
electronics

Article

Dynamic Application Partitioning and Task-Scheduling Secure
Schemes for Biosensor Healthcare Workload in Mobile
Edge Cloud

Abdullah Lakhan 1 , Jin Li 2, Tor Morten Groenli 1 , Ali Hassan Sodhro 3,4, Nawaz Ali Zardari 5,
Ali Shariq Imran 6 , Orawit Thinnukool 7 and Pattaraporn Khuwuthyakorn 7,*

����������
�������

Citation: Lakhan, A.; Li, J.; Groenli,

T.M.; Sodhro, A.H.; Zardari, N.A.;

Imran, A.S.; Thinnukool, O.;

Khuwuthyakorn, P. Dynamic

Application Partitioning and

Task-Scheduling Secure Schemes for

Biosensor Healthcare Workload in

Mobile Edge Cloud. Electronics 2021,

10, 2797. https://doi.org/10.3390/

electronics10222797

Academic Editor: Khaled Elleithy

Received: 9 October 2021

Accepted: 10 November 2021

Published: 15 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Mobile Technology Lab, Department of Technology, Kristiania University College, 0107 Oslo, Norway;
abdullahrazalakhan@gmail.com (A.L.); tor-morten.gronli@kristiania.no (T.M.G.)

2 School of Computer Science, Beijing Jiaotong University, Beijing 100044, China; jinli71@gmail.com
3 Department of Computer Science, Kristianstad University, SE-291 88 Kristianstad, Sweden;

ali.hassan_sodhro@hkr.se
4 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
5 Faculty of Electrical Engineering, University Technology, Johor Bahru 81310, Malaysia;

engrnawaz06@gmail.com
6 Department of Computer Science (IDI), Norwegian University of Science and Technology (NTNU),

2815 Gjøvik, Norway; ali.imran@ntnu.no
7 Research Group of Embedded Systems and Mobile Application in Health Science, College of Arts, Media and

Technology, Chiang Mai University, Chiang Mai 50200, Thailand; orawit.t@cmu.ac.th
* Correspondence: Pattaraporn.khuwuth@cmu.ac.th

Abstract: Currently, the use of biosensor-enabled mobile healthcare workflow applications in mobile
edge-cloud-enabled systems is increasing progressively. These applications are heavyweight and
divided between a thin client mobile device and a thick server edge cloud for execution. Application
partitioning is a mechanism in which applications are divided based on resource and energy parame-
ters. However, existing application-partitioning schemes widely ignore security aspects for healthcare
applications. This study devises a dynamic application-partitioning workload task-scheduling-secure
(DAPWTS) algorithm framework that consists of different schemes, such as min-cut algorithm,
searching node, energy-enabled scheduling, failure scheduling, and security schemes. The goal is to
minimize the energy consumption of nodes and divide the application between local nodes and edge
nodes by applying the secure min-cut algorithm. Furthermore, the study devises the secure-min-cut
algorithm, which aims to migrate data between nodes in a secure form during application partition-
ing in the system. After partitioning the applications, the node-search algorithm searches optimally
to run applications under their deadlines. The energy and failure schemes maintain the energy
consumption of the nodes and the failure of the system. Simulation results show that DAPWTS
outperforms existing baseline approaches by 30% in terms of energy consumption, deadline, and
failure of applications in the system.

Keywords: failure; dynamic application partitioning; task scheduling; offloading; energy consumption;
MD5; MECCA

1. Introduction

Currently, the use of digital mobile applications in practice to deal with different
life activities, e.g., digital shopping, digital booking, digital healthcare, etc., is growing.
These applications have distributed runtime such as JAVA JVM for execution on different
platforms, known as application partitioning. In recent years, emerging technologies such
as edge computing and wireless networks for digital healthcare applications have been
widely used for applications. Among these digital applications, mobile workflow applica-
tions are becoming increasingly popular [1,2]. The applications are healthcare ones, where

Electronics 2021, 10, 2797. https://doi.org/10.3390/electronics10222797 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1833-1364
https://orcid.org/0000-0002-2026-4551
https://orcid.org/0000-0002-2416-2878
https://orcid.org/0000-0002-1664-0059
https://doi.org/10.3390/electronics10222797
https://doi.org/10.3390/electronics10222797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222797
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222797?type=check_update&version=2

Electronics 2021, 10, 2797 2 of 30

standalone mobile devices cannot run the applications locally. Mobile Edge-Cloud Com-
puting Environment (MECCA) is a promising paradigm that allows resource-constrained
devices to offload tasks to edge servers. Application partitioning is how a heavyweight
application process divides local execution and external execution in the same mobile
edge-cloud network. Offloading is the approach that divides the applications between the
mobile device and accessible edge-cloud computing for execution [3]. In MECCA, many
goals can optimize, for example, energy consumption, response time, latency, bandwidth,
and resource use [4]. However, security is the biggest issue in application partitioning
when it runs on different computing nodes and shares data between connected computing
nodes for execution [4]. Many security schemes have been suggested in MECCA to support
application data in the network [5]. For instance, RSA, CBC, SHA-256, and MD5 are based
on both symmetric and asymmetric schemes. Many studies [5–10] have adopted these
methods in MECCA for the application-partitioning problem in a distributed network.
The primary goal of this study was to undertake encryption and decryption on the local
machine to ensure the security of data before offloading to the edge-cloud network. Public
and private keys are shareable in the network, and all connected devices can encrypt and
decrypt data based on shared keys. However, existing studies have widely ignored local
device energy and resource consumption during the implementation of security schemes
at the local machine. Furthermore, existing studies have widely missed the deadline
constraints of applications in the application-partitioning problem.

Dynamic application partitioning, which involves separating mobile application run-
times between local execution and remote-cloud execution to optimize total cost, is a vital
component of the offloading system [5]. Edge-cloud data centers are a subset of remote-
cloud data centers and have fewer computational capabilities, lower processing speed,
and less memory capacity than remote-cloud data centers [6]. There are two runtimes for
program execution in the offloading system; however, present research, which focuses on
mobile energy savings, ignores cloud resource energy use. It is evident that cloud resources
are critical to performance; however, if the offloading system does not effectively control
resources, it may not be reliable enough to execute an application. After partitioning the
program into local and edge-cloud execution, scheduling all jobs on the mobile device and
edge-cloud resources is critical. Existing papers [7–9] have not included task-scheduling
and security aspects in their suggested system, because variability in cloud resources,
network connections, and mobile devices make static offloading with fixed bandwidth
and resource values unreliable. Security inside the mobile edge-cloud network has been
ignored in existing application-partitioning schemes in the system. This research looks at
the mobile offloading system’s deadline-constrained energy-aware dynamic application-
partitioning and job-scheduling challenges in diverse contexts. When performing the
offloading system, the goal is to reduce mobile and cloud resource energy consumption.
The problem is divided into two sub-problems: first, we divide the application into two
parts: local and edge-cloud execution. The application-partitioning decision takes into
account network bandwidth, cloud resources, and job size. Then, all partitioned jobs are
scheduled on local devices as well as the edge cloud. The aim of this study is to reduce the
amount of power used by mobile devices and edge servers and still meet application dead-
lines. The failure of nodes is also considered in this study of healthcare applications. The
study is going to solve many issues of existing application-partitioning methods. However,
all existing application methods and frameworks have faced the following issues.

• Computation offloading plays a vital role in achieving optimal energy efficiency at the
resource-constrained device, where computation-intensive workloads are offloaded
to the server for execution. However, many parameters are considered during pro-
posed application partitioning, such as bandwidth, execution time, and application
deadline. Many existing offloading schemes during application partitioning consider
pre-calculated parameters. However, many parameters can change during the runtime
and require a dynamic and adaptive offloading scheme in the proposed architecture.

Electronics 2021, 10, 2797 3 of 30

• Task scheduling is an NP-complete issue that involves scheduling tasks with hetero-
geneous resources based on a given constraint. It is never easy to schedule all jobs for
complex resources so that the entire execution time stays within the constraints. Two
types of failure could occur in a high-performance offloading system: intermittent
network failure, and edge-cloud failure. Whenever a mobile user makes a dynamic
decision to offload in a high-performance offloading system, the network connection
or edge-cloud resource status becomes unstable during the offloading process. All re-
jected projects must be repaired within a set application deadline or completed locally
if the available resources are sufficient. As mentioned earlier, a dynamic resubmission
system, capable of correcting all rejected assignments while maintaining generosity,
should be made available to address the problem.

The study makes the following contributions to the state of art to answer the afore-
mentioned questions.

1. The task-scheduling problem in application partitioning has been widely solved
based on HEFT (Heterogeneous Earliest Finish Time) approaches [5]. DAPWTS is the
proposed algorithm scheme where many heuristics work together to achieve these
goals. Initially, all applications are partitioned based on different metrics such as time,
energy, and deadline based on the proposed min-cut algorithm. After partitioning, all
tasks are prioritized based on their deadlines. All tasks are scheduled and maintain
their failure status in the execution based on different schemes.

2. The DAPWTS algorithm framework, in which data generated by sensors and profiling
technologies develop real-time contents of the wireless network due to the real-
time system, is explored. We offer a new task-scheduling mechanism that maps
all mobile healthcare applications depending on their requirements. The proposed
work scheduling approach relies heavily on the application deadline division and
sequencing criteria.

