
Web-Based Collaborative Learning in CS1:
A Study on Outcomes of Peer Code Review

Rolando Gonzalez and Andreas Biørn-Hansen

Department of Technology, Kristiania University College, Norway

Abstract
Based on a teacher-organized student-to-student code review session, we

gathered both quantitative and qualitative data from 177 first-semester Information
Technology undergraduate students to learn about their thoughts, experiences and
outcomes from collaborative learning through an online tool in an introductory
programming course. The students were given a programming exercise to solve
using JavaScript in a Web-based IDE facilitating real time code-sharing for peer-
evaluation of code based on five provided evaluation criteria: naming of artifacts
in the code, formatting of code, use of data types, use of execution flow, and other
comments. In the survey questionnaire, we employed a five-point Likert scale with
an additional text field for qualitative feedback. For the qualitative free-text based
answers, thematic coding was carried out to identify recurring themes and topics
in the students’ answers. Based on the students’ feedback, our results indicate that
the majority of the participants had positive experiences resulting in self-reported
learning through collaborative work, peer-evaluation and problem solving.

1 Introduction
According to Ying and Boyer [20], there is a gap in research on tools that improve
learning through collaboration for novice programmers in higher education. The
tools that exist are difficult to use for students, since they are not created for
beginners and the tools that are created for the sake of research are neither further
developed nor used after the projects end. This happens despite the literature
showing that collaboration has positive effects on learning.

Courses within the fields of science, technology, engineering, and mathematics
(STEM) are widely considered notoriously difficult from a student’s perspective. The
number of students participating in introductory courses to programming, commonly
referred to as Computer Science 1 (CS1) continue to grow [13]. A recent study on
failure rates in CS1 courses, Bennedsen and Caspersen [3] found an average of 28%
of students in such introductory courses failing [3]. Challenges reported by students
were synthesized by Medeiros et al. [12] in their systematic literature review on
teaching CS1. Motivation, engagement and problem solving were prominent factors
contributing to the challenging nature of learning programming. Looking to previous
research on teaching CS1, we find that making use of collaborative components such
as pair programming and pair review improves code quality, retention rates and

This paper was presented at the NIK-2020 conference; see http://www.nik.no/.

confidence [20], motivation and soft skills [11]. Student motivation is important to
attain a high retention rate. A study on the process of hiring and evaluating recently
graduated computer scientists and software engineers emphasized the importance of
soft skills, including communication and cooperation [10] – two core components of
programming collaboration, which we were interested in researching further.

The study at hand is based on qualitative and quantitative data gathered
from 177 first-semester undergraduate students in information technology during
their CS1 course. The course is focused on providing the students with
fundamental theoretical knowledge and hands-on experience with core components
in programming, by use of JavaScript, such as data types, execution flow, loops,
variables, syntax and structure.

Our aim is investigating the students’ perceived learning outcome from real
time collaborative learning using an online collaboration tool, while working with a
programming task. The complexity of the task was not especially high and this was
important, as the focus of the assignment was not solely on solving the programming
problem, but also on reviewing and and discussing with others. The students were
to use the Web-based collaborative programming tool Scrimba1. Scrimba allows for
among other easy sharing of code, real time screen share, making a copy of a project
to develop it and share the changes and comments. Based on this, we formed two
research questions:

RQ1: How do students perceive working in groups on a programming task through
an online collaborative tool?

RQ2: How does the collaborative effort affect the students’ perceived learning?

To answer these questions, we carried out an analysis based on quantitative
(Likert scale) and qualitative data with thematic coding. An important distinction
between the study at hand and related work, is that we explore students’ perceived
learning (see RQ2). We do not assess the impact of collaborative learning on the
students’ final grades in CS1, neither do we employ objective evaluation from the
students’ perspective. The objective of this study is to better understand the
students’ perception of collaborative components and how students perceive the
impact on their learning in the context of problem solving in CS1.

In Section 2, we highlight seminal studies in collaborative learning and
teaching introductory programming. Section 3 describes our research methods, the
programming and peer evaluation assignment and instructions, and data analysis
techniques. In Section 4, we present findings of the study, which are discussed and
placed in context of previous research in Section 2. Finally Section 5 provides a
conclusion and suggestions for future work.

