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In the quest of training complicated medical data for Internet of Medical Things
(IoMT) scenarios, this study develops an end-to-end intelligent framework that
incorporates ensemble learning, genetic algorithms, blockchain technology, and
various U-Net based architectures. Genetic algorithms are used to optimize the
hyper-parameters of the used architectures. The training process was also protected
with the help of blockchain technology. Finally, an ensemble learning system based
on voting mechanism was developed to combine local outputs of various
segmentation models into a global output. Our method shows that strong
performance in a condensed number of epochs may be achieved with a high
learning rate and a small batch size. As a result, we are able to perform better
than standard solutions for well-known medical databases. In fact, the proposed
solution reaches 95% of intersection over the union, compared to the baseline
solutions where they are below 80%. Moreover, with the proposed blockchain
strategy, the detected attacks reached 76%.
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1 Introduction

The Internet of Medical Things (IoMT) is a ground-breaking paradigm that connects smart
and connected healthcare with individualized medical devices and healthcare information
systems (Cao et al., 2019; Gupta et al., 2022). The need for IoMT is motivated by high cost and
limited resources of in-hospital treatment, which was clear particularly during the COVID-19
outbreak that has led to considerable growth in the IoMT industry. The IoMT market is
anticipated to develop at a compound yearly growth rate of 23.4% between 2021 and 2026 (Zhao
et al., 2022). Medical systems can be less taxed by reducing unnecessary hospital visits thanks to
IoMT, which directly connects patients with their doctors. IoMT has been particularly essential
during the COVID-19 pandemic because it directly increased social estrangement, markedly
reduced healthcare response times, and subsequently saved medical costs. In recent years, image
segmentation models have become popular (Kheradmandi and Mehranfar, 2022). Since some
of these models are already being employed in real-world applications, segmentation models are
used in a range of significant domains both in experimental and production settings (Lan et al.,
2020; Fang et al., 2021; Ji et al., 2021). Medical imaging is one of the most renowned industries
(You et al., 2022). In fact, Bergen Hospital in Norway has started employing these networks for
tumor identification since they have shown to be useful (E-Helse, 2019). The models provide the
likelihood that the patient has a tumor, which is utilized as a tool to aid clinicians. The
segmentation of medical images in IoMT environments is the focus of this work.
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1.1 Motivation

Federated learning is a cooperative approach to developing a
machine-learning model that protects private user information
(Zewe, 2022). Several entities train their own models on their own
hardware with their own data, numbering in the thousands. Users then
send a centralized server their models, which the server then combines
to produce a better model and sends the combined model back to all
users. Several IoMT based solutions exploring federated learning have
been proposed in recent literature (Hakak et al., 2020; Nguyen et al.,
2021; Antunes et al., 2022). However, these solutions suffer from
several issues: i) They suffer from hyper-parameter optimization
issues, ii) Each model achieves high accuracy in a specific kind of
data, and iii) They do not provide a secure system for training the
model in a federated learning environment. Motivated by the success
of hyper-parameter optimization, ensemble learning, and blockchain
technology, this paper develops an end-to-end framework for IoMT
applied to medical image segmentation.

1.2 Contributions

The main contributions of this paper are listed as follows:

1) We develop an ensemble learning model based on U-Net, UNet++,
UNet3+, and NAS-UNet for medical image segmentation. In
addition, a voting mechanism is used to fuse the local
segmentation to the global one.

2) We develop a hyper-parameter optimization strategy based on
genetic algorithm to find the optimal model.

3) We propose a blockchain technology to secure the learning process
of the developed model in a federated learning environment.

4) We test the suggested framework on IoMT setting, and evaluate it
on four medical datasets. The results reveal the superiority of the
proposed framework compared to the baseline solutions.

The remainder of this paper is given as follows. Section 2 gives a
short overview of the IoMT solutions. Section 3 provides a necessary
background on image segmentation in order to make the article self-
contained. Section 4 describes the main components of our proposed
framework which we reckon BIoMT-ISeg: Blockchain Medical

Internet of Things for Intelligent Segmentation. In Section 5, we
provide experimental results to assess the performance of BIoMT-
ISeg and compares it with the baseline solutions. In Section 6, we
discuss the results and their implication while delineating future
research direction. Section 7 concludes the paper.

2 Related work

This section examines both the existing solutions for IoMT as well
as medical image segmentation. The first part examines and reviews
IoMT solutions. The state-of-the-art medical image segmentation
solutions are described in the second part.

2.1 IoMT

Seliem and Elgazzar (2019) developed a blockchain-based security
system for IoMT. The four essential parts of the suggested strategy are
a cloud server, network cluster, hospital, and smart medical devices.
Each medical facility is equipped with a “bolster,” a potent computer
that serves as a gateway and server for nearby smart medical devices.
The bolster plays the role of a private and safe barrier. It is used to
communicate securely with other blocks that are part of the same
blockchain. To train intelligent systems using dispersed and locally
stored data for the benefit of all patients, Połap et al. (2020) suggested a
federated learning strategy that combined decentralized learning with
security based on blockchain technology. The work supported the
most recent trends in privacy and security for the Internet of Medical
Things. Dai et al. (2020) looked into the blockchain-enabled IoMT,
which combines blockchain and IoMT. The authors looked into the
advantages that blockchain-enabled IoMT could offer, particularly in
the fight against COVID-19. They specifically emphasized the
prospects offered by blockchain-enabled IoMT and described an
architecture for it. After that, the authors looked at the well-known
aspects of COVID-19 such as pandemic tracing, social isolation
medical data provenances, and remote healthcare. Garg et al.
(2020) created a brand-new authentication key agreement system
for the Internet of Things. The authors’ system offered safe key
management between personal servers and cloud servers as well as
between implantable medical devices and personal servers. Secure

FIGURE 1
Semantic segmentation vs. instance segmentation (Zhang et al., 2018).
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access to healthcare data stored on cloud servers is also available to
authorized users. The cloud servers’ blockchain is where all healthcare
data is kept. To show its resilience against potential attacks, a thorough
formal security analysis is undertaken, including security verification
using the widely used automated validation of security protocols and
application tools. Kumar and Tripathi (2021) suggested a consortium
blockchain network with smart contracts. They integrated a cluster
node for interplanetary flight systems, where smart contracts are
deployed initially to authenticate patients and medical devices.
After authentication, the same cluster layer is also recommended as
a distributed data storage layer, and data is safely transported through
the consortium blockchain. By integrating blockchain technology into
existing IoMT systems, Li et al. (2021) suggested a framework for
IoMT. The authors provided examples of the possibilities offered by
IoMT enabled by blockchain. In order to combat the COVID-19
pandemic, the authors also proposed application cases of blockchain-
enabled IoMT, including infectious disease prevention, location
sharing, contact tracing, and the supply chain of rejected
medications. Seliem and Elgazzar (2019) designed a simple
blockchain-based system to protect IoMT. The four essential parts
of their suggested strategy are a cloud server, network cluster, hospital,
and smart medical devices. Each medical facility is equipped with a
“bolster”, a potent computer that serves as a gateway and server for
nearby smart medical devices. The bolster plays the role of a private
and safe barrier. The bolster is utilized for private communication
between blocks inside the same blockchain.

2.2 Medical image segmentation

Medical image segmentation has the goal to identify different
labels in a given medical image. In the context of deep learning, the
aim is to design efficient models in order to learn the segmentation

function. The input of the model is a medical image, and the output
will be the label of each pixel in that image. Huang Q. et al. (2020)
proposed a machine learning method for breast medical image
segmentation in order to identify tumors. Medical images are first
cropped and pre-processed using bilateral filtering, histogram
equalization, and pyramid mean shift filtering to remove noise.
Simple linear iterative clustering is then performed for grouping
the pixel of images into super-pixels. Features are extracted for
each super-pixel, where two labels are created. A tumor label is
created if the super-pixel contains a tumor, and a normal label is
created otherwise. The kNN classifier is then performed to classify the
pixels located in the super-pixels as tumor or normal. Adjacent tumor
super-pixels are finally merged to segment the tumor of the new image.
Amiri et al. (2020) proposed a two-stage medical image segmentation
approach for breast lesion detection using U-Net. The first use of the
U-Net model aims to detect the lesions. The second use of the U-Net
model aims to segment the detected lesions. Lee et al. (2020)
introduced the use of channel attention mechanisms to improve
CNN performance for breast cancer segmentation. Inter-
dependencies of the channels in image are trained by injecting
statistical features of each channel (mean of pixel values) on fully
connected layers-based networks. The output of this network with the
input images are injected into CNN for segmentation. Wu et al. (2020)
proposed a encoder-decoder deep learning model for thyroid nodule
segmentation on medical image data. The authors’ model contains: i)
dense block structure, where any two layers are connected. Batch
normalization is used in order to train this dense block. ii) Atrous
spatial pyramid pooling is used for creating contextual multi-scale
information of input feature map. iii) Model size optimization for
reducing the number of parameters is learned, where a further 1 × 1
convolution operation is computed before each convolution layer. The
semantic features are obtained from contextual information, and
injected into each layer of the decoder module. The hierarchical

FIGURE 2
BIoMT-ISeg framework.
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feature fusion is also performed to merge feature maps of the blocks in
the decoder module. Zeng et al. (2021) proposed a hybrid deep
learning architecture for fetal medical image segmentation. A
combination of V-Net with an attention mechanism is carried out
in order to reach the better accuracy of the segmentation results. To
deal with large ranges of batch sizes, global normalization is used
instead of batch normalization. A mixed loss function based on dice
similarity coefficient is developed in order to minimize the error ratio.
Note that the dice similarity coefficient is determined by the
intersection over the union of the ground truth, and the output of
the network. Xue et al. (2021) addressed three issues related to breast
lesion medical image segmentation, which are: in homogeneous
intensity distributions inside breast lesion regions, ambiguous
boundaries due to similar appearance between lesion and non-
lesion regions, and irregular breast lesion shapes. CNN is first used
for multi-scale feature maps generation. Each CNN layer is connected
to a 1 x 1 convolutional layer with a maxpooling operation for
detecting breast lesion boundaries. The features of all CNN layers
are concatenated and combined with spatial-wise, channel-wise blocks
for learning correlation among the generated feature maps, and
predicting the output image. Liu et al. (2021) proposed a hybrid
deep learning algorithm for detecting prostate cancer. Feature
extraction is performed using the Sobel filter, where the features
are injected into a RCNN (Regional Convolution Neural Network)
for medical image segmentation. Ouahabi and Taleb-Ahmed (2021)
developed an encoder-decoder deep learning model for thyroid
segmentation. The author’s model adds a new layer which
integrates the merits of dense connectivity, dilated convolutions for
extracting relevant features, and deals with varied-size regions,
respectively. In an effort to include the hierarchical swin
transformer into both encoder and decoder of the conventional
U-shaped architecture, Lin et al. (2022) developed the dual swin
transformer U-Net (DS-TransUNet) for deep medical image

segmentation framework. The authors’ framework gains from self-
attention computation of the swin transformer and intended dual-
scale encoding, which are successful in simulating non-local
interactions and multiscale contexts for enhancing the semantic
segmentation quality of various medical images.

2.3 Discussion

From this short literature review, there are several flaws in current
IoMT frameworks, particularly for medical segmentation based
solutions. When dealing with real-world scenarios, the first
consideration is data privacy and sensitivity. Security in IoMT
based solutions is very limited, where many attacks are detected
during the training process. These attacks can negatively affect the
training process, and therefore degrade the overall performance of the
designed system. The second limitation is that eachmodel succeeds for
some types of data, and fails for others. Another limitation is that
image segmentation models, particularly those based on U-Net
architectures, necessitate the tuning of a large number of
hyperparameters. This study looks into an intelligent and end-to-
end IoMT framework for image segmentation that is based on
blockchain technology for security, ensemble learning for training,
and the genetic algorithm for hyper-parameter optimization. The next
section is described in details the proposed framework.

3 Background on image segmentation

An image is “segmented” or “partitioned” into various groups
throughout the image segmentation process. For instance, image
segmentation is used to distinguish the speaker from the
background in Zoom call functionality that lets you alter your

FIGURE 3
U-Net architecture using long skip connections (Ronneberger et al., 2015).
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background. This is but one use case for image segmentation in the
real world. Face identification, video surveillance, object detection,
medical imaging, and other fields can all benefit from image
segmentation. These applications use two-dimensional data in
some cases and three-dimensional data in others.

There are two types of image segmentation: semantic
segmentation, and instance segmentation.

• Semantic segmentation, where the objective is to assign a
category to each pixel in an image. Semantic segmentation
aims to classify each tree in a forest image into the
appropriate category.

• Instance segmentation, which accomplishes the same thing as
semantic segmentation but goes a step farther. An instance
segmentation of the forest image would then separate the
trees into tree 1, tree 2, and so on. Instance segmentation
aims to separate items of the same category into a series.

Figure 1 illustrates the distinction between instance and semantic
segmentation visually. The terms “semantic segmentation” and “image
segmentation” will be used interchangeably. Object segmentation and
detection share similarities. Finding various object classes in a given
image is the aim of object detection. The object is marked by object
detection with a square frame represented by a bounding box. Object
detection just displays the location of an object; it does not identify its
shape. Object detection does not meet the criterion for several tasks.
For instance, the form of the malignant cell is important when
estimating the extent of the disease while trying to identify it.

4 BIoMT-ISeg: Blockchain medical
internet of things for intelligent
segmentation

4.1 Principle

Figure 2 shows the BIoMT-ISeg (Blockchain Medical Internet of
Things for Intelligent Segmentation) framework. It is made up of four
layers: collection, security, data storage, and application. IoMT devices
are initially responsible for collecting various types of medical data at

the collection layer. Following that, the collected data is
communicated to the data storage layer via the security layer
implemented by blockchain technology. The IoMT application
layer then employs deep learning models to do successful
segmentation. It uses several architectures (U-Net, UNet++, UNet
3+, and NAS-UNet) to find the local outputs, while an ensemble
learning model is employed to merge local outputs to the global one
using a voting mechanism (Sagi and Rokach, 2018). In addition,
hyper-parameter optimization is performed using evolutionary
computation. This architecture layer is connected to the security
layer to secure the training process in a federated learning
environment.

4.2 Image segmentation

This sub-section presents the deep learning models employed in
the developed framework.

4.2.1 U-Net
Ronneberger et al. (2015) suggested U-Net as a medical

segmentation technique that needed less annotated samples.
Figure 3 illustrates the design, which is based on CNN but uses an
encoder-decoder structure with skip connections. Downsampling in
the encoder makes use of pooling, whereas upsampling in the decoder
substitutes transpose convolution for pooling. The last output layer
uses the sigmoid activation function, giving each pixel a value between
zero (0) and one (1). The ReLU activation function follows each
convolutional layer in both encoder and decoder (Amiri et al., 2020).
In their original publication, they test their model on two-dimensional
data and obtain cutting-edge outcomes while needing fewer training
samples. The authors do state that they are confident their model will
be useful for numerous other tasks, though. In fact, U-Net has served
as a significant source of inspiration for numerous models created
specifically for medical segmentation.

4.2.2 UNet++
UNet++ aims to strengthen some of the flaws and restrictions in

the original U-Net for image segmentation (Zhou et al., 2020). Their
ultimate objective is to increase image segmentation accuracy. The

FIGURE 4
(A) U-Net, (B) UNet++, and (C) UNet 3 + comparison.
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authors’ conclusions include that the ideal architecture relies on the
size and difficulty of the dataset, and that a deeper U-Net network is
not always preferable. UNet++ therefore aims to provide a single

architecture that produces the best architecture independent of the
task at hand. Iterative design is used by the authors to create the
UNet++ architecture. They start by developing an architecture called
U-Nete. U-Nete integrates U-Nets with different depths into a single
cohesive structure. In this architecture, each U-Net has its own
decoder but shares the encoder to some extent. They also
introduce UNet+, which replaces the ensemble’s initial skip
connections with connections between each pair of nearby nodes.
Each node represents a convolutional block, which is made up of batch
normalization, upsampling, and downsampling. Last but not least, the
authors introduce dense connections in UNet+, building on the
success of DenseNet (Huang et al., 2016). This alteration results in
their ultimate architecture, UNet++. Because of this, UNet++ is more
adaptable than U-Net and outperforms it in terms of 2D and 3D
segmentation. Comparatively speaking, UNet++ does have more
parameters than U-Net while U-Net needs 7.8 M, and UNet++
needs 9.0 M.

4.2.3 UNet 3+
UNet 3+ is built upon UNet++, just as UNet++ is built upon

U-Net (Huang H. et al., 2020). According to the authors, there is still a
lot of space for development in UNet++ because it does not sufficiently
investigate data from full scales. Learning the position and boundary
of items explicitly is necessary in order to explore the entire scope of
the input. This is particularly helpful for medical imaging, which may
show organs of various sizes. They aim to decrease the number of

FIGURE 5
A population containing 15 individuals where tournament selection
is applied. At random, five individuals are randomly chosen to compete in
the tournament. The winner of the tournament is based on the
predetermined fitness of the individual. In this case, individual five
wins the tournament and is selected to be a parent.

FIGURE 6
Parameter settings of the proposed framework using medical image datasets.
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parameters needed while also improving performance and accuracy.
Once more, the skip connections are where the change occurs. In
contrast to UNet++’s thick and hierarchical skip connections, UNet
3+ employs full-scale skip connections. Figure 4 shows how various
architectures and their skip connections may be compared. As a result,
UNet 3+ can use the dice metric to obtain more accuracy with fewer
input parameters. However, a dataset that is better appropriate for the
UNet 3+ architecture is used to test accuracy. Given the image, the
dataset contains livers and spleens of various sizes.

4.2.4 NAS-UNet
Artificial neural networks can be generated automatically using

NAS (Neural Architecture Search). For hyperparameter
optimization, NAS can be employed in a manner akin to
evolutionary algorithms. A search space, a search approach, and
a performance estimation approach make up NAS. NAS algorithms
can be broadly divided into three categories: evolutionarily
computation (EC)-based NAS algorithms, gradient-based NAS
algorithms, and RL-based NAS algorithms (ENAS) (Liu et al.,
2020). Weng et al. (2019) utilized NAS for the first time to
segment medical images. The core of the NAS-Unet model is
the UNet architecture, and NAS is used to identify an optimal
design that performs better than other UNet versions for 3D
semantic segmentation. The authors also dramatically lowered
the number of parameters when compared to UNet. The

fundamental principle of NAS-Unet is to develop two cell
architectures, DownSC and UpSC, and then use NAS to identify
the most optimized versions of these cells. Data in the encoder
portion of the UNet is downscaled using a block called DownSC,
whereas data in the decoder portion of the UNet is upscaled using a
block called UpSC. They choose a set of basic operations for the
cells that call for their knowledge. According to the authors, the
most well-liked and effective CNN architecture for image
classification is used to select the procedures. They also value
procedures with fewer parameters and no redundancy. While
the latter aims to lower the number of parameters compared to
the original UNet, the former refers to each operation having a few
distinctive qualities. They used DARTS (Liu et al., 2018), a
gradient-based NAS algorithm, as inspiration for their search
technique. Adopting Binary Gate, which updates only one
architecture parameter by gradient descent at each step, the
authors modify DARTS to quicken the search process. Unlike
DARTS, which performs step-by-step modifications to all
architecture parameters, the Promise12, Chaos and NERVE
datasets are subjected to NAS-Unet. The datasets include
medical images produced by ultrasound, computed tomography
(CT), and magnetic resonance imaging (MRI) (Weng et al., 2019).
The authors come to the conclusion that NAS-Unet performs
better than standard techniques like U-Net and FC-Densenet
while also requiring less parameters.

FIGURE 7
IoU of the proposed framework, and the baseline models using medical image datasets.
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4.3 Voting mechanism

In our system, multiple learning algorithms are used to achieve
better segmentation performance. To find the global segmentation
results, ensemble learning via a voting mechanism is used. A common
voting method in ensemble segmentation is majority-based voting.
Another name for it is plurality voting. The method presented here
uses a majority-based voting mechanism to improve the segmentation
results after using the four segmentation algorithms described above.
For each test instance, the results of each model segmentation are
calculated and the final output is determined based on the results that
are in the majority. By using majority voting (plurality), each model
predicts the class label for each pixel in the output image in majority
voting.

4.4 Hyper-parameter optimization

It is necessary to determine the optimal learning rate, epoch
number, and batch size for the designed deep learning

architectures. Each of these hyperparameters directly affects the
performance of the model without changing the architecture. We
optimize the hyperparameters using evolutionary techniques. A
population of individuals consisting of genes forms the genetic
algorithms (GAs). The learning rate, the number of epochs and the
batch size of the four architectures (U-Net, UNet++, UNet 3+, and
NAS-UNet) are the hyperparameters considered in this work.
Then, the individuals in the environment are evaluated. When
the model is run with their genes, or hyperparameters, it results in a
loss. Then, an individual’s fitness is determined by their loss; a
bigger loss results in a lesser fitness, and vice versa. This generation
is finished once all members of the population have undergone
fitness tests and gotten their results. The last step is to figure out
which individuals will be part of the generation. In order to achieve
this, parents are chosen based on their ability to reproduce; greater
fitness increases the likelihood of becoming a parent; survival of the
fittest. The parents then replenish the population of the following
generation, and the cycle repeats. The GA will ultimately converge
to a global optimum where the majority of individuals contain the
ideal model hyperparameter values.

TABLE 1 Percentage of detected attacks with and without using the blockchain technology.

Dataset Percentage of data With blockchain Without blockchain

Ultrasound Nerve Segmentation 10 76 15

20 75 14

40 71 12

60 70 13

80 71 11

100 73 12

Brain Image Segmentation 10 76 15

20 75 14

40 71 12

60 70 13

80 71 11

100 73 11

Breast Ultrasound Image Dataset 10 76 15

20 75 14

40 71 12

60 70 13

80 71 11

100 73 11

COVID-19 Radiography Database 10 76 15

20 75 14

40 71 12

60 70 13

80 71 11

100 73 11
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• Defining the search space: the learning rate, the number of
epochs, and the batch size have been specified as the
components of the GA’s search space. We still need to
specify and explain the scope of the hyperparameters, though.
Depending on the restrictions placed by the hyperparameter
itself, the range may be quite arbitrary. For instance, the learning
rate could only be set to between 0 and 1. It is somewhat wasteful
to add such a high learning rate even when it is never utilized.

• Selection: Additionally, we need to choose the individual who
will make up the future generation. We applied a tournament-
based strategy, which randomly chooses a group of individuals
from the population. The winner of the “tournament” is chosen
to be a parent after the set competes. The winner of the
competition will be the one with the highest level of fitness,
therefore the outcome is somewhat pre-determined. The
competitors in the competition are not subjected to any new
tests. The selection process for tournaments includes some built-
in exclusions for the very lowest performers. Let us say there are
100 individuals in the population and five individuals are
competing. The four individuals who perform the worst can
never be chosen as parents given these values. There is no
tournament set in the populace where these four can prevail.
Figure 5 illustrates a selection tournament example that is
applied to the suggested framework.

• Crossover: The chosen parents must reproduce and give creation
to new individuals after submitting an application for tournament
selection and locating the set of parents. The new individual is
made up of a combination of the DNA from the parents. We can
transform the values to binary representations or use the genes as
their values while executing crossover. Successful parents receive
the crossover process, but it has the potential to alter the order of
the many genes. Every possible gene combination is included in
the search space, and the crossover process aids in the systematic
exploration of the various combinations. Utilizing a binary format
allows for even deeper investigation of the crossover process
because it gives each gene’s value the opportunity to be changed.

• Mutation: There is a possibility that a newly produced individual
will become mutated. The individual’s genes are changed via
mutation. By changing the gene’s value, mutationmight occur to
one gene or many genes. Within the limitations of the gene,
alternation causes the gene to be randomized. New genes are
added to the population through mutation. The modified
individual bearing the new genes will be quickly wiped out of
the population if these genes are bad, that is, if they score a poor
fitness. If the genes are sound, however, the GA will continue to
use the newly discovered genes and procreate the population.

4.5 Blockchain technology

In this section, we will describe our blockchain-based strategy used
in BIoMT-ISeg. Every block in a blockchain is connected to its
predecessor through a backward reference, which is the hash value
of the predecessor block. For instance, block i + 1 contains the hash
value of its previous block i. Each block also contains other data fields,
such as the input data for training, and the hyperparameters of the
trained model. The process starts by having the data (input/output
data, model architecture, weights, and model parameters) in the form
of a transaction, a device sends a transaction to the blockchain using

SHA-512, in 64-bits words. The length of the hashed data is extended
to 1,024 bits or a multiple of that number. The message is then split
into blocks of 1,024 bits and tagged with an S1, S2,. . ., Sn in the
following stage, where n is the number of all sites in the Internet of
Things (IoT) network. Blocks are produced in this manner, and since
the initial hash value is known and designated as H0, the following
action can be recursively carried out for each site Si using Eq. 1:

Hi � Hi−1 + C Hi−1( )%64 (1)
Note that the functions “C”, and “%” denote the compression, and the
modulo functions, respectively.

In our blockchain strategy, we also used smart contracts, which
automate the execution of contractual terms and clauses when specific
conditions are met and can run on top of blockchain. Smart contracts
are immutable due to the immutability of blockchains and the root
hash of all the smart contracts after being compiled into bytecode and
stored in blockchains. Smart contracts can reduce potential hazards,
improve business activity efficiency, and simplify administration. Each
site looks over the smart contract and decides which entities could
create additional blocks. The contract is also sent electronically to the
sites. The different blocks that make up each site contain a cached copy
of the smart contracts. The automatic sharing of sensitive information
with other websites is then possible using these barriers. Request for
authentication will be granted by each site in order to share data. With
the certificate authority, each website must first sign a registration
agreement before storing both its public and private keys in a safe
place. To keep the data’s confidentially intact while being sent across
the various sites that make up the proposed system, an encryption
system must be used. The certification authority has continuously
verified both the data source and the destination. The transmission is
terminated and a report is generated blacklisting the IP address of the
discovered site if the data is sent to or received from an invalid site.
After the certification authority has verified the validity of the transfer,
the signature and encrypted data are both sent back to the specified
site. Then, a saved request from the specified website containing this
information is delivered to the blockchain system.

5 Performance evaluation

Intensive simulation of the proposed solutions on a federated
learning environment uses IoMT setting in several medical image
datasets. The detailed description of these datsets is given in the
following:

1) Ultrasound nerve segmentation1: The dataset contains
5,600 images. The goal is to segment a group of nerves known
as the brachial plexus in ultrasound images.

2) Brain image segmentation2: It offers information on four
modalities (T1, T1w, T2, T2 FLAIR) of MRI images, as well as
patient survival statistics and expert annotations. It is 8 GB in size
with 1,484 images.

1 https://www.kaggle.com/competitions/ultrasound-nerve-segmentation/
data

2 https://www.kaggle.com/datasets/andrewmvd/brain-tumor-
segmentation-in-mri-brats-2015
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3) Breast ultrasound images dataset3: The data examines medical
images of breast cancer obtained via ultrasound scan. Breast
Ultrasound Dataset images are classified into three types:
normal, benign, and cancerous. Breast ultrasound images were
gathered at the start of the study from 600 women aged 25 to 75.
The dataset contains 780 images, each of which is 500*500 pixels
in size.

4) COVID-19 radiography database4: It includes chest X-ray
images for COVID-19 positive cases, as well as photos of
normal and viral pneumonia. It includes 3,616 COVID-19
positive cases, 10,192 Normal, 6,012 Lung Opacity (Non-
COVID lung infection), and 1,345 Viral Pneumonia images
and lung masks.

The evaluation of the proposed framework is calculated using the
following Intersection-over-Union (IoU), (Eq. 2) among the ground
truth U, and the model output V:

IoU U,V( ) � |U ∩ V|
|U ∪ V| (2)

IoU is a method of measuring the overlapping labels. It
measures the overlapping true and false labels, then divides it by
the union of the labels, the pseudo code of the algorithm is given in
Appendix 1.

5.1 Parameter setting

Figure 6 presents the parameter setting step of the proposed
framework. By varying the number of generations from 2 to 10, and
the population size from 10 to 20, the IoU value of the proposed
framework is increased to whatever the datasets used in the
experiments. For instance, the IoU value is only 69 with two
generations, and 10 individuals on Brain Image Segmentation
dataset. However, with the same dataset, and with
10 generations, and 20 individuals, the IoU value is 85. These
results can be explained by the fact that with more generations, and
more individuals, the developed evolutionary strategy explores
more configurations and therefore retrieves high quality models.
In the remainder of the experiments, the number of generations is
set to 10, and the population size is set to 20.

5.2 Quality of segmentation performance

For the remainder of the experiments, we divided the data into
training and testing data. From the training data, we divided it
into several buckets. The first bucket contains 20% of the training
data, the second 40% of the training data, and so on until the last
bucket contains 100% of the training data. Figure 7 presents the
IoU of the proposed solution, and the baseline methods on the
four datasets used in the experiment. By varying the percentage of
training images from 20% to 100%, the results indicate that

BIoMT-ISeg outperforms the three other algorithms in terms
of IoU. Indeed, the IoU of BIoMT-ISeg goes up 94%, where the
IoU of the baseline solutions does not exceed 82%. These results
are obtained thanks to the hybrid segmentation model used in this
research work, where several segmentation models have been
incorporated in order to achieve the best segmentation results.
In addition, determining the best configuration of the model using
the genetic algorithm gives better quality of the segmentation
output.

5.3 Blockchain performance

In the final experiment, the suggested framework will be
contrasted with and without the use of blockchain technology.
Table 1 shows the number of detected attacks with and without
using the blockchain technology. The outcomes clearly demonstrate
the suggested framework’s advantages when leveraging the
blockchain. The results gained support our argument that by
examining the blockchain paradigm, we may overcome the security
issue with medical applications.

5.4 Visualization

Figure 8 shows three images: the input, the manually labeled
neuron, and the segmentation prediction. These results show a
clear convergence between the results of the created method
and the actual data. Moreover, the proposed approach can
detect different shapes and sizes, which is quite difficult for
the most advanced algorithms. These results are made
possible by the segmentation technique, which employs
effective hyperparameter optimization to find the ideal
parameters for the proposed model.

FIGURE 8
Ultrasound images of the neck as input on the left side, center
shows the hand annotated nerve, right side shows the prediction by the
model. These are some of the best results.

3 https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-
dataset

4 https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-
database
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6 Discussion and future direction

IoMT has shown impressive results for various medical
applications, but medical image segmentation has attracted a
lot of research, since many sensitive medical scenarios need
this task. For instance, brain tumor detection needs to segment
MRI images in order to identify the location of the different
tumors in the brain. BIoMT can be utilized in some specialized
situations where data can not be secured by the traditional internet
protocols. The designs of such system can be improved from a
variety of perspectives due to their stage of development. High
accuracy, high privacy, and low cost are all desirable design
outcomes. Although there has been a lot of interest in the
development of IoMT in recent years, only a few solutions are
capable of being applied in real-world medical settings. We will
discuss next our perspectives on the basic difficulties and
technological shortcomings faced by IoMT to improve BIoMT-
ISeg, which are crucial to their successful development toward
medical applications and ubiquitous medicine:

1) Interpretation: Deep learning has recently made a lot of progress, and
the success of artificial intelligence (AI) in the medical industry has
resulted in a significant surge in IoMT applications. IoMT research
aims to develop applications that leverage AI technologies to assist
clinicians in making medical decisions (Mishra et al., 2022). IoMT is
used for solving various medical problems such as disease diagnosis
(Verma et al., 2022), surgery (Han et al., 2022), and many others.
However, IoMT applications encounter various problems, such as the
black-box nature of deep learning models. Because these black-box
models are difficult to explain, medical specialists are hesitant to make
explainable clinical judgments. Deep learning models frequently have
millions of parameters and simply return a final decision result with
no explanation. Because deep neural networks lack transparency, it is
difficult for the user to determine whether the choice is reliable,
jeopardizing trust with doctors. IoMTmust be transparent in order to
gain the trust of doctors. Explainable artificial intelligence (XAI)
research has recently received a lot of interest (Djenouri et al.,
2022). For medical AI applications to be accepted and integrated
into practice, XAI is crucial. As future perspective, we plan to integrate
XAI solutions into the developed BIoMT-ISeg framework.

2) Neural Evolving: The manual fine-tuning of existing networks to
apply on a new application and/or dataset is a traditional way for
designing a new network Lu et al. (2022). In most circumstances,
trial and error is a time-consuming method that is frequently
utilized to find a viable solution. The issue is the variety of
parameters that must be configured in order to reconstruct a
network for a new application. Furthermore, in most
circumstances, the available data and computer resources are
restricted, making this work considerably more difficult. More
crucially, most created networks are only effective on a single
application or dataset. As a result, they must be updated in order
to be used in a new application. Neuroevolution is a technology
that uses evolutionary computation to determine the
architecture and parameters of a neural network (Huang
et al., 2022; Kyriakides and Margaritis 2022). As a future
perspective, we plan to integrate neuro-evolving strategy into
the developed BIoMT-ISeg framework.

7 Conclusion

Although U-Net based models have excellent behavior for
handling segmentation problems in medical applications, numerous
constraints remain unresolved. In this paper, we provided solutions
for the learning process, the hyperparameter optimization and privacy
challenges by establishing an end-to-end intelligent framework that
combines ensemble learning, the genetic algorithm, blockchain
technology, and the different U-Net based architectures to
obtain the best accuracy in training complex medical data for
IoMT situations. The learning rate, batch size, and number of
epochs hyperparameters were optimized using genetic algorithms.
Blockchain technology was also used to safeguard the training
process. Ensemble learning was finally established to merge the
local outputs of the different segmentation models to the global one
using a voting mechanism. Our technique demonstrates that a high
learning rate and a small batch size can result in good performance
in a small number of epochs. This enables us to outperform
baseline solutions for well-known medical databases.
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Appendix

This section contains some of the core code snippets used to
execute our solution. The code snippets contains abstract methods, but
the purpose of the methods should be evident.

The main loop which iterates through the selected number of
generations.
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