3. The study suggests an efficient failure-aware rescheduling approach that manages
any failure with guaranteed performance in the proposed work.

4. The secure min-cut algorithm is a weighted graph of mobile workflow applications
that divides the graph into local and remote executions to minimize the makespan
and energy of edges. Before delivering their data to the system cloud nodes, tasks are
encrypted and decrypted locally. The secure min-cut algorithm’s primary purpose is
to divide mobile workflow applications between local and remote-cloud execution
depending on energy and time restrictions. The existing min-cut algorithms [7,9,11,12]
focused solely on the security of jobs between their performance on various nodes,
not on the safety of applications between local and cloud execution.

5. The study devises the two phase-enabled security methods, ensuring data transaction
security and storage security in the distributed mobile edge-cloud network.

The following is a breakdown of the manuscript structure. Current application-
partitioning strategies and their execution in mobile edge-cloud networks are discussed
in Section 2. The system description, problem formulation, and mathematical aspects of
the problem are demonstrated in Section 3. Section 4 depicts each stage of the proposed
DAPWTS algorithm framework, where each heuristic plays a role in solving the problem.
Section 5 describes the study’s performance evaluation, which compares all baseline
schemes and suggested work against the target function. The study’s findings and future
efforts are presented in Section 6.

2. Related Work

The number of biosensor-enabled digital healthcare applications is growing progres-
sively. Generally, these applications are accessible on client devices such as mobile and
Internet of Things (IoT) healthcare sensors. However, due to their resource constraints,
the application-partitioning mechanism has gained significant attention for healthcare
applications. We have analyzed closely related efforts of application-partitioning schemes.

Electronics 2021, 10, 2797 4 of 30

2.1. Task Partitioning Offloading Schemes

In [1], the study devised a static application-partitioning scheme for healthcare ap-
plications on mobile and cloud nodes. Execution and task division is done during the
design of the applications. An optimal offloading system could be helpful in complex
workflow applications. There are three types of offloading scheme considered in mobile
edge-cloud computing: non-offloading, full offloading, and partial offloading. Many efforts
have been made with the offloading plan to achieve multiple objectives such as energy
consumption and response time for interactive applications while minimizing the total
cost. Regarding the entire offloading scheme, ref. [2] proposed a framework for application
partitioned-based dynamic profiling and static analysis, in which an application is parti-
tioned into a thread-level fine-grained application virtual machine and offloaded to the
remote-cloud clone for execution. Dynamic adaption and migration was not considered in
this paper. Based on current network status, the energy model is proposed in [6]. This aims
to predict the offloading accuracy of either application workload offload, or not to minimize
energy consumption. Network bandwidth-related parameters are taken into consideration
in the proposed work. The mobile cloud runs a time-based framework in the dynamic
offloading decision in which parts of the application are offloaded to the cloud or parts
are locally executed (see [7]). MAUI [8] proposed a fine-grained application-partitioning
framework. The goal was to reduce programmer efforts during application partitioning.
Using hybrid analysis (i.e., static and dynamic), runtime offloading could improve energy
consumption more effectively than full coarse-grained offloading. Furthermore, workload
scheduling in the mobile and cloud energy-based strategy was proposed in [9]. The cen-
tral theme of this strategy balances the workload between mobile and cloud resources to
minimize energy consumption.

2.2. Task Allocation Schemes in Application Partitioning

Regarding diversity and the optimal finding of cloud resource for task allocation,
a rule-based scheduling hyper-heuristic scheduling strategy was proposed in [10]. It
effectively and dynamically searches for optimal solutions for resource allocation among all
candidate solutions, and this process continues until the final optimal solution is produced.
An energy-efficient workflow and independent task scheduling based on cloud speed and
power consumption-based frameworks is proposed in [11,13–16]. The main goal of these
studies is to minimize energy consumption and idle time while performing task scheduling.

2.3. Security Schemes in Application Partitioning

Security-enabled application partitioning was investigated by these studies [12,17–20].
These studies considered geographically distributed cloud data centers and applied workload
migration techniques to minimize the energy of running tasks inside the system. Dynamic
application partitioning with failure and resource constraint-enabled schemes were suggested
in these studies [21–27]. The studies considered fine-grained and coarse-grained healthcare
workloads in their models. The mobile and edge cloud was considered in the system, and
the objective was to minimize the energy consumption of mobile devices and minimize
the response time of applications in the network. To the best of our knowledge, dynamic
application partitioning and task scheduling of biosensor healthcare workflow in secure
mobile edge clouds has not been studied yet. Closely related studies [1,3,5,9,21–27] have
focused on dynamic application partitioning and minimizing the energy use of mobile
devices. These studies only considered bandwidth and resource constraints. However,
security, deadline, and failure constraints have been widely ignored in the studies for
the application-partitioning problem of healthcare applications. These studies [21–27]
considered healthcare application security, deadline, and failure constraints in a mobile
edge-cloud network. The objective is to minimize the energy consumption of all comput-
ing nodes in the mobile edge-cloud architecture. The study suggested energy-efficient
offloading and secure task-scheduling schemes in the system for healthcare applications.

Electronics 2021, 10, 2797 5 of 30

3. Problem Description

This study devises Dynamic Application Partitioning Healthcare Workload Task-
Scheduling Secure (DAPWTS) schemes, as shown in Figure 1. The architecture consists of
biomedical sensors, workflow application interfaces, and resource layers. Many biomedical
sensors are connected to the application interface. Each sensor generates data and runs
inside application workflows at the user level. Heavyweight data requires a lot of resources
to run applications. However, due to resource constraints, mobile devices running locally
cannot satisfy the requirements. Therefore, this study devises a DAPWTS algorithm frame-
work consisting of different schemes, such as secure min-cut algorithm, searching node,
energy, and failure-scheduling schemes. The goal is to minimize energy consumption of
nodes and divide the application between local nodes and edge nodes by applying the
min-cut algorithm. After partitioning the applications, the node-search algorithm optimally
searches to run applications under their deadlines. The energy and failure schemes main-
tain the energy consumption of the nodes and the failure of the system. After execution, all
the task data will be stored based on a dynamic message-digest algorithm (MD5). The se-
curity validation of data in workflow applications is necessary. All tasks of one application
are run on different nodes and share their data without backtracking in the system.

The study denotes the notations of the problem in Table 1.

G1

G2

G3

DAPWTS

Min-Cut
Applications

Searching
Edge Nodes

Energy
Scheduling

Failure
Scheduling

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

G1, G2, G3

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

k1 k2 k3m1

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

Completed

Bio-Medical Sensors Healthcare Workflow Applications Algorithms Mobile Edge Cloud Resources

S1 S2 S3 S4 S5 S6 S7 S8 S9

S10 S11 S13 S14 S15 S16 S17 S18 S19

S20 S21 S22 S23 S24 S25 S26 S26 S27

S29 S30 S31 S32 S33 S34 S35 S36 S37

S38 S39 S40 S41 S42 S43 S44 S45 S46

DSHA-256

Figure 1. Biosensor-enabled mobile edge-cloud architecture: DAPWTS.

3.1. System Model and Problem Formulation

The proposed mobile edge-cloud computing architecture is a combination of the
wireless network, mobile edge server, and cloud server. Mathematical notations are marked
in Table 1. In the proposed architecture, a mobile healthcare application is modeled as a
consumption-weighted Directed Acyclic Graph (DAG) i.e., G (V, E). However, each task vi
is represented by a node vi ∈ V. An edge e(vi, vj) ∈ E represents communication between
vi to vj. A task vi could be started when associated all predecessors complete [20]. v1 and vn
are two dummy tasks (i.e., entry task and exit task). A task could be started when associated
predecessors complete. In short, vj cannot be started in anticipation of vi accomplishing
the job and i < j. A set of servers has denoted by, e.g., K = {k1, . . . , kn}. We presuppose
that each k server holds a different virtual machine type, that all virtual machine instances
are heterogeneous, and that every virtual machine (VM) has dissimilar computation speed
which is illustrated as ζ j = (j = 1, . . . , M). A set of virtual machine instances can be

Electronics 2021, 10, 2797 6 of 30

shown by VK = {vk1, . . . , vkn}, in which Kvk
i is the virtual machine assignment for task

vi. Each workflow application task has workload Wi = {i = 1, . . . , N} with deadline
DG. To minimize the power consumption of the submitted workflow tasks, we assign
each application task to the lower-speed VM while meeting the deadline DG, because the
lower-speed VMs always leads to lower power consumption. Since a task vi can only be
performed by one VM j, a decision variable xij ∈ {0, 1} is used, xij=1 only if the task vi is
assigned to the VM Vj. The task vi has two execution costs (i.e., local and cloud), on cloud
execution time is determined by the speed ζ j and power consumption Pw, e.g., Te

i , i.e.,
Te

i = ∑Vj=1 xij × Wi
ζ j
× Pcw and task execution time on mobile Me

i = ∑←m=1 xij × Wi
ζm
× Pmw.

Table 1. Mathematical notation.

Notation Description

N Number of tasks v
DAG Directed Acyclic Graph of Application
α1 Reschedule the rejected tasks on mobile
α2 Reschedule the rejected tasks on edge cloud
VM Number of virtual machines V
Vj jth virtual machine in edge server
vi Workflow application task
loc Local set of tasks
c Edge-Cloud tasks
Wi Weight of the each task
λi = vi ∈ V All tasks arrival rate
λ Arrival rate at cloudlet virtual machine
λ0 Arrival rate at mobile device
µr Current Cloudlet speedup factor rate
µm The mobile service rate
µc, µw Cellular and WLAN bandwidth rate
Ω,λ Application partitioning factor during offloading
ζµj Speed rate of jth virtual machine
ζµm Speed rate of mobile processor vi
Te

i Execution cost of task vi on edge cloud k
Me

i Execution cost of task vi on mobile
Pcw Power consumption rate at edge-cloud virtual machine
Pmw Power consumption rate at mobile device
xij Assignment of task vi on virtual machine j
BU Upload bandwidth
BD Download bandwidth
Bi Begin time of the task vi
Fi Finish time of the task vi
G(V, E) Call graph of application G
DG Deadline of the application G
AV Most Tightly Connected Vertices
a Arbitrary of vertex G
wt weight of each task on graph
s, t source and sink in call graph
Ri Recover time of a task during failure
FRi Failed ratio of a task vi

3.2. Application Energy Consumption

The total power consumption of a workflow application is an amalgamation of com-
putation time and communication time. Since computation cost could include location and
remote execution after application partitioning, the communication cost is determined by
the weight of data transport and available network bandwidth. The average power con-
sumption of workflow application due to offloading is expressed as follows in Equation (1).

Electronics 2021, 10, 2797 7 of 30

EGtotal = ∑
v∈V

Prv × EGloc
v + ∑

v∈V
(1− Prv)× EGc

v

+ ∑
e(vi ,vj)∈E

Pre × Ttrans
e .

(1)

Equation (1) describes the total power consumption of the workflow application
during application partitioning and scheduling. The mathematical notations are denoted
in Table 1. The mobile workflow healthcare application is modeled as Directed Acyclic
Graph (DAG), i.e., G (V, E). However, each task vi is represented by a node vi ∈ V.
An edge e(vi, vz) ∈ E represents the communication between vi to vz. A task vi could
be started when associated all predecessors are complete [12]. Furthermore, the v1 and
vn are two dummy tasks (i.e., entry task and exit task). A task could be started when
associated predecessors are complete. In short, vz cannot be started in anticipation of vi
accomplishing the job and i < z. A set of servers can be represented by K = {k1, . . . , kn}. We
presuppose that each k edge cloud holds a different virtual machine type such that all virtual
machine instances are heterogeneous, and that every virtual machine (VM) has dissimilar
computation speed illustrated as ζ j = (j = 1, . . . , M). A set of virtual machine instances
can be shown by VK = {vk1, . . . , vkn}, in which Kvk

i is the virtual machine assignment for
task vi. Each workflow application task has workload Wi = {i = 1, . . . , N} with deadline
Di. To minimize the power consumption of the submitted workflow tasks, we assign
each application task to the lower-speed VM while meeting the deadline Di, because the
lower-speed VMs always lead to lower power consumption [16]. Since a task vi can only
be performed by one VM j, a decision variable xij ∈ {0, 1} is used, xij = 1 only if the task vi
is assigned to the VM Vj. The task vi has two execution costs (i.e., local and cloud); cloud
execution time is determined by the speed ζ j and power consumption Pcw e.g., Te

i , i.e.,
Te

i = ∑Vj=1 xij × Wi
ζ j
× Pcw and task execution time on mobile determined in the following

way, e.g., Me
i = ∑←m=1 xij × Wi

ζm
× Pmw. In the same way, the vector Y = {yij : v ∈ V, j ∈ M}

with variable xij indicates either task offload or not, namely determined in Equation (2)

xij =

{
1, if vi ∈ Vloc
2, if vi ∈ Vc

(2)

According to Equation (3), the communication cost is determined by Ecut = 1, otherwise
the same location tasks have no communication cost.

Pre =

{
1, if e ∈ Ecut
0, if e /∈ Ecut

(3)

The study formulated the application partitioning and task-scheduling energy con-
sumption of the problem in Equation (4).

min Z =
A

∑
G=1

N

∑
i∈G

ψ

∑
m=1

M

∑
j=1

xijλi × ζµj × Pcw

×Te
i + Ttrans

i + xijλi × ζµm ×Me
i × Pmw × EGtotal .

(4)

Equation (5) determines the energy consumption of mobile devices.

∑
v∈V

Prv × EGloc
v = Me

i =
N

∑
i=1

xijλi ×
Wi
ζµm

, (5)

Equation (6) determines the energy consumption of edge-cloud nodes.

∑
v∈V

(1− Prv)× EGc
v = Te

i =
N

∑
i=1

xijλi ×
Wi
ζµj

, (6)

Electronics 2021, 10, 2797 8 of 30

Equation (7) determines the communication energy between nodes.

∑
e(vi ,vj)∈E

Pre × Ttrans
e = w(e(vi, vj)) =

inij

BU
+

outji

BD
,

(7)

Equation (8) shows that the initial energy consumption of the task becomes zero.

Tj,0 = 0, (8)

The begin time of the task at the busy machine is determined in Equation (9), if machine
has already executed any tasks, and the next task waits until it finishes its first execution.

Bi = Ti,j = Ti−1,j +
N

∑
i=1

xi,jλiTe
i , (9)

The real execution time of tasks is determined in Equation (10).

Te
i =

Vc

∑
i=1

xijλi ×
Wi
ζµj

, Me
i =

Vloc

∑
i=1

xijλi ×
Wi
ζµm

, (10)

The actual finish time of tasks is determined in Equation (11).

Fi =
M

∑
j=1

Ti,jxi,j, (11)

Failure and secure time is determined in Equation (12).

N

∑
i=1

xi,j = 1,
M

∑
j=1

xi,jλ = 1,
ψ

∑
m=1

xi,jλ0 = 1, (12)

All tasks must be finished under their deadlines as determined in Equation (13).

A

∑
G=1

N

∑
i=1

Fi ≤ DG, (13)

Each task and each computing node can assign and schedule one task at a time, as
determined in Equation (14).

xi,j{0, 1}. (14)

4. Proposed Algorithm DAPWTS Framework

To solve the joint application partitioning and task-scheduling problem, we propose
the Dynamic Application-Partitioning Workload Task-Scheduling Secure (DAPWTS) frame-
work, consisting of different phases, such as the secure min-cut, task-sequencing phase,
task-scheduling phase, and failure-aware scheduling phase. We run the mobile workflow
applications onto heterogeneous resources via different phases to achieve robust and seam-
less execution. Algorithm 1 shows the entire process of the application executions. It takes
all mobile workflow applications as input and processes them via different phases. All
particular stages will explain in their subsections.

Electronics 2021, 10, 2797 9 of 30

Algorithm 1: DAPWTS framework.

Input : G ∈ A, V ∈ G ;
Output : minZ;
begin

Z ←0;
Application-Partitioning Phase;
Task-Sequencing Phase;
Power-Efficient VM Searching Phase;
foreach (vi ∈ V ∈ G) do

foreach (Vj ∈ Qvm) do
Task-Scheduling Phase;
Z∗ ← vi ← j;
Z ← Z∗;

end
Task-Failure Scheduling Phase;

end
return Z;

end

4.1. Secure Min-Cut Algorithm

The secure min-cut algorithm is a weighted graph of mobile workflow applications
that divides the graph into local and remote executions. The goal is to minimize the
makespan and energy of edges. Before delivering their data to the system cloud nodes,
tasks are encrypted and decrypted locally. The secure min-cut algorithm’s primary purpose
is to divide mobile workflow applications between local and remote-cloud execution
depending on energy and time restrictions. The existing min-cut algorithms [7,9,11,12]
focus solely on the security of jobs between their performance on various nodes, not on
the safety of applications between local and cloud execution as shown in Figure 2. The
primary goal of the secure min-cut phase is to partition the application into a set of local
tasks and offloaded jobs with the security schemes. Network contents, e.g., bandwidth,
signal, inference, secure, CPU resources, and execution time parameters, are considered for
the application partitioning. Algorithm 2 divides workflow applications into local Vloc and
Vc sets with an optimal cut in order of task size, available bandwidth, resources, and speed.
A secure min-cut function always returns an optimal solution in a dynamic and adaptive
environment and applies security based on the task size and available node resources.
With the help of profiling techniques such as network, mobile-device status, and program
status, the available edge-cloud speed is calculated dynamically before and after partition.
Based on Equation (1), the workflow application is divided into two disjoint sets of the task,
i.e., local and cloud tasks. However, Non-offloadable jobs are randomly generated λ0 and
mapped locally on mobile computing, processing µm using the dispatcher α1. Cloud tasks
λV are offloaded by the dispatcher α2 to cloudlet computing via wireless communication.
In the dynamic offloading system, two kinds of connection are employed—WLAN and
cellular—with rates µc and µw, respectively. The variable η is an impeding factor list of
all available links for communication, and ξ is the differentiating factor. If one connection
receives an external signal or bandwidth, it changes the status of the network. However,
Ω.λ shows either tasks successfully executed or those which fail to be assigned to any
resource.

In Algorithm 2, step 2 shows that mincut in the given graph can be more than one
until ∞. Application partition into local Vloc and Vc execution is shown by steps 3–5. All
offloaded tasks Vc and non-offloaded tasks Vloc nodes are merging into a single node in
steps 5–6. Steps 6–8 show the mincut-phase function in a given application graph. Steps
9–11 elaborates a minimum mincut among all given cuts. Finally, step 12 returns the
minimum mincut group list from all given graphs. The suggested dynamic message digest
of an up to 256-byte security scheme encrypts all data at the local device with a public

Electronics 2021, 10, 2797 10 of 30

key (PK). At the same time, the nodes decrypt data on a private key (PV) provided by the
system in the network. All the nodes can encrypt and decrypt data with both public and
private keys in the system.

Algorithm 2: Min-Cut Algorithm.
Input : (G ∈ A, w);
begin

wt(mincut)⇐ ∞;
for (w = 1,length(source-vertices)) do

Partition the application according to Equation (1);
Disjoint sets Vc and Vloc;
(G, wt)= merging(G, wt), source-vertices, source-vertices(m))Merging

Function;
while | v ∈ V |> 1 do

[Cut(AV − t, t), s, t] = mincut-Phase(G, wt)mincut Phase Function;
if wt(cut(AV − t, t)) < wt(mincut) then

end
mincut ⇐ cut(AV − t, t);

end
merging(G, a, wt, s, t);
Call DMD5-256 methods to secure data;
G ← DMD5← PKandPV;

end
return mincut, mincut-Grouping-List;

end

Figure 2 shows the procedure of a secure min-cut algorithm for a healthcare ap-
plication. The study assumes that the application consists of different workflow tasks,
e.g., v1, v2, v3, v4, v5, v6, v7, v8, v9. All tasks are taking data from different biosensors such as
s1, s2, s3, s4, s5, s6, s7, s8, s9. The secure min-cut algorithm divides the applications based on
available resources, encryption and decryption time, and task deadline, where 50/100 de-
notes edge-cloud execution time and mobile execution time. The blue nodes are those tasks
being executed on mobile devices, and red tasks are being executed on the edge-cloud
nodes. Each task at the node encrypts data with a message-digest algorithm (MD5) and
decrypts data with the same algorithm. The data size is measured in kilobytes (KB) between
nodes during the execution of applications. The study modified the existing MD5 [16]
with dynamic encryption and decryption schemes. It can handle failure of tasks due to
resources or service unavailability in the system.

Electronics 2021, 10, 2797 11 of 30

Task
s1

v1
s2

v2
s3

v3
s4

v4
s5

v5
s7

v6
s9

v7
s11

v8
s13

v9
s15

MD5-
Encrypt/
Decrypt

100/50 ms

MD5-
Encrypt/
Decrypt
50/90 ms

MD5-
Encrypt/
Decrypt
40/50 ms

MD5-
Encrypt/
Decrypt
50/90 ms

MD5-
Encrypt/
Decrypt
40/90 ms

MD5-
Encrypt/
Decrypt
50/80 ms

MD5-
Encrypt/
Decrypt
50/70 ms

MD5-
Encrypt/
Decrypt
70/40 ms

MD5-
Encrypt/
Decrypt
50/30 ms

8
K

B 0.7 KB

1024 KB

1024 KB

66
0

K
B

1020 KB

1024 KB 1200 KB

8 K
B

8 K
B 0.7 KB

66
0

K
B

1024 KB 1024 KB

1020 KB 8 K
B

10
24

 K
B

1200 KB

Secure Distributed Execution of Tasks

Healthcare Application Secure Min-Cut Algorithm

Mobile Tasks

Edge Cloud
Tasks

v1

v2

v3

v4

v5

v7v9

v8

Figure 2. Secure min-cut algorithm.

4.2. Task Sequencing

The deadline of a workflow application G can be met if all its tasks are completed
earlier than their deadline requirements. We introduce advisable deadlines for all tasks,
which poise the time for each task based on their workload magnitudes. We obtain the
deadline as follows.

ratio =
A

∑
G=1

GD
Z

, (15)

Equation (15) determines the total execution of all tasks of all applications by dividing
their deadline by execution time.

V

∑
i=1

Te′
i = Te

i × ratio, (16)

The deadline of each task is assumed to be the finish time of the task based on
Equation (11).

Me′
i = Me

i × ratio, (17)

Equation (17) determines the deadline for local and cloud execution based on
Equation (11).

Ttrans′
e = Ttrans

e × ratio, (18)

Electronics 2021, 10, 2797 12 of 30

The transmission time also considers additional time inside the deadline as determined
in Equation (18).

vcdi = min({vdj})− Te′
i (vj)− Ttrans′

e (ij)

∀vi ∈ Vc∃vj ∈ successor(vi).
(19)

Equation (19) determines that the deadline must satisfy all predecessors and successors
in all tasks.

vmdi = min({vdj})−Me′
i (vj)

∀vi ∈ Vloc∃vj ∈ successor(vi).
(20)

Equation (20) determines that each task is to be executed within the given deadline
on the particular node. The mobile workflow applications should be sequenced based
on given partitioning sets [1] in the considered problem. A dynamic offloading system
submitted the workflow tasks Vloc, Vc to the scheduling system at the same time, and each
application workflow is bounded by deadline vcdi. All workflow applications are submitted
randomly to the cloud server and mobile device with priority. All tasks must complete their
performance before their given deadlines. We consider the slack time only for offloaded
tasks (i.e., offloadable tasks) because local tasks are lightweight and require the local mobile
device for execution. The slack time Tslack

i of the offloaded task vi is determined by Tslack
i

= Fi − vcdi. The finish time Fi of the task vi on a mobile device and the virtual machine
is determined by Te

i and Me
i , respectively. The Tslack

i is mathematically determined in
Equations (21) and (22).

Tslack
i = vcdi − Fi (21)

Fi =
Vc

∑
i=1

xij ×
Wi
ζµj

+
Vloc

∑
i=1

xij ×
Wi
ζµm

, (22)

We rank all tasks onto a virtual machine based on the HEFT [28] heuristic, and added
weight to all nodes and edges according to their priorities. All data offloaded to the system
follow a first-come-first-served policy and are sequenced by all proposed methods as
shown in Figure 3. We define a set of sequence rules as follows.

• Shortest deadline first (SDF): We sort the set of workflow applications based on their
deadline. The smaller deadline application is sorted first and the bigger one later.
If the deadlines are the same, then FCFS policy will be applied.

• Shortest slack time first (SSTF): The application tasks are sorted according to the task
slack time (TST). The task which has the shortest slack time is scheduled first.

• Shortest weight first (SWF): The applications are sequenced based on the weight of all
tasks, the shorter weight application arranged first and the bigger one later.

We introduce task-sequencing rules based on Equations (21) and (22) that define
the priority of all tasks from task entry vi to exit vn by considering all predecessors and
successors of the given application. Initially constructed task sequences using different
methods are shown in Figure 3.

Electronics 2021, 10, 2797 13 of 30

v1

v2

v3

v4

v5

Offloaded Tasks

Task
Sequence

v1v2v3v4v5

FCFS Policy

v6

Without Task Sequencing

v5v6v4v2v3v1

EDD Based Task Sequencing

LTF Based Task Sequencing

SSTF Based Task Sequencing

v6

v5v6v3v4v3v1

v5v6v3v4v2v1

Task Sequence Adjustment

Figure 3. Task-Sequencing Rules.

4.3. Optimal Power-Efficient Edge Node Searching

We are searching for a virtual machine based on its power efficiency. We have sorted
all the virtual machines according to speed in descending order. The lower-speed vir-
tual device consumes less power as compared to the higher-speed virtual machine. The
proposed Algorithm 3 searches all lower-powered devices, then checks the finish of all
tasks so that they are completed within a given deadline. This process will check until an
appropriate machine is found that meets the requirements.

ζ∗µj
=

Wi
ζµj

.
(23)

Algorithm 3: Optimal edge-cloud node searching.

Input : (vi ∈ V) to Scheduling;
begin

Qvm ← Sort all Edge Nodes by their power consumption ζ∗µj
based on

Equation (23) with descending order;
V ←Null;
foreach Vj ∈ Qvm do

Tj,0 ← 0;
end
foreach Vj ∈ Qvm do

Calculate Te
i of Vj based on Equations (2)–(5);

if Tj,i−1+ Te
i ≤ vcdi then

Calculate the Cj,i of Vj by Equation (4);
V ← Vj;
break;

end
Calculate the average Energy Consumption Zi of workflow application
based on Equation (1);

end
return Zi,V

end

In Algorithm 3, in step 2, virtual machines were sorted by lower-powered speed.
Step 3 initializes the value of any VM as zero. Steps 4–6 calculate each task execution on

Electronics 2021, 10, 2797 14 of 30

each virtual machine. Steps 8–10 says that each assigned VM task must be completed before
the application deadline with lower power consumption. The average power consumption
of the complete task is calculated by step 12.

4.4. Energy-Efficient Task Scheduling

After the initial task scheduling in Algorithm 3, guaranteed deadlines constrain
mapping. Still, we can swap tasks within the same slots of machines and mobile cores in
Algorithm 4. In this way, we can minimize the total energy consumption of all resources.
Lines 2–6 in Algorithm 4 determine the swapping offloaded tasks based on their timeslot
of virtual machine (e.g., virtual machine 1 to virtual machine 2) based on their power
consumption. Lines 7–11 reschedule all applications inside mobile cores in a way that
mobile energy is minimized. We exploited the Dynamic Voltage Frequency Scaling (DVFS)
method [29] to reduce the consumption of power resources during rescheduling. Therefore,
Algorithm 4 reschedules energy-efficient assignments of all these tasks without violating
their deadline among resources.

Algorithm 4: Energy-efficient task scheduling.

Input : {G ∈ A,V ∈ G, vi ∈ Vc, vi ∈ Vloc} ;
begin

foreach (vi ∈ Vc ∈ V) do
if (vi ← V2 ≤ vcdi) then

Apply DVFS method;
Swap higher power vi ← V1 to lower power V2;
Assign vi ← V1;

end
end
foreach vi ∈ Vloc do

if (TM
i ≤ vcdi) then

Apply DVFS method;
Swap higher power mobile Pmw to lower power core Pmw;
Assign vi lower power core in the mobile device;

end
end

end

4.5. Failure-Aware Scenario

This paper considers dynamic mobile cloud application partitioning and offloading,
where network contents and resource values regularly fluctuate. In dynamic environments,
the failure of applications due to network failure and resources often occurs. Therefore,
how to handle the loss of tasks in a mobile cloud environment is a challenging question.
As we know, checkpointing [18] is efficient in a task-failure situation, which recovers the
from the point of failure regardless of resubmission. We exploit the checkpoint method to
deal with any fault in our proposed scheme. We assume the scenario where a mobile user
invoking a mobile workflow application during mobility requires two kinds of ubiquitous
services such as network service and cloud service simultaneously to run the application
tasks. The user may face application failure due to transient loss when requesting the
cloud server and retrieving its result, as shown in Figure 4. Therefore, the proposed
scheme offers seamless and robust services and executes all applications without any
degrading performance.

Electronics 2021, 10, 2797 15 of 30

Application
Network Failure

Cloud Failure

Failure During Request

Failure During Respond

Figure 4. Task-failure scenario.

4.6. Failure Task Scheduling

Figure 5 illustrates the failure-aware situation in the dynamic mobile cloud environ-
ment. A user can move from one place to another and invoke mobility-conscious network
and cloud services concurrently. Presently, the cellular network is omnipresent, but it
has low speed compared to a WiFi network. Notwithstanding, a cellular network allows
users to invoke cloud services during trips. However, the failure of tasks often occurs
during mobility and when invoking services for execution. We proposed a failure-aware
task-scheduling algorithm to handle any failure during offloading and scheduling to cope
with this situation.

o 
m

c

w

r
2

1 OFF ON




WLAN

Cellular

Edge Cloud

Mobile Device

Local

D
is
pa

tc
he

r

Offload

Unoffloadable

Dispatcher

o

Offloadable

.

(1)  

Tasks

Disconnect Connect

Figure 5. Failure-aware environment in the proposed work.

We explain all the steps of the proposed Algorithm 5 as follows.

Electronics 2021, 10, 2797 16 of 30

Algorithm 5: Failure-Aware Scheduling.

Input : (α1, α2, λ, λ0, µm, µw, µc, µr, 1−Ω, η, ξ, Ri, FRvi);
begin

Qm←Mobile tasks queue;
Qw← wireless tasks queue;
Qc← cellular tasks queue;
Qr ← cloud tasks queue;
foreach (λi ← Qm) do

if (Te
i + TiRi ≤ vcdi) then

Apply Checkpoint Method FRvi;
Call Dispatcher α1 to handle λ← Unoffloaded tasks vi;

end
end
foreach (λ0 ← Qw) do

if (Te
i + Ttrans

e + Ri ≤ vcdi &η = 1) then
set ξ = 1 connect;
Apply Checkpoint Method FRvi;
Call Dispatcher α2 to handle (1−Ω)λ0 ← offloaded tasks vi;

end
else

ξ = 0 disconnect;
η = 1;

end
end
foreach (λ0 ← Qc) do

if (Te
i + Ttrans

e + Ri ≤ vcdi &η = 1) then
set ξ=1 connect;
Apply Checkpoint Method FRvi;
Call Dispatcher α2 to handle (1−Ω)λ0 ← offloaded tasks vi;

end
else

ξ = 0 disconnect;
η = 1;

end
end
foreach (λ0 ← Qr) do

if (Te
i + Ttrans

e + Ri ≤ vcdi &η = 1) then
set ξ = 1 connect;
Apply Checkpoint Method FRvi;
Call Dispatcher α2 to handle (1−Ω)λ0 ← offloaded tasks vi;

end
else

ξ = 0 disconnect;
η = 1;

end
End All conditions;

end
End Loop;

end
End Main;

• We manage the failure of tasks into the four queues, i.e., {µm, µw, µc, µr}. µm denotes
the mobile queue of failure tasks, µw illustrates the failure queue at the wireless
network. µc and µr denote failure queues of cellular and cloud computing. λ denotes
the failure of tasks at the mobile device, and λ0 shows the failure of offloaded tasks.

Electronics 2021, 10, 2797 17 of 30

• Lines 6–19 show unoffloaded tasks that failed at the mobile device, and we apply
the checkpointing technique to recover the task from the point of failure. If the
recovery time and current execution are still less than the deadline, the dispatcher
reads from the queue and tries to recover it. This process will continue until failed
tasks recover successfully.

• Lines 10–14 show offloaded tasks that failed at the cellular network, and we apply
the checkpointing technique to recover the task from the point of failure. If the
recovery time, current execution, and communication time are still less than the
deadline, the dispatcher reads from the queue and tries to recover it. This process will
continue until failed tasks recover successfully. Lines 15–17 show the user changes its
connections between cellular and wireless during mobility, and network status varies
between on and off.

• Lines 18–22 show offloaded tasks that failed at the wireless network, and we apply the
checkpointing technique to recover the task from the point of failure. If the recovery
time, current execution, and communication time are still less than the deadline,
the dispatcher reads from the queue and tries to recover it. This process will continue
until failed tasks recover successfully. Lines 23–25 show that the user changes its
cellular and wireless connections during mobility, and network status varies between
on and off.

• Lines 26–30 show offloaded tasks that failed at the cloud resource, and we apply the
checkpointing technique to recover the task from the point of failure. If the recovery
time, current execution, and communication time are still less than the deadline,
the dispatcher reads from the queue and tries to recover it. This process will continue
until failed tasks recover successfully. Lines 31–36 show that the user changes its
cellular and wireless connections during mobility, and network status varies between
on and off. When all tasks are retrieved from the failed queue, the condition, loop,
and main loop will be terminated.

4.7. Time Complexity

The running time of DAPWTS is divided into three different parts—application
partitioning, task sequence, and task scheduling. For application partitioning, we exploit
O(V × E) time complexity. V is the number of call-graph nodes, and E is the edges
among dependent tasks. Our partitioning algorithm follows the same rules as existing
min-cut algorithms. However, we only consider application partitioning in the call-graph
applications. We exploit O(nlogm) for the task-sequencing component. n is the number
of tasks of call graph G, and m denotes the number of sorted sequences for all tasks is
equal to O(N × N3) = n4. The time complexity of the task-scheduling algorithm is equal
to O(VlogM), as V is the number of iterations for searching tasks, and M is the number
round for allocating all tasks onto the computing resources. The DAPWTS algorithm is
iterative. Previously proposed application-partitioning frameworks [11,13–15] have n6 and
n7 time complexities to reduce the energy and response time of applications. The proposed
work has the n5 time complexity mentioned above while solving the offloading and
scheduling problem of mobile workflow applications. Still, n5 time complexity of the
proposed framework is high due to security components, partitioning components, task
sequences, and failure-aware scheduling components. However, n4 can reduce if we exploit
blockchain-enabled frameworks and distributed symmetric keys in the network. The main
limitation of the current system is that it cannot support blockchain technology with the
current runtime in the system and cannot reduce the time complexity of the system for
mobile workflow applications.

5. Performance Evaluation Simulation Setup

To evaluate the efficiency and effectiveness of the DAPWTS framework, we compare
it with existing frameworks in terms of power consumption and applications quality-of-
service requirements. We conduct an experiment to run mobile workflow applications

Electronics 2021, 10, 2797 18 of 30

based on the simulation parameters given in Table 2. To verify the effectiveness of all
methods, we exploited the ANOVA technique [16] in the experiment environment. We
show the performance of the DAPWTS framework via different metrics into different
subsections. Table 2 shows all simulation parameters in the experimental configuration file.
The JAVA simulation environment for both local and edge computing is designed in the
JAVA language using the java runtime machine. The study considered 2000 heterogeneous
mobile devices with different configurations to install and run the mobile workflow health-
care applications. Different healthcare sensors S1, S2, S3, S4, S5 are connected to the mobile
devices to generate data for the mobile workflow applications. Communication technolo-
gies are fixed in the simulation environment, such as WiFi, with upload and download
bandwidth determined in mbps (e.g., 200 to 300). The study fixed the edge cloud with the
different configurations as shown in Table 2. Therefore, the resources are heterogeneous
and have different computational speeds and power consumption in the study. Table
simulation parameters which are exploited in the simulation configuration files as shown
in the following Table 2.

Table 2. Simulation parameters.

Simulation Parameters Values Symbol

Languages JAVA JVM
Applications Healthcare G
λi Arrival of tasks 5 s
Simulation Time 6 h -
Experiment Repetition 14 -
No. of Mobile devices 2000 -
WAN-WLAN Network Bandwidth 20 to 300 mbps α1
WAN-Propagation Delay 50 to 150 mbps α2
Upload/download data size of a task 2000/150 KB Wi
Possibility offload to edge cloud 80% vc

Possibility offload to loc 12% vloc

VM processing speed cloudlet 1200/22,000 MIPS µr
No. VMS per cloudlet 3/∞ VM
Mobile-Device Capability. 64 GB µm
VMs speed 500–2500 MIPS Vj
Mobile Devices 10–4 GB RAM, 64 ROOM -
Edge-Cloud-1 Core i3 -
Edge-Cloud-2 Core i5 -
Edge-Cloud-3 Core i7 -
Edge-Cloud-4 Core i9 -
Edge-Cloud-5 Core GPU -
S1 Heartbeat Sensor Arduino
S2 SPO2 Sensor Arduino
S3 airflow Sensor Arduino
S4 body temperature Sensor Arduino
S5 ECG Sensor Arduino
S6 Glucometer Sensor Aurdino
S7 galvanic skin Sensor Aurdino
S8 EMG Sensor Aurdino
S9 EEG Sensor Aurdino
S10 MQ2 Sensor Aurdino
S11 Lead-1 Sensor Aurdino
S12 Lead-2 Sensor Aurdino

5.1. Baseline Approaches

We deployed and executed mobile healthcare applications as the detail of work-
load analysis depicted in Table 3. We will evaluate the efficiency and effectiveness of
the proposed architecture based on the components mentioned earlier by comparing it

Electronics 2021, 10, 2797 19 of 30

with existing application-partitioning schemes with the execution time, security, deadline,
and failure constraints.

1. Baseline1: This is a default min-cut scheme-enabled application partitioning and
computational offloading method that allows running the entire workload locally or
fully offloaded to the edge cloud. These kinds of schemes exploit many existing stud-
ies [7–9]. To evaluate the effectiveness and efficiency of DAPWTS, we implemented
these environments for testing purposes and with our proposed system.

2. Baseline2 [19,20]: This is the computational offloading scheme that allows the entire
clone of the application to be submitted to the cloud system for execution. Numerous
studies [11,13,16] have exploited this scheme to run different mobile workflow appli-
cations in their frameworks. It is a widely exploited offloading scheme that is adopted
by many studies in the mobile cloud system. It enables the mobile workflow appli-
cation to run onto distributed computing resources to obtain energy-consumption
objectives efficiently. We implemented similar offloading in our DAPWTS framework
to simultaneously maintain the trade-off between mobile energy and cloud energy.

Table 3. Mobile Workflow Workload Analysis.

Workload Data Size (GB) C.Ins. (MI) No. of Tasks

G1 5 5.8 1000
G2 3 6.8 900
G3 4 7.8 800

5.2. Mobile Workflow Application-Partitioning System

The workload of applications is shown in Table 3. The data size determined GB and
then divided into kilobytes. The source code of the aforementioned mobile workflow
applications is available at the following links: http://darnok.org/programming/face-
recognition/ (accessed on 1 January 2016), https://github.com/mHealthTechnologies/
mHealthDroid (accessed on 23 March 2020). We denote each workflow with four columns:
workload name, size, required CPU instructions (CIns) to run it, and the number of tasks.

We partitioned the mobile workflow application into local sets of tasks (e.g., non-
offloaded tasks) and edge-cloud tasks (e.g., offloaded tasks) as shown in Figure 6 in the
following way.

After applying the min-cut algorithm on the workflow call graph, we produce two
blues nodes (i.e., to be scheduled at the mobile device) and red notes (i.e., needs to be
offloaded to the cloud for execution). Figure 6a shows that the system takes a call graph
(e.g., mobile workflow application) as an input, and Figure 6b shows after applying the
secure min-cut algorithm that we generated the partitioning of tasks with their node and
edge weights. The partitioning is done on the mobile device; based on different criteria
parameters, we made this partitioning decision: these parameters, task size, execution time,
deadline, availability of resources, and network bandwidth.

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
https://github.com/mHealthTechnologies/mHealthDroid
https://github.com/mHealthTechnologies/mHealthDroid

Electronics 2021, 10, 2797 20 of 30

Test Face-Reg.
Main

1555 ms

Eigen-Face-CR
Check-Against

150 ms

Class Name
Operation Name
Execution Time

Read-Face
Bud

160 ms

Eigen-Face-CR
Read-Image

190 ms

Eigen-Face-CR
Submit-Set

500 ms

Face-Bundle
Compute
700 ms

Eigen-Face-CR
Compute-Bund

350 ms

Eigen-Face-CR
Save-Bundle

450 ms

Eigen-Face-CR
Submit
500 ms

Jama.Matrix
Transpose

600 ms

44 KB

39 KB

41 KB 1

Execution Time (ms)

2 3 4 5 6

7 8 9

10

Local, Edge Cloud

41 KB

39 KB

1
9
0
,
1
1
0

5
0
0
,
1
0
0

700,200

1
0
 K

B

35 KB

1 MB

1 MB

44 KB

14 KB

350, 200

500, 80

600, 200

450, 180

Local Mobile

Edge Cloud

(a) Face-Recog. Workflow Call Graph of Healthcare Application (b) Weighted Graph of Dynamic Application Partitioning

Figure 6. Application Partitioning Results After Applying Algorithm 1.

5.3. Profiling Technologies

The mobile workflow application is represented as a call graph, as we can scale
applications via an open-source connection scrutiny tool which shows energy profiling
for uploading and downloading the data. This is also available at www.speedtest.net/
(accessed on 1 May 2021), and for energy profiling you can this tool [11]: http://ziyang.
eecs.umich.edu/projects/powertutor/, (accessed on 9 October 2011).

Dynamic Application-Partitioning Setup

The healthcare workflow application was partitioned into local and remote execution.
Each task vi is represented by a node, and each node has exactly two costs (i.e., local
execution cost and cloud execution cost). We partitioned the application under F = 2
speedup factor and available bandwidth of 1 M/B, respectively. However, each mobile
workflow application is bound by its deadline. The deadline of each mobile workflow Dw
is expressed as follows:

To evaluate the performance of the proposed DAPWTS algorithm next to the health-
care heuristics-based DEA benchmark [19,20] that determines the effectiveness of the
proposed algorithm. The calibration parameters of tasks are the same as a healthcare
workflow; the performance evaluation of the DAPWTS is measured at different deadlines.
The DAPWTS has RPD (relative percentage division), which is used to compare with
existing schemes such as non-offloading, and is described as follows:

RPD% =
Z− Z∗

Z
× 100%, (24)

In Equation (24) Z is the objective function of study, i.e., EGloc, and Z∗ is the opti-
mal objective function of total cost, e.g., EGtotal = ∑v∈V PrvEGloc

v + ∑v∈V(1− Prv)EGcl
v +

∑e(vi ,vj)∈E PreTtrans
e .

www.speedtest.net/
http://ziyang.eecs.umich.edu/projects/powertutor/
http://ziyang.eecs.umich.edu/projects/powertutor/

Electronics 2021, 10, 2797 21 of 30

5.4. Components Calibration of DAPWTS Framework

The DAPWTS framework consists of the following components: Min-Cut partitioning
method, task sequence rules, searching power-efficient virtual machines, task scheduling,
and failure-aware task scheduling. We simulated all the results with 100% of energy
and time. The y-axis represented energy-consumption level, i.e., 20 to 100%. The x-axis
represented the number of tasks.

5.4.1. Task-Sequencing Rules

The τ ∈ {0.2, 0.4, 0.6, 0.8, 1} variable is exploited as tightly valued to run workflow
applications Gw ∈ A. Figure 6 shows that Gw 0.8 is best among all adjustments and with
the proposed task sequence rules. Based on the ANOVA technique, Figure 6 describes the
mean plot of τ using 95.0% Tukey HSD intervals. It can be observed that RPD% reduces
when τ increases from 0.2 to 0.4. Existing heuristics such as Baseline1 and Baseline2 were
compared with proposed DAPWTS-based algorithm components. We evaluated the overall
performance and validity based on the above components, and all RPD results proposed
that the algorithm is better when compared to all benchmark heuristics bound by deadline
constraints [28,30,31].

Table 4 determines the node specification concerning the energy consumption in Watt
and speed of the simulation config file.

Table 4. Mobile Edge-Cloud Resource Specifications.

Mobile Device Edge-Cloud-1 Edge-Cloud-2 Edge-Cloud-3 Edge-Cloud-4 Edge-Cloud-5

Core 1 1 1 1 1
MIPS/Core 200 400 600 800 1000
Power/Core 50 W 100 W 150 W 200 W 250 W

5.4.2. Secure Min-Cut Algorithm

This part discusses healthcare application dynamic and secure partitioning before
scheduling them onto the mobile devices and edge cloud nodes. In the initial phase, all
tasks are divided between local execution and edge-cloud execution based on deadlines, ex-
ecution time, and resource availability of the nodes. After partitioning, each node performs
encryption and decryption based on dynamic message digestion (MD5) methods. As we
already have shown in the application-partitioning process in Figure 7, the secure dynamic
application partitioning may vary according to network bandwidth and resource availabil-
ity. To run the mobile workflow applications, all users demand ubiquitous applications,
wireless network services, and omnipresent cloud services. Therefore, existing application-
partitioning schemes such as Baseline1 [1,4,7,11,12] and Baseline2 [21–27] cannot adopt
any dynamic changes at the runtime and do not ensure any security on the data.

According to Figure 7, the proposed algorithm RPD% is preferred to existing heuristic
techniques. The main reason for this is that DAPWTS (e.g., secure min-cut) adopts any envi-
ronment changes (i.e., resources that speedup factor and network bandwidth) and improves
application-partitioning performance iteratively in the system. The main goal is to reduce
the trade-off energy consumption of both mobile and cloud resources simultaneously.

Electronics 2021, 10, 2797 22 of 30

Figure 7. Application partitioning performance and task sequencing.

5.4.3. Task-Scheduling Phase

We assume the mobile devices are resource-constrained; however, edge-cloud servers
have unlimited on-demand resources. Our primary goal is to satisfy the quality-of-service
requirements (e.g., deadline and failure management) of all applications and minimize the
trade-off energy consumption of mobile devices and edge-cloud servers simultaneously
when running to all forms in the proposed DAPWTS system. We compare the effectiveness
of the DAPWTS (task scheduling) with existing frameworks regarding deadlines of the
different requests and energy consumption of mobile and edge-cloud servers. We run
the random workflow tasks of various applications and note DAPWTS satisfies all task
deadlines during partitioning and scheduling. Hence, Figure 8a,b illustrates that DAPWTS
outperforms existing studies in terms of user QoS requirements and improves the use of
RPD% of used resources. DAPWTS transcends existing studies because Baseline1 and
Baseline2 only focus on energy minimization of the mobile device; however, this does
not focus on the QoS requirements of different application tasks during partitioning and
scheduling.

Electronics 2021, 10, 2797 23 of 30

Figure 8. Workflow application no. of tasks completed within a given deadline.

Furthermore, Figure 8a,b prove that DAPWTS also outperforms existing studies
when all workflow applications are simultaneously in the system. When we run all
applications with baselines in a mobile cloud system, we note that these methods only
improve the mobile energy consumption regardless of edge-cloud servers and quality-of-
service requirements of applications. Hence, the proposed task scheduling and energy-
efficient scheduling initially outperform during application partitioning and scheduling of
different workflow applications.

5.4.4. Energy-Efficient Task Scheduling

In this discussion, the study evaluated the performance of existing application-
partitioning schemes and proposed schemes in terms of energy consumption with different
deadlines, security, and failure constraints. Application-partitioning architecture and pro-
cedures focus mainly on minimizing energy consumption of resource-constrained mobile
devices for healthcare applications. Application-partitioning methods as energy-hungry
mobile application tasks need to be offloaded to cloud computing to reduce device energy
and improve user experience. However, the main limitation of existing studies is that they

Electronics 2021, 10, 2797 24 of 30

do not balance energy consumption between mobile devices and cloud machines when
mobile workflows run onto the resources. It is unfair to the cloud resource to schedule
energy-hungry offloaded tasks without energy minimization planning. The proposed algo-
rithm DAPWTS fairly schedules all tasks between the mobile device and cloud resources
and adjusts the total energy consumption of workflow applications.

Figures 9a,b and 10a,b show that initial task scheduling in the DAPWTS framework
improves energy consumption of all distributed resources, including mobile device and
edge-cloud servers, concurrently, as compared to the existing application-partitioning
schemes. It can be seen that energy-efficient task scheduling further improves the energy
consumption of shared resources via the DVFS technique during rescheduling. Therefore,
DAPWTS is an efficient and effective framework that enhances the performance of different
applications and minimizes the overall energy consumption of distributed resources.

Figure 9. Multiple workflow application energy consumption at local devices.

Electronics 2021, 10, 2797 25 of 30

Figure 10. Multiple workflow applications at edge-cloud energy.

5.4.5. Failure-Aware Task Scheduling

We are formulating dynamic application and task-scheduling problems. We allow
users to request and call cloud services and seamless wireless connection during mobility.
However, due to the adaptive and dynamic environment, the transient failure of tasks often
occurs due to resource-constrained mobile devices, wireless connection failure, or service
busy failure. Thus, handling all kinds of failures is challenging without violating any QoS
of tasks at runtime during offloading and scheduling. We exploited the checkpointing
technique to recover a task failure from the point of collapse without any delay. DAPWTS
offers a seamless and robust proposed work environment to run the mobile workflow
applications without degradation of their performance. As can be observed from Figure 11,
DAPWTS handled all kinds of failure with lower RPD% as compared to existing baseline
offloading schemes. There are the following reasons why DAPWTS outperforms state-of-
the-art studies: (i) We divided DAPWTS into four layers: mobile device, wireless network
(e.g., cellular and WiFi), and edge-cloud computing. Therefore, it is easy to save the failure
tasks into a particular queue at any layer; (ii) Transient failure is a temporary breakdown

Electronics 2021, 10, 2797 26 of 30

that can be retrieved quickly before the given task deadline. The deadline division of
the application among tasks is an efficient way to handle any failure with guaranteed
performance. Hence, it is proved by Figures 11a,b, 12a,b and 13 that DAPWTS tackles all
kinds of failure efficiently in the dynamic environment and encourages user interactivity
and mobility features.

Figure 11. Multiple workflow application failure-aware scheduling.

Electronics 2021, 10, 2797 27 of 30

Figure 12. Failure energy-performance of tasks of applications G1.

Figure 13. Failure energy-performance of tasks of applications G2.

Electronics 2021, 10, 2797 28 of 30

5.5. Research Findings and Limitations

This paper devised a dynamic application-partitioning workload and task-scheduling
secure (DAPWTS) scheme for healthcare applications. The study considered heteroge-
neous mobile edge-cloud nodes with different speeds, resources, and power consumption.
The goal was to minimize the power consumption of the nodes when running healthcare
applications with deadlines, failure, and security constraints. The study obtained the
optimal results during intermittent changes in resources during the runtime execution of
applications. The main finding of this study is to assess the security, failure, and deadline
of healthcare applications in dynamic and mobile environments. Another result is that
all tasks were executed with the deadline, which means the proposed work satisfied the
quality of services of applications. However, there are limitations to the study. (i) the data
migration between nodes is insecure in the current work because data validation between
nodes is missing. Due to many constraints in the study, it requires more resources and
service availability, which means users may pay more for the application execution in the
system. Therefore, cost-efficient task scheduling in terms of node price will be considered
more in the following work.

6. Conclusions and Future Work

The study’s goal was to simultaneously minimize the energy consumption of applica-
tions mentioned earlier at the resource-constrained mobile device and the edge-cloud servers.
To deal with the problem, we devised a dynamic application-partitioning task schedul-
ing (DAPWTS) framework, which consists of the following components: (i) Application-
partitioning component; (ii) Task-sequencing component; (iii) Task-scheduling component;
(iv) Failure-aware task scheduling of the mobile workflow in the proposed architecture.
The performance evaluation results show that DAPWTS performs well in the dynamic
environment and supports mobility and interactivity of users during movement. DAPWTS
efficiently handles any failure during the processing of applications. Simulations showed
that the DAPWTS minimized partitioning energy by 40%, resource-allocation energy by
38%, security energy by 39%, and failure energy by 29.9% for the workflow applications
in the system. These results were discussed in the simulation and performance part and
highlighted all findings and limitations of the study. The obtained results showed that the
partitioning, scheduling, security, and failure processes consumed energy from the nodes
in the system. However, existing studies only focused on the partitioning energy consump-
tion of healthcare applications and widely ignored the security, scheduling, and failure
energy of nodes in the mobile edge-cloud system.

In the future, we will add security and container-based microservices to the edge
cloud to improve the system performance from the cloud side. We will formulate the future
problem as a many-objectives convex optimization problem in the heterogeneous mobile
edge-cloud environment.

Author Contributions: Data curation, A.L.; Formal analysis, A.L.; Methodology, A.L. and A.H.S.;
Software, J.L.; Supervision, T.M.G.; Validation, O.T.; Visualization, P.K.; Writing—original draft, A.L.
and A.S.I.; Writing—review and editing, N.A.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is financially supported by the Research grant of PIFI 2020 (2020VBC0002),
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (SIAT, CAS), Shenzhen,
China. Also, this work is partially supported by Chiang Mai University and the college of arts, media
and technology.

Data Availability Statement: All the experimental data are generated at the local institution servers.
Therefore, it cannot be made publicly available for other researchers.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 2797 29 of 30

References
1. Kwon, D.; Yu, S.; Lee, J.; Son, S.; Park, Y. WSN-SLAP: Secure and lightweight mutual authentication protocol for wireless sensor

networks. Sensors 2021, 21, 936. [CrossRef]
2. Lee, C.C. Security and privacy in wireless sensor networks: Advances and challenges. Sensors 2020, 20, 744. [CrossRef]
3. Woźniak, M. Advanced Computational Intelligence for Object Detection, Feature Extraction and Recognition in Smart Sensor

Environments. Sensors 2020, 21,45.
4. Waseem, M.; Lakhan, A.; Jamali, I.A. Data security of mobile cloud computing, on cloud server. Open Access Libr. J. 2016, 1, 11.

[CrossRef]
5. Shahbazi, Z.; Byun, Y.C. Integration of Blockchain, IoT and Machine Learning for Multistage Quality Control and Enhancing

Security in Smart Manufacturing. Sensors 2021, 21, 1467. [CrossRef]
6. Lin, Y. An analytic computation-driven algorithm for Decentralized Multicore Systems. Future Gener. Comput. Syst. 2019,

96, 101–110. [CrossRef]
7. Liu, G.; Peng, B.; Zhong, X. A Novel Epidemic Model for Wireless Rechargeable Sensor Network Security. Sensors 2021, 21, 123.

[CrossRef]
8. Khoso, F.H.; Arain, A.A.; Lakhan, A.; Kehar, A.; Nizamani, S.Z. Proposing a Novel IoT Framework by Identifying Security and

Privacy Issues in Fog Cloud Services Network. Int. J. 2021, 9, 592–596.
9. Lakhan, A.; Li, X. Transient fault aware application partitioning computational offloading algorithm in microservices based

mobile cloudlet networks. Computing 2020, 102, 105–139. [CrossRef]
10. Lakhan, A.; Xiaoping, L. Energy aware dynamic workflow application partitioning and task scheduling in heterogeneous mobile

cloud network. In Proceedings of the 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB),
Fuzhou, China, 15–17 November 2018; IEEE:Piscataway, NJ, USA, 2018; pp. 1–8.

11. Lakhan, A.; Li, X. Content Aware Task Scheduling Framework for Mobile Workflow Applications in Heterogeneous Mobile-
Edge-Cloud Paradigms: CATSA Framework. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 242–249.

12. Sharma, P.K.; Park, J.H.; Cho, K. Blockchain and federated learning-based distributed computing defence framework for
sustainable society. Sustain. Cities Soc. 2020, 59, 102220. [CrossRef]

13. Mastoi, Q.-u.-a.; Ying Wah, T.; Gopal Raj, R.; Lakhan, A. A Novel Cost-Efficient Framework for Critical Heartbeat Task Scheduling
Using the Internet of Medical Things in a Fog Cloud System. Sensors 2020, 20, 441. [CrossRef]

14. Lakhan, A.; Ahmad, M.; Bilal, M.; Jolfaei, A.; Mehmood, R.M. Mobility Aware Blockchain Enabled Offloading and Scheduling in
Vehicular Fog Cloud Computing. IEEE Trans. Intell. Transp. Syst. 2021, 22,4212–4223. [CrossRef]

15. Pinto, M.F.; Marcato, A.L.; Melo, A.G.; Honório, L.M.; Urdiales, C. A framework for analyzing fog-cloud computing cooperation
applied to information processing of UAVs. Wirel. Commun. Mob. Comput. 2019, 2019, 7497924. [CrossRef]

16. Garg, S.; Aujla, G.S.; Erbad, A.; Rodrigues, J.J.; Chen, M.; Wang, X. Guest Editorial: Blockchain Envisioned Drones: Realizing
5G-Enabled Flying Automation. IEEE Netw. 2021, 35, 16–19. [CrossRef]

17. Gill, S.S.; Tuli, S.; Xu, M.; Singh, I.; Singh, K.V.; Lindsay, D.; Tuli, S.; Smirnova, D.; Singh, M.; Jain, U.; et al. Transformative effects
of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet Things
2019, 8, 100118. [CrossRef]

18. Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and privacy for green IoT-based agriculture: Review, blockchain
solutions, and challenges. IEEE Access 2020, 8, 32031–32053. [CrossRef]

19. Kiwelekar, A.W.; Patil, P.; Netak, L.D.; Waikar, S.U. Blockchain-Based Security Services for Fog Computing. In Fog/Edge Computing
For Security, Privacy, and Applications; Springer:Berlin, Germany, 2021; pp. 271–290.

20. Blasch, E.; Xu, R.; Chen, Y.; Chen, G.; Shen, D. Blockchain methods for trusted avionics systems. In Proceedings of the 2019 IEEE
National Aerospace and Electronics Conference (NAECON), Dayton, OH, USA, 15–19 July 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 192–199.

21. Li, T.; Wang, Z.; Chen, Y.; Li, C.; Jia, Y.; Yang, Y. Is semi-selfish mining available without being detected? Int. J. Intell. Syst. 2021, 2,
1–21. [CrossRef]

22. Li, T.; Wang, Z.; Yang, G.; Cui, Y.; Chen, Y.; Yu, X. Semi-Selfish Mining based on Hidden Markov Decision Process. Int. J. Intell.
Syst. 2021, 36, 3596–3612. [CrossRef]

23. Yu, X.; Wang, Z.; Wang, Y.; Li, F.; Li, T.; Chen, Y.; Tian, Y.; Yu, X. ImpSuic: A Quality Updating Rule in Mixing Coins with
Maximum Utilities. Int. J. Intell. Syst. 2020, 36, 1182–1198. [CrossRef]

24. Li, T.; Chen, Y.; Wang, Y.; Wang, Y.; Zhao, M.; Zhu, H.; Tian, Y.; Yu, X.; Yang, Y. Rational Protocols and Attacks in Blockchain
System. Secur. Commun. Netw. 2020, 2020, 8839047. [CrossRef]

25. Yang, G.; Wang, Y.; Wang, Z.; Tian, Y.; Yu, X.; Li, S. IPBSM: An optimal bribery selfish mining in the presence of intelligent and
pure attackers. Int. J. Intell. Syst. 2020, 35, 1735–1748. [CrossRef]

26. Wang, Y.; Yang, G.; Li, T.; Zhang, L.; Wang, Y.; Ke, L.; Dou, Y.; Li, S.; Yu, X. Optimal mixed block withholding attacks based on
reinforcement learning. Int. J. Intell. Syst. 2020, 35, 2032–2048. [CrossRef]

27. Liu, X.; Yu, X.; Zhu, H.; Yang, G.; Wang, Y.; Yu, X. A game-theoretic approach of mixing different qualities of coins. Int. J. Intell.
Syst. 2020, 35, 1899–1911 [CrossRef]

http://doi.org/10.3390/s21030936
http://dx.doi.org/10.3390/s20030744
http://dx.doi.org/10.4236/oalib.1102377
http://dx.doi.org/10.3390/s21041467
http://dx.doi.org/10.1016/j.future.2019.01.031
http://dx.doi.org/10.3390/s21010123
http://dx.doi.org/10.1007/s00607-019-00733-4
http://dx.doi.org/10.1016/j.scs.2020.102220
http://dx.doi.org/10.3390/s20020441
http://dx.doi.org/10.1109/TITS.2021.3056461
http://dx.doi.org/10.1155/2019/7497924
http://dx.doi.org/10.1109/MNET.2021.9355047
http://dx.doi.org/10.1016/j.iot.2019.100118
http://dx.doi.org/10.1109/ACCESS.2020.2973178
http://dx.doi.org/10.1002/int.22656
http://dx.doi.org/10.1002/int.22428
http://dx.doi.org/10.1002/int.22337
http://dx.doi.org/10.1155/2020/8839047
http://dx.doi.org/10.1002/int.22270
http://dx.doi.org/10.1002/int.22282
http://dx.doi.org/10.1002/int.22277

Electronics 2021, 10, 2797 30 of 30

28. Khan, G.; Jabeen, S.; Khan, M.Z.; Khan, M.U.G.; Iqbal, R. Blockchain-enabled deep semantic video-to-video summarization for
IoT devices. Comput. Electr. Eng. 2020, 81, 106524. [CrossRef]

29. Rodrigues, T.A.; Patrikar, J.; Choudhry, A.; Feldgoise, J.; Arcot, V.; Gahlaut, A.; Lau, S.; Moon, B.; Wagner, B.; Scott Matthews, H.;
et al. Data Collected with Package Delivery Quadcopter Drone. Carnegie Mellon University. Dataset. 2020. Available online:
https://kilthub.cmu.edu/articles/dataset/Data_Collected_with_Package_Delivery_Quadcopter_Drone/12683453 (accessed on
10 February 2021).

30. Dovgal, V.A. Decision-Making for Placing Unmanned Aerial Vehicles to Implementation of Analyzing Cloud Computing
Cooperation Applied to Information Processing. In Proceedings of the 2020 International Conference on Industrial Engineering,
Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

31. Yaqoob, S.; Ullah, A.; Awais, M.; Katib, I.; Albeshri, A.; Mehmood, R.; Raza, M.; Ul Islam, S.; Rodrigues, J.J. Novel congestion
avoidance scheme for Internet of Drones. Comput. Commun. 2021, 169, 202–210. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2019.106524
https://kilthub.cmu.edu/articles/dataset/Data_Collected_with_Package_Delivery_Quadcopter_Drone/12683453
http://dx.doi.org/10.1016/j.comcom.2021.01.008

	Introduction
	Related Work
	Task Partitioning Offloading Schemes
	Task Allocation Schemes in Application Partitioning
	Security Schemes in Application Partitioning

	Problem Description
	System Model and Problem Formulation
	Application Energy Consumption

	Proposed Algorithm DAPWTS Framework
	Secure Min-Cut Algorithm
	Task Sequencing
	Optimal Power-Efficient Edge Node Searching
	Energy-Efficient Task Scheduling
	Failure-Aware Scenario
	Failure Task Scheduling
	Time Complexity

	Performance Evaluation Simulation Setup
	Baseline Approaches
	Mobile Workflow Application-Partitioning System
	Profiling Technologies
	Components Calibration of DAPWTS Framework
	Task-Sequencing Rules
	Secure Min-Cut Algorithm
	Task-Scheduling Phase
	Energy-Efficient Task Scheduling
	Failure-Aware Task Scheduling

	Research Findings and Limitations

	Conclusions and Future Work
	References