2 Related Work
Collaborative programming is seen as an effective learning approach for novice
programmers to improve their computational thinking skills. By receiving and
providing peer teaching, alternative ways of solving programming solutions can
be achieved. It coincides with constructivist theories where one sees the learner
as creating their knowledge through actively participating in social interaction

1Scrimba website: https://scrimba.com/

with peers [19]. Wing [18] states that “Computational thinking is reformulating
a seemingly difficult problem into one we know how to solve”. Wing further
explains how Computational thinking is about different activities on different levels
of abstraction ranging from finding errors to using heuristics to find best ways to
solve an issue. The student must work on their ability to think in multiple levels of
abstraction while at the same time being imaginative. There are different manners
of making the students work together, ranging from group discussions to pair
programming. Pair programming is seen as an effective manner of learning versus
working alone, resulting in higher quality of code, more confidence, performing
better on exams and in addition letting the student enjoy the process more [5]
[20]. However, even though the literature claims collaborative learning is beneficial,
students are often forced to learning programming individually, according to Shadiev
et al. [15]. The students seldom interact with peers and teachers and this may lead
to students learning the subject in a wrong manner in addition to not developing
certain thinking skills which are beneficial in programming.

Based on a systematic literature review of studies on approaches to teaching
introductory programming, Vihavainen et al. [17] highlight cooperative learning as
the most beneficial method for improving student pass grades. Also Beck and
Chizhik [2] and Ying and Boyer [20] suggest numerous benefits of cooperative
learning, including student retention and student achievements. However, according
to Luxton-Reilly et al. [11] and their comprehensive survey on introductory
programming, there is a lack of studies evaluating the effect of cooperative and
collaborative learning. While we do not assess the impact of collaborative learning on
the participants’ grades, we do focus on two other aspects discussed by Luxton-Reilly
et al. [11]: collaboration and communication. These aspects were also discussed
by Urness [16] in an experiment on peer assessment in randomly assigned groups,
stating that the most common complaint among their students was lack of response
from their peers. Such behaviour may be expected in light of Shadiev et al. [15]’s
findings that students often lack interaction with peers and teachers. Ying and Boyer
[20] also report on a lack of research on the use of tools and how the collaborative
process works.

Although previous research has highlighted numerous benefits of cooperative
learning and variations of peer programming and peer assessment in CS1, also
criticism of the teaching methods is to be found in the body of knowledge. An
experiment on peer assessment in a Web development course by Aalberg and Lor̊as
[1] found that the students do not necessarily trust the comments provided by their
peers, and that the quality of the comments provided varied significantly. For
our current study, these findings are particularly interesting as the participating
students provided comments and feedback to their peers in an iterative manner,
thus were able to see if their peers included or modified their code based on the
provided comments. Another challenge related to pair programming is highlighted
in a synthesis of surveyed literature provided by Salleh et al. [14]. The authors state
that the actual pairing of peers is considered challenging, and that grouping based
on skill level and personality type may generate beneficial results for the students.

Our motivation for conducting this research is to uncover perceived benefits and
drawbacks of peer assessment from the perspective of students enrolled in our CS1
course. The importance of developing skills in communication and cooperation from
an early stage in the computer science education is at the core of the project, in the

context of doing so through online collaborative tools.

3 Research Method
Based on related work in cooperative learning, peer reviewing and literature on
constructivist activities in CS1, we developed a programming assignment along
with a set of assertions for the participating students to answer. In this section,
we elaborate on the assignment, questionnaire and analysis.

Pedagogical Philosophy
Constructivism is the underlying pedagogical philosophy under the assumptions
we make when organizing the activities which we research in this paper. In
constructivism, learning is something that happens as an active process in the
student, and in collaboration with others. In our research we gave a task to students
which required for them to first apply what they already have learnt, then expand
their knowledge as the task was novel, and in dialogue with peers discuss and reflect
on different aspects of the code. The goal of the social interactions is cognitive
development and deep learning [6]. The assignment given to the students opened
up for them helping each other, discussing and sharing ideas both orally and written
forcing them to put into words the knowledge they had and obtained.

