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A B S T R A C T

This paper presents a new framework for intrusion detection in the next-generation Internet of Things. MinMax
normalization strategy is used to collect and preprocess data. The Marine Predator algorithm is then used to
select relevant features to be used in the learning process. The selected features are then trained with an
advanced and state-of-the-art recurrent neural network that includes an attention mechanism. Finally, Shapely
values are calculated to determine how much each feature contributes to the final output. The dataset NSL-
KDD was used for intensive simulations. The results show the advantages of the proposed system as well as its
superiority over state-of-the-art methods. In fact, the proposed solution achieved a rate of more than 94% for
both true negative and true position, while the rates of the existing solutions are below 90% for the challenging
NSL-KDD datasets.
. Introduction

With the advent of the next-generation Internet of Things (NG-
oT), new research problems and goals have emerged [1–3]. Artificial
ntelligence (AI) has the potential to address the highlighted priorities
f this new technology, which requires a high degree of autonomy
nd adaptability. In addition, NG-IoT technology has been actively
eployed in intelligent transportation to meet the new market demands
hile achieