detected scenarios

This last part of the experiments is to show some real cases discovered by ALMOST. Figure 2 shows some of the diseases correctly detected by

ALMOST. The first three images are considered esophagitis disease.

The purpose of these final tests is to demonstrate some real-life examples that NUMERATE has detected. Figure 2 shows some of the

diseases that NUMERATE correctly detected. The first three images are indicative of healthy plants. The second three images are of pow-

dery plants. Powdery is one of the most common types of plant diseases. It is a fungal infection that attacks the leaves and stems of plants,

coating them with a white or grey powdery substance. In extreme cases, it can even spread to plant buds, flowers and fruits. The last three

images are called rust plants. Rusts are a genus of fungi that attack the above-ground parts of plants. Rust most commonly occurs on leaves,

but can also occur on stems, flowers, and fruits. These images show how difficult it is to detect disease, as it can take a variety of shapes and

sizes. Compared to other algorithms, NUMERATE is more effective at detecting certain diseases. These promising results confirm the practi-

cality of NUMERATE.

5 | DISCUSSIONS AND FUTURE DIRECTIONS

In this section, we outline the main advantages of using the proposed NUMERATE framework to analyse disease detection data. We also make

some suggestions on how to make the NUMERATE framework even better.

1. Deep learning, ensemble learning, and attention mechanisms are an effective mix of intelligent technologies that create a high level of

precision. Runtime efficiency and visualization are still critical issues when managing biomedical healthcare data and detecting diseases

in real time. To improve the performance of NUMERATE, creating hybrid systems that combine augmented reality, evolutionary, and

deep learning approaches could be a promising avenue (Djenouri, Belhadi, et al., 2021; Djenouri & Comuzzi, 2017; Khamparia &

Singh, 2019; Liu et al., 2022).

2. Diseases were effectively detected by the recommended methods. It outperformed previous disease detection methods in terms of accuracy.

It would be interesting to investigate the results of NUMERATE for other smart healthcare applications, such as skin disease detection

(Hossen et al., 2022), chronic glomerular disease detection (Zhou et al., 2021), and vascular aging assessment (Shin, 2022).

3. At NUMERATE, interpreting the result is in itself a difficult task. Indeed, it is based on black-box models that do not explicitly describe the pro-

cess of inferring the result. In order to trust a particular result, biomedical scientists need to understand how it was obtained. This problem is

being addressed by the XAI (eXplainable Artificial Intelligence) discipline, which offers a variety of ways to provide some level of explanation

to deep learning AI solutions (Chen et al., 2022; Muddamsetty et al., 2022; Yang et al., 2022). NUMERATE is being updated to include XAI

methods. This will allow for more accurate evaluation of results from NUMERATE.

4. Security and privacy are two important factors in AIoMT-based applications. Security and privacy can be solved by advanced blockchain tech-

nologies (Belhadi et al., 2021; Djenouri, Srivastava, et al., 2021) and identification of hidden sensitive patterns from biomedical healthcare data

(Haque et al., 2021; Lin et al., 2020; Lin, Wu, et al., 2019; Lin, Zhang, et al., 2019). NUMERATE is updated by considering these two

approaches in both training and deployment phases.
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6 | CONCLUSION

In this paper, an artificial intelligence-based framework for disease identification is developed. It uses different deep learning architectures

(VGG16, RESNET, and DenseNet) with an efficient ensemble learning and attention mechanism to learn the relevant features from biomedical

data. This enables more accurate diagnosis of many diseases in the biomedical healthcare system. The proposed system has been tested on a

number of biomedical datasets. The preliminary results show the usefulness of our method for disease detection in the healthcare system. In

terms of disease detection rate, the numerical results show that the proposed system outperforms the baseline solutions. Indeed, the proposed

solution achieves 92% accuracy, which is very promising compared to the baseline detection models.

AUTHOR CONTRIBUTIONS

Conceptualization: Youcef Djenouri and Asma Belhadi. Formal analysis: Anis Yazidi, Gautam Srivastava, and Jerry Chun-Wei Lin. Methodology:

Youcef Djenouri, Anis Yazidi, and Asma Belhadi. Writing—original draft: Youcef Djenouri and Asma Belhadi. Writing—review & editing: Gautam

Srivastava and Jerry Chun-Wei Lin.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Gautam Srivastava https://orcid.org/0000-0001-9851-4103

Jerry Chun-Wei Lin https://orcid.org/0000-0001-8768-9709

ENDNOTES
1 https://www.image-net.org/.
2 https://www.kaggle.com/rashikrahmanpritom/plant-disease-recognition-dataset.

F IGURE 2 NUMERATE case study: The first three images show healthy plants, the second three images show powdery mildew disease, and
the last three images show rust disease

10 of 13 DJENOURI ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13093 by Sintef E

nergy R
esearch, W

iley O
nline L

ibrary on [02/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0001-8768-9709
https://www.image-net.org/
https://www.kaggle.com/rashikrahmanpritom/plant-disease-recognition-dataset


REFERENCES

Adly, A. S., Adly, A. S., & Adly, M. S. (2020). Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of

COVID-19: Scoping review. Journal of Medical Internet Research, 22(8), e19104.

Ahuja, S., Panigrahi, B. K., Dey, N., Rajinikanth, V., & Gandhi, T. K. (2021). Deep transfer learning-based automated detection of COVID-19 from lung CT

scan slices. Applied Intelligence, 51(1), 571–585.
Akay, M., Subramaniam, S., Brenan, C., Bonato, P., Waits, C. M. K., Wheeler, B., & Fotiadis, D. I. I. (2022). Healthcare innovations to address the challenges

of the COVID-19 pandemic. IEEE Journal of Biomedical and Health Informatics, 1, 1.

Alrefaei, A. F., Hawsawi, Y. M., Almaleki, D., Alafif, T., Alzahrani, F. A., & Bakhrebah, M. A. (2022). Genetic data sharing and artificial intelligence in the era

of personalized medicine based on a cross-sectional analysis of the Saudi human genome program. Scientific Reports, 12(1), 1–10.
Balachandar, N., Chang, K., Kalpathy-Cramer, J., & Rubin, D. L. (2020). Accounting for data variability in multi-institutional distributed deep learning for

medical imaging. Journal of the American Medical Informatics Association, 27(5), 700–708.
Belhadi, A., Djenouri, Y., Srivastava, G., & Lin, J. C. W. (2021). SS-ITS: Secure scalable intelligent transportation systems. The Journal of Supercomputing,

77(7), 7253–7269.
Chen, H. C., Damarjati, C., Putra, K. T., Chen, H. M. I., Hsieh, C. L., Lin, H. J., Wu, M. Y., & Chen, C. S. (2022). Pulse-line intersection method with unboxed

artificial intelligence for hesitant pulse wave classification. Information Processing & Management, 59(2), 102855.

Dhere, A., & Sivaswamy, J. (2022). COVID detection from chest X-ray images using multi-scale attention. IEEE Journal of Biomedical and Health Informatics,

26, 1496–1505.
Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C. W. (2021). Secure collaborative augmented reality framework for biomedical informatics. IEEE Journal of

Biomedical and Health Informatics, 1.

Djenouri, Y., & Comuzzi, M. (2017). Combining apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem. Information

Sciences, 420, 1–15.
Djenouri, Y., Srivastava, G., Belhadi, A., & Lin, J. C. W. (2021). Intelligent blockchain management for distributed knowledge graphs in IoT 5G environments.

Transactions on Emerging Telecommunications Technologies, 3, e4332.

Dwivedi, R., Dey, S., Chakraborty, C., & Tiwari, S. (2021). Grape disease detection network based on multi-task learning and attention features. IEEE Sensors

Journal, 21(16), 17573–17580.
Flynn, A. (2019). Using artificial intelligence in health-system pharmacy practice: Finding new patterns that matter. American Journal of Health-System Phar-

macy, 76(9), 622–627.
Guo, C., Zhang, J., Liu, Y., Xie, Y., Han, Z., & Yu, J. (2020). Recursion enhanced random forest with an improved linear model (RERF-ILM) for heart disease

detection on the internet of medical things platform. IEEE Access, 8, 59247–59256.
Gupta, R. K., Bharti, S., Kunhare, N., Sahu, Y., & Pathik, N. (2022). Brain tumor detection and classification using cycle generative adversarial networks. Inter-

disciplinary Sciences: Computational Life Sciences, 1, 1–18.
Haque, A. B., Bhushan, B., & Dhiman, G. (2021). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends.

Expert Systems, 39.

Hirano, H., Minagi, A., & Takemoto, K. (2021). Universal adversarial attacks on deep neural networks for medical image classification. BMC Medical Imaging,

21(1), 1–13.
Hossen, M. N., Panneerselvam, V., Koundal, D., Ahmed, K., Bui, F. M., & Ibrahim, S. M. (2022). Federated machine learning for detection of skin diseases

and enhancement of internet of medical things (IoMT) security. IEEE Journal of Biomedical and Health Informatics, 1, 1.

Hu, W. J., Fan, J., Du, Y. X., Li, B. S., Xiong, N., & Bekkering, E. (2020). MDFC–ResNet: An agricultural IoT system to accurately recognize crop diseases. IEEE

Access, 8, 115287–115298.
Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2021). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence,

51(3), 1690–1700.
Khamparia, A., & Singh, K. M. (2019). A systematic review on deep learning architectures and applications. Expert Systems, 36(3), e12400.

Khan, D. M., Masroor, K., Jailani, M. F. M., Yahya, N., Yusoff, M. Z., & Khan, S. M. (2022). Development of wavelet coherence EEG as a biomarker for diag-

nosis of major depressive disorder. IEEE Sensors Journal, 22, 4315–4325.
Krishnaswamy Rangarajan, A., & Purushothaman, R. (2020). Disease classification in eggplant using pre-trained VGG16 and MSVM. Scientific Reports, 10(1),

1–11.
Ku, H., Susilo, W., Zhang, Y., Liu, W., & Zhang, M. (2022). Privacy-preserving federated learning in medical diagnosis with homomorphic re-encryption. Com-

puter Standards & Interfaces, 80, 103583.

Kumar, P. M., Hong, C. S., Afghah, F., Manogaran, G., Yu, K., Hua, Q., & Gao, J. (2021). Clouds proportionate medical data stream analytics for internet of

things-based healthcare systems. IEEE Journal of Biomedical and Health Informatics, 26, 973–982.
Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2022). Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and

future research agenda. Journal of Ambient Intelligence and Humanized Computing, 1–28.
Lin, J. C. W., Srivastava, G., Zhang, Y., Djenouri, Y., & Aloqaily, M. (2020). Privacy-preserving multiobjective sanitization model in 6G IoT environments. IEEE

Internet of Things Journal, 8(7), 5340–5349.
Lin, J. C. W., Wu, J. M. T., Fournier-Viger, P., Djenouri, Y., Chen, C. H., & Zhang, Y. (2019). A sanitization approach to secure shared data in an IoT environ-

ment. IEEE Access, 7, 25359–25368.
Lin, J. C. W., Zhang, Y., Zhang, B., Fournier-Viger, P., & Djenouri, Y. (2019). Hiding sensitive itemsets with multiple objective optimization. Soft Computing,

23(23), 12779–12797.
Liu, X., Zheng, L., Zhang, W., Zhou, J., Cao, S., & Yu, S. (2022). An evolutive frequent pattern tree-based incremental knowledge discovery algorithm. ACM

Transactions on Management Information Systems (TMIS), 13(3), 1–20.
Ma, H., & Pang, X. (2019). Research and analysis of sport medical data processing algorithms based on deep learning and internet of things. IEEE Access, 7,

118839–118849.
Mansour, R. F., El Amraoui, A., Nouaouri, I., Díaz, V. G., Gupta, D., & Kumar, S. (2021). Artificial intelligence and internet of things enabled disease diagnosis

model for smart healthcare systems. IEEE Access, 9, 45137–45146.

DJENOURI ET AL. 11 of 13

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13093 by Sintef E

nergy R
esearch, W

iley O
nline L

ibrary on [02/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Muddamsetty, S. M., Jahromi, M. N., Ciontos, A. E., Fenoy, L. M., & Moeslund, T. B. (2022). Visual explanation of black-box model: Similarity difference and

uniqueness (SIDU) method. Pattern Recognition, 108604, 108604.

Nandy, S., Adhikari, M., Chakraborty, S., Alkhayyat, A., & Kumar, N. (2022). IBoNN: Intelligent agent-based internet of medical things framework for

detecting brain response from electroencephalography signal using bag-of-neural network. Future Generation Computer Systems, 130, 241–252.
Nawaz, M. S., Fournier-Viger, P., Shojaee, A., & Fujita, H. (2021). Using artificial intelligence techniques for COVID-19 genome analysis. Applied Intelligence,

51(5), 3086–3103.
Pogorelov, K., Randel, K. R., Griwodz, C., Eskeland, S. L., de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.-T., Lux, M., Schmidt, P. T.,

Riegler, M., & Halvorsen, P. (2017). Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. In Proceedings of the 8th

ACM on multimedia systems conference (pp. 164–169).
Roy, A. M., & Bhaduri, J. (2022). Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4. Computers and

Electronics in Agriculture, 193, 106694.

Roy, S. S., Samanta, K., Modak, S., Chatterjee, S., & Bose, R. (2020). Cross spectrum aided deep feature extraction based neuromuscular disease detection

framework. IEEE Sensors Letters, 4(6), 1–4.
Sedik, A., Hammad, M., Abd El-Samie, F. E., Gupta, B. B., & Abd El-Latif, A. A. (2021). Efficient deep learning approach for augmented detection of coronavi-

rus disease. Neural Computing and Applications, 1, 1–18.
Shin, H. (2022). XGBoost regression of the most significant photoplethysmogram features for assessing vascular aging. IEEE Journal of Biomedical and Health

Informatics, 1.

Singh, P., Verma, A., & Alex, J. S. R. (2021). Disease and pest infection detection in coconut tree through deep learning techniques. Computers and Electron-

ics in Agriculture, 182, 105986.

Singh, P. D., Dhiman, G., & Sharma, R. (2022). Internet of things for sustaining a smart and secure healthcare system. Sustainable Computing: Informatics and

Systems, 33, 100622.

Wang, B., Jin, S., Yan, Q., Xu, H., Luo, C., Wei, L., Zhao, W., Hou, X., Ma, W., Xu, Z., Zheng, Z., Sun, W., Lan, L., Zhang, W., Mu, X., Shi, C., Wang, Z., Lee, J.,

Jin, Z., … Dong, J. (2021). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system. Applied Soft Computing,

98, 106897.

Wang, R., Huang, X., Xu, X., Sun, J., Zheng, S., Ke, X., Yao, J., Han, W., Wei, M., Chen, J., Gao, H., Guo, J., & Sun, L. (2022). A standalone and portable micro-

fluidic imaging detection system with embedded computing for point-of-care diagnostics. IEEE Sensors Journal, 22, 6116–6123.
Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2021). A deep learning algorithm using CT images to screen

for Corona virus disease (COVID-19). European Radiology, 31, 1–9.
Xu, X., Tian, H., Zhang, X., Qi, L., He, Q., & Dou, W. (2022). DisCOV: Distributed COVID-19 detection on X-ray images with edge-cloud collaboration. IEEE

Transactions on Services Computing.

Yang, G., Ye, Q., & Xia, J. (2022). Unbox the black-box for the medical explainable ai via multi-modal and multi-centre data fusion: A mini-review, two show-

cases and beyond. Information Fusion, 77, 29–52.
Yeo, M., Byun, H., Lee, J., Byun, J., Rhee, H. Y., Shin, W., & Yoon, H. (2021). Respiratory event detection during sleep using electrocardiogram and respira-

tory related signals: Using polysomnogram and patch-type wearable device data. IEEE Journal of Biomedical and Health Informatics, 26, 550–560.
Zhang, J., He, X., Qing, L., Gao, F., & Wang, B. (2022). BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal

Alzheimer's disease diagnosis. Computer Methods and Programs in Biomedicine, 217, 106676.

Zhou, C., Chen, S., Li, X., & Ying, X. (2021). Diagnosis of infectious factors in patients with chronic glomerular disease using deep learning-based health

information data. Expert Systems, 39, e12771.

AUTHOR BIOGRAPHIES

Youcef Djenouri (Member, IEEE) received the Ph.D. degree in computer engineering from the University of Science and Technology Houari

Boumediene, Algiers, Algeria, in 2014. He is currently a Research Scientist with SINTEF Digital, Oslo, Norway. He is working on topics related

to artificial intelligence and data mining, with a focus on association rules mining, frequent itemsets mining, parallel computing, swarm and

evolutionary algorithms, and pruning association rules. He has authored or coauthored more than 100 refereed research papers in the areas

of data mining, parallel computing, and artificial intelligence.

Asma Belhadi received the Ph.D. degree in computer engineering from the University of Science and Technology Houari Boumediene, Algiers,

Algeria, in 2016. She is currently a Post-Doctoral Researcher with the Kristiania University College, Oslo, Norway. She is working on topics

related to artificial intelligence and data mining, with a focus on logic programming. She has authored or coauthored over 50 refereed research

articles in the areas of artificial intelligence and smart city applications.

Anis Yazidi received the M.Sc. and Ph.D. degrees from the University of Agder, Grimstad, Norway, in 2008 and 2012, respectively. He is cur-

rently the deputy head of OsloMet AI lab, and the leader for the research group on Applied Artificial Intelligence (AI2) at OsloMet. He is a full

Professor in Machine Learning at OsloMet. He is also a Senior Researcher at Oslo University Hospital (OuS) and research Professor in Data

Science at the Norwegian University of Science and Technology NTNU. He has more than 190 publications, including more than 80 journal

articles in prestigious venues and 2 book chapters. In 2015 he was selected as the promising researcher of the year, TKD Faculty OsloMet. In

2019 he won the Prize for top 50 in Norway most productive researcher for all disciplines for the years 2015-2018. He also won the Best

Paper Awardin SMARTGIFG 2017, in ACM RACS 2017 and in CSE 2014 and Best Paper Award Runner in SMC 2016. He is IEEE senior mem-

ber. He is associate editor for Springer Journal on Pattern Analysis and Applications, associate editor for Frontiers in Artificial Intelligence and

12 of 13 DJENOURI ET AL.

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13093 by Sintef E

nergy R
esearch, W

iley O
nline L

ibrary on [02/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



associate editor for Frontiers in Computational Physiology and Medicine. He is leading the master program in Data Science at OsloMet. Heis

currently PI in the Horizon 2020 AI-Mind project and he is also PI from the Norwegian side in different international and national projects. He

is the co-director of the Excellence Academic Environment NordSTAR on Trustworthy and Sustainable AI at OsloMet.

Dr. Gautam Srivastava was awarded his B.Sc. degree from Briar Cliff University in U.S.A. in the year 2004, followed by his M.Sc. and Ph.D.

degrees from the University of Victoria in Victoria, British Columbia, Canada in the years 2006 and 2011, respectively. He then taught for 3

years at the University of Victoria in the Department of Computer Science, where he was regarded as one of the top undergraduate profes-

sors in the Computer Science Course Instruction at the University. From there in the year 2014, he joined a tenure-track position at Brandon

University in Brandon, Manitoba, Canada, where he currently is active in various professional and scholarly activities. He was promoted to the

rank Associate Professor in January 2018. Dr. G, as he is popularly known, is active in research in the field of Data Mining and Big Data. In his

8-year academic career, he has published a total of 343 papers in high-impact conferences in many countries and in high-status journals (SCI,

SCIE) and has also delivered invited guest lectures on Big Data, Cloud Computing, Internet of Things, and Cryptography at many Taiwanese

and Czech universities. He is an Editor of several international scientific research journals. He currently has active research projects with other

academics in Taiwan, Singapore, Canada, Czech Republic, Poland and U.S.A. He is constantly looking for collaboration opportunities with for-

eign professors and students. Assoc. Prof. Gautam Srivastava received *Best Oral Presenter Award* in FSDM 2017 which was held at the

National Dong Hwa University (NDHU) in Shoufeng (Hualien County) in Taiwan (Republic of China) on November 24-27, 2017.

Jerry Chun-Wei Lin received his Ph.D. from the Department of Computer Science and Information Engineering, National Cheng Kung Univer-

sity, Tainan, Taiwan in 2010. He is currently a full Professor with the Department of Computer Science, Electrical Engineering and Mathemati-

cal Sciences, Western Norway University of Applied Sciences, Bergen, Norway. He has published more than 500+ research articles in

refereed journals (with 60+ ACM/IEEE transactions journals) and international conferences (IEEE ICDE, IEEE ICDM, PKDD, PAKDD), 16

edited books, as well as 33 patents (held and filed, 3 US patents). His research interests include data mining and analytics, natural language

processing (NLP), soft computing, IoTs, bioinformatics, artificial intelligence/machine learning, and privacy preserving and security technolo-

gies. He is the Editor-in-Chief of the International Journal of Data Science and Pattern Recognition, the Associate Editor for IEEE TNNLS, IEEE

TCYB, IEEE TDSC, INS, JIT, AIHC, IJIMAI, HCIS, IDA, PlosOne, IEEE Access, and the Guest Editor for several IEEE/ACM journals such as IEEE

TFS, IEEE TII, IEEE TIST, IEEE JBHI, ACM TMIS, ACM TOIT, ACM TALLIP, and ACM JDIQ. He has recognized as the most cited Chinese

Researcher respectively in 2018, 2019, 2020, and 2021 by Scopus/Elsevier. He is the Fellow of IET (FIET), ACM Distinguished Member (Sci-

entist), and IEEE Senior Member.

How to cite this article: Djenouri, Y., Belhadi, A., Yazidi, A., Srivastava, G., & Lin, J. C.-W. (2022). Artificial intelligence of medical things for

disease detection using ensemble deep learning and attention mechanism. Expert Systems, e13093. https://doi.org/10.1111/exsy.13093

DJENOURI ET AL. 13 of 13

 14680394, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13093 by Sintef E

nergy R
esearch, W

iley O
nline L

ibrary on [02/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/exsy.13093

	Artificial intelligence of medical things for disease detection using ensemble deep learning and attention mechanism
	1  INTRODUCTION
	1.1  Motivation
	1.2  Contribution
	1.3  Outline

	2  RELATED WORK
	3  NUMERATE: DETECTION USING ENSEMBLE DEEP LEARNING AND ATTENTION MECHANISM
	3.1  Principle
	3.2  RESNET
	3.3  DenseNet
	3.4  VGG16
	3.5  Attention mechanism
	3.6  Ensemble learning
	3.7  Designed approach

	4  PERFORMANCE EVALUATION
	4.1  NUMERATE versus state-of-the-art disease detection solutions
	4.2  NUMERATE for AIoMT settings
	4.3  Examples of detected scenarios

	5  DISCUSSIONS AND FUTURE DIRECTIONS
	6  CONCLUSION
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	ENDNOTES
	REFERENCES