Assignment on Programming and Peer Assessment
The context we explore is how students in their first year of a Bachelor in Information
Technology experience collaborating in groups on a programming task through an
online collaboration tool called Scrimba2, which opens up for easily sharing and
collaborating on code. Our research is exploratory in the sense that the tool has
opened for cases that we have not previously assessed and evaluated in teaching
situation. However, we build upon previous experience [8] [9]. We assigned the
students of an introductory programming course (CS1) an obligatory task which they
were to solve through means of collaborative learning in groups of 2 or 3 peers. They
worked on the same task, then gave each other feedback on each other’s codes and
went back to coding and so back and forth. The task was given to the students after
8 of 12 lectures, after having been introduced to most of the fundamental concepts
in programming. They were given 1 week to solve the assignment and each student
was to deliver their own version of the solution. The activity which the students were
given thus opened up for the students to program on their own, present and explain
their code, receive and give feedback, discuss and continue coding based on feedback.
Taking into account the experiences provided by Urness [16] that students in their
experiment would complain about peers not answering emails, we urged our CS1
students to start solving the assignment during a 2-hour lab exercise immediately
following lectures when most students were already at campus. However, it was not
given that all students managed to fulfill the requirements of the assignment and
coding exercise within the 2 hours, and thus had to continue their work beyond the
lab exercise. This process is illustrated and further detailed in Figure 1.

2Scrimba Website: https://scrimba.com

Students individually
start developing their

solution
20 minutes

of work

Students share a URL to
their code workspace

with their lab partner(s)

10 minutes
of peer evaluation

Students assess and
evaluate their lab
partner(s)'s code

Each student present
and discuss their code to

their lab partner(s)

Students individually
continue developing their

solution based on
feedback received 20 minutes

of work

Repeat entire
process one
more time

Reflect upon the process and
answer the online survey

Figure 1: Instructions on executing the task.

Data Collection and Analysis
A folder containing program source code along with the feedback and comments
provided to their peers was expected in the students’ hand-in. Subsequent to the
hand-in, the students were to answer an online survey questionnaire regarding their
experiences and perceived learning outcomes. Our study is concerned with the
results from the survey questionnaire rather than the aforementioned program source
code and comments between student pairs. For this questionnaire, we developed five
assertions (A1...5) for the students to rank on a five-point Likert scale. Thematically,
the assertions cover the use of the online collaborative tool Scrimba (RQ1), the
providing and receiving of peer evaluation (RQ1 and RQ2), and the overall perceived
learning outcome (RQ2).

• A1: Scrimba made it easy for us to exchange ideas on how my code should be
changed.

• A2: A result of the evaluation phase was that I learned more about JavaScript.

• A3: I made use of the feedback I received from my peers in the two evaluation
phases.

• A4: Scrimba helped me in providing guidance to the other group members.

• A5: The use of Scrimba in this group project supported my learning of JavaScript.

Along with the assertions, we included a text field where the students were
to “Reflect upon the collaborative process in Scrimba for exchange of ideas and
improvement of program code”. These answers were translated from Norwegian to
English with explicit focus on retaining sentiment and perceptions. The combination
of quantitative Likert-point based data and free form text answers reflecting on the
process gave us a considerable dataset for analysis. We take a descriptive approach
to the quantitative data, analysing the students’ assertions to find patterns and
provide a holistic picture of perceived learning outcome. As for the qualitative data,
the process leaned on thematic analysis using Bryman’s Four stages, referred to
among other by Carpendale et al. [4], along with Gibbs [7]’ material on qualitative
analysis. Our process started reading through the free form text responses, noting
ideas, and rereading several times before creating and refining codes. Afterwards,
we began identifying major themes and dimensions. The final stage was relating our
findings to existing theories and understandings, in addition to adding one’s own
interpretation, which we present and discuss in Section 4.

4 Findings and Discussion
Throughout this section we provide and discuss our findings based on quantitative
and qualitative data. The quantitative findings are based on the five point Likert
scale questions from the questionnaire showing the percent-wise distribution of
answers, while the qualitative findings arise from thematic coding based on the open
answer reflection question. An aggregated view of the quantitative questionnaire
data is displayed in Figure 2. We refer to this figure throughout the section to
follow.

40,1

53,7

44,1

39

36,7

28,8

23,2

38,4

20,3

22,6

20,9

18,6

13

31,1

26

2,
8

1,
1

2,
3

2,
8

5,
6

7,
3

3,
4

2,
3

6,
8

9
0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

A1: Scrimba made it easy for
us to exchange ideas on how
my code should be changed.

A2: A result of the evaluation
phase was that I learned more
about JavaScript

A3: I made use of the feedback
I received from my peers in
the two evaluation phases

A4: Scrimba helped me in
providing guidance to the
other group members

A5: The use of Scrimba in
this group project supported
my learning of JavaScript

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 2: Percentage-wise results from the questionnaire assertions.

The process of thematic analysis resulted in the set of codes and associated
overarching themes, the result of which is found in Table 1. These themes form
the structure of the current section, where we investigate respectively the process of
“obtaining knowledge”, the “collaborative process”, and the “working process”.

Obtaining knowledge
The students reported on how the collaborative task let them gain insight into how
their peers solved their own assignment, and how different their solutions could be.
A student reported that “The members of the group had all approached the task
differently, and all the code was working”. The expression of having different ideas
in solving a case coincides with the thematic analysis done by Celepkolu and Boyer.
Celepkolu and Boyer’s findings also show that collaborative programming results in
students observing other’s solutions, comparing ideas and getting new ideas in the
process.

As for the comparison of the coded solutions, and the resulting changes, our
Likert scale statement on whether the ’tool helped students to exchange ideas on
how the code should be changed’ received 40.1% on agree and 28.8 on strongly
agree. Celepkolu and Boyer reports on how code quality improves in situations of
collaborative coding. Students in our study reported that the collaborative process
led to a better result as it opened for various solutions to the same problem: “We

Meaning Codes Themes

Experiencing getting insight into alter-
native ideas and ways of solving the as-
signment.

Alternatives
Obtaining
knowledge

Increased learning and understanding
through reflection. Got to test different
ideas.

Learning

The student experienced their code
improved after receiving feedback.

Improvement

The student focused on receiving feed-
back.

Received feedback
Collaborative
process

The student focused on giving feedback. Gave feedback

The group had positive discussions on
the assignment.

Discussion

The collaboration worked well. Collaboration

Focus on coding in itself. Being able to
code efficiently.

Coding

Working process
Focusing on being able to find errors
and lacks in code in the process.

Finding errors and lacks

Easy to share and show code to the
others through the tool.

Sharing of code

Experienced technical issues, or lacks in
the tool, for some making the tool hard
to work in.

Technical issues

Table 1: Themes and codes alongside their meaning, as derived from the qualitative
free form questionnaire.

had different solutions and ideas to present, which lead to a better result. I learnt
much!”. We can expect the process to have been that as they see each other’s
codes and compare, they will undergo a process of selection, where the student uses
their peers’ codes as inspiration for improvement. It helps them get closer to do
judgements on what is better or worse code.

On the Likert scale 39% agreed, while 20% strongly agreed on the collaboration
tool enabling them providing guidance to others. An interesting finding is how some
students reported being able to use the collaborative tool as a way to test different
ideas while working on which feedback to give. This can be interpreted as that
students see something in their peer’s codes that may not be optimal and then try
to rewrite it in different ways, before giving feedback orally. This is interesting in two
manners: 1) The student providing feedback employs their knowledge and put it in
context of another student’s code, and 2) the student receiving feedback will receive
a modified version of their code. I.e., it is guidance that is given as an expansion of
the student’s abilities, manifested as code, at that moment. 82.5% reported on the
Likert scale having used feedback they received from peers to improve their solution.

[5] reports in their thematic coding that collaborative coding makes coding more
enjoyable and fun, and Celepkolu and Boyer [5] and Ying and Boyer [20] both
reported how collaborative coding improved confidence in a number of students.
Few of our students reported directly that it was fun: “It was fun to see how

other solved it.”, however several expressed how the collaboration worked well and
were content with the learning process. Neither did we find any direct expressions
of improved confidence. We believe our questions may not have opened up for
expressing emotions experienced in the collaborative process. However, our Likert
scale show how 76.9% either agree or strongly agree on having learned more about
coding and one may see a link between the feeling of having learned and confidence
in one’s coding skills.

Some students reported that they finished the task very quickly: “...The idea
is good and one gets many different feedback[s], but since the assignment wasn’t
complex enough it led to having a good suggestion already after the first round [of
feedback]”. It can be worth mentioning that for learning to take place one must
make tasks that are adaptive to level of competence so that students can obtain
knowledge according to their level. The majority of students reported of learning,
however, the students discussing the low level of difficulty may be above-average
students.

Regarding levels of competency affecting student collaboration, Salleh et al. [14]
report how students working in groups where their peers are on the same level of
competency may learn better. In addition, the level of engagement may affect the
process. Celepkolu and Boyer [5] mentions how some students came in group with
people they saw as freeriders including people who were not necessarily so motivated
to learn. One of our students reports that “...not all are in groups with engaged
student that one can discuss and exchange knowledge with. In my case I mostly
helped the others solve the task, that resulted in me not getting so much feedback
on my own code”, showing a possible case of asymmetry in both competency and
engagement.

Collaborative process
The overall results indicate that the majority of students had good experiences
collaborating through the Web-based IDE, thus improving the processes of sharing,
showing and discussing code (68,9% [strongly] agree). They were able to both give
and receive feedback, although we see from the comments that a number of the
students report mainly either giving or receiving feedback. The feedback was about
strengths and weaknesses in the code in addition to variations on how to code the
different parts of the solution. The feedback was often given both textually, as
comments in the code, and orally afterwards in the demonstration and discussion
part. Some students reported it made it easier to note comments first and then
express them orally, “We chose to send the code to each other for evaluation and
feedback. Scrimba worked fine. The feedback was mostly spoken verbally, as we were
sitting in groups.”

For students solving the assessment remotely, i.e., not while sitting in close
proximity to each other, Scrimba aided also in this scenario, “Scrimba worked fine
even when we sat at home in the evening. As long as the net is good, Scrimba works
well.” Some students also commented on the need for an external voice chat for
efficient communication, and would have liked to see this integrated in Scrimba.

Some students also reported that Scrimba did not necessarily aid in the learning
of programming, but rather may have helped in terms of collaborative efforts, “[...]
I don’t think Scrimba alone supported my JavaScript learning, but it made the
collaboration a little more effective.” This is to a certain degree reflected in the

questionnaire results (A5), showing that 26% were neutral on the assertion that
Scrimba supported the learning of JavaScript, while 59,3% (strongly) agreed.

It is interesting to note how the students differ in reporting the collaboration
process, focusing on either giving or receiving feedback. One reason for this may be
the level of competence the student has in programming and hence, their ability to
help others. This may indicate that some may have mostly helped others and other
mostly received help. This for sure would vary according to the group compositions,
as others reported learning through both giving and receiving feedback,

“[...] liked to get someone else’s views on my code. The fact that I had
to explain what I did here and there made me better understand my code
setup. Also reading another’s code was good, [...] giving feedback was
also educational. I thought the use of scrimba worked well, [...]”

These findings are noteworthy when seen in context of previous research. Our
results indicate that 83% of the participants made use of the feedback from fellow
students, while Aalberg and Lor̊as [1]’s study indicate trust issues between pairs
in pair programming, respectively regarding the feedback provided by their peers.
We did not find indications of mistrust between peers or the feedback provided in
our experiment, instead both those who predominantly either providing or received
feedback found the assessment helpful, and the great majority of students making
use of feedback received.

Working process
A quantity of students reported how the tool made it easy to share the code and
also show the code to their group underway in the process. With the tool they no
longer had to zip folders and send it via some software, but rather just share a link.
Also the real time aspect of the tool, where they could see how their peers would
comment and write code in real time, was an important part in the working process
as the ideas could be created and conveyed there and then.

“The ’Fork’ tool made it incredibly easy to exchange each other’s code so
we could compare and try to extend each other’s code.”

Some students found the tool in itself to be a bit hard to work in and that
it lacked some functionality that was in other tools they had previously used. In
addition some of the students experienced some technical problems due to the Wi-
Fi connection, in some cases not being able to share their links and in the worst
cases losing work they had done. This is as reported in the research of Ying [20]
where a common issue with digital collaboration tools is that they require a stable
connection. If there is not a stable connection, issues such as code loss and errors
in code merging may happen in many tools.

We also noticed how a number of students in their open answers first and foremost
expressed how the work had been about finding error and lacks in their own and
others’ codes. They expressed they would get help to find errors in their own
code, and where more code-centric in this manner, as opposed to other students
focused more on the process of collaboration and for example sharing ideas and
improvements. A student reported that “I noticed how having many eyes on my
code helped me find solutions faster, and the process of finding mistakes went easier.”

A question arising for the course lecturer is what kind of focus she wants for the
student to have to learn well.

Regarding technical difficulties we saw that some of the respondents referred to
others tools being better. The students had used another tool for programming,
Brackets, for seven lectures before they used Scrimba. It may be the case that
these students either found the transition from one tool to another challenging,
however, we believe some of the students making comments on the tool itself
also may have had experience from before beginning their Bachelor and gotten
experiences and preferences regarding tools. Some students explicitly mentioned
having programming experience beyond the current CS1 course and reported that
Scrimba did not necessarily facilitate learning any better than alternative non-
collaborative tools:

“I have programmed earlier in other languages and do not think Scrimba
helps anything on my learning of Javascript, I prefer Visual Studio Code
when I code otherwise. Probably works fine for beginners, and went well
for us, but we didn’t learn any more.”

Revisiting the research questions
This section revisits our two research questions. The implications are of interest for
teachers that would want to make use of online tools for collaborative programming.

RQ1: How do students perceive working in groups on a programming task through
an online collaborative tool?

Having a tool that lets you easily exchange code and expand on it in real time opens
for collaborative processes not else possible. Scrimbas functionality made possible
dynamic, interactive and effective collaborative learning process, where the students
in the groups both could give and receive feedback. The entire group could follow
along on their screens in real time while their peers showed, discussed and changed
code on the fly. The result was an effective exchange of ideas and ultimately the
students perceived they learned and that their solutions became better. Some of
the students suggested an integration of voice chat into the functionality when they
work apart from each other which we find a good idea since the collaboration requires
discussion.

RQ2: How does the collaborative effort affect the students’ perceived learning?

Both our qualitative and quantitative findings show that the majority of students
perceived the collaborative efforts as educative and helpful through giving and
receiving feedback, sharing ideas, discussing and improving their codes. 83% made
use of the feedback they were given to improve their solutions. Some students
focused on error finding, which makes us ask ourselves what level of learning they
obtained. Learning lies in both giving and receiving feedback in a process where the
student codes, reflects on their own and their peers code, and finally articulates their
thoughts textually and orally. As students inherit different levels of competency,
adaptive assignments could be beneficial to interest also more advanced students.

5 Conclusion
We surveyed 177 first-semester IT undergraduate students on their perceptions
and thoughts on cooperative learning through peer code review using an online
collaboration tool. Our findings indicate that the vast majority of the students
first of all found the online tool helping the collaboration process. In addition they
found the collaboration itself educational, both in terms of providing and receiving
feedback on their code assignment resulting in sharing of ideas and learning with
and from each other.

As for limitations, we did not record any personal information about the
participants, for instance age, gender, perceived skill level and past experience with
programming. Neither did we investigate potential impact of peer assessment on
the participants’ final grade in the CS1 course. Another possible limitation is how
a number of students experienced issues related to Internet connectivity.

Suggestions for Future Research
We suggest exploring possibilities and shortcomings in already existing online
collaborative programming tools. A comprehensive survey and evaluation of such
tools in educational setting could be of great importance for educators and students
going forward. Secondly, explore what new functionality tailored to collaborative
situations in education could be added. This also implies that there may be a need
for development projects where both researchers and developers are involved.

References
[1] Trond Aalberg and Madeleine Lor̊as. Active learning and student peer

assessment in a web development course. In Proc. 2018 Norwegian Conference
for Education and Didactics in IT subjects (UDIT). BIBSYS, August 2018.

[2] Leland Beck and Alexander Chizhik. Cooperative learning instructional
methods for cs1: Design, implementation, and evaluation. Trans. Comput.
Educ., 13(3), August 2013. URL https://doi.org/10.1145/2492686.

[3] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory
programming: 12 years later. ACM Inroads, 10(2):30–36, April 2019.

[4] Sheelagh Carpendale, Søren Knudsen, Alice Thudt, and Uta Hinrichs.
Analyzing qualitative data. In Proc. 2017 ACM ISS, ISS 17, pages 477–481,
New York, NY, USA, 2017. ACM. URL https://doi.org/10.1145/3132272.

3135087.

[5] Mehmet Celepkolu and Kristy Elizabeth Boyer. Thematic analysis of students’
reflections on pair programming in cs1. pages 771–776, 2018.

[6] Catherine Fosnot. CONSTRUCTIVISM: THEORY, PERSPECTIVES, AND
PRACTICE. 2005.

[7] Graham Gibbs. Analyzing Qualitative Data. 2012.

[8] Rolando Gonzalez and Per Lauvaas. An experience report using scrimba: An
interactive and cooperative web development tool in a blended learning setting.
In Proc. 2017 Norwegian Informatics Conference. BIBSYS, 2017.

[9] Per Lauvaas and Rolando Gonzalez. Teaching introductory web development
using scrimba: An interactive and cooperative development tool. In ECEL
2018. ACI Academic Conferences International, 2018.

[10] Per Lauvaas and Kjetil Raaen. Passion, cooperation and JavaScript: This is
what the industry is looking for in a recently graduated computer programmer.
In Proc. 2017 Norwegian Informatics Conference. BIBSYS, 2017.

[11] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail
Giannakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James
Scott, Judy Sheard, and et al. Introductory programming: A systematic
literature review. In Proc. Comp. 23rd Annual ACM Conf. ITiCSE, ITiCSE
2018 Companion, pages 55–106, New York, NY, USA, 2018. Association for
Computing Machinery. URL https://doi.org/10.1145/3293881.3295779.

[12] Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual
Falcão. A systematic literature review on teaching and learning introductory
programming in higher education. IEEE Trans. Education, pages 1–14, 2019.

[13] National Academies of Sciences, Engineering, and Medicine. Assessing and
responding to the growth of computer science undergraduate enrollments. ,
washington, DC. Technical report, The National Academies Press, 2018.

[14] Norsaremah Salleh, Emilia Mendes, and John Grundy. Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic literature
review. IEEE Trans. Software Eng., 37(4):509–525, July 2011.

[15] Rustam Shadiev, Wu-Yuin Hwang, Shih-Ching Yeh, Stephen J. H. Yang, Jing-
Liang Wang, Lin Han, and Guo-Liang Hsu. Effects of unidirectional vs.
reciprocal teaching strategies on web-based computer programming learning.
J. Educational Computing Research, Vol. 50(1), pages 67–95, 2014.

[16] Timothy Urness. Assessment using peer evaluations, random pair assignment,
and collaborative programming in CS1. J. Computing Sciences in Colleges, 25
(1):87–93, 2009.

[17] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A systematic
review of approaches for teaching introductory programming and their influence
on success. In Proc. Tenth Annual Conf. ICER, ICER 14, pages 19–26, New
York, NY, USA, 2014. ACM. URL https://doi.org/10.1145/2632320.

2632349.

[18] Jeannette M Wing. Computational thinking. COMMUNICATIONS OF THE
ACM, pages 33–35, 2006.

[19] Bian Wu, Yiling Hu, A.R. Ruis, and Minhong Wang. Analysing computational
thinking in collaborative programming: A quantitative ethnography approach.
Wiley J. of Assisted Learning, pages 421–434, 2019.

[20] Kimberly Michelle Ying and Kristy Elizabeth Boyer. Understanding students
needs for better collaborative coding tools. april 2020. URL https://dl.acm.

org/doi/pdf/10.1145/3334480.3383068.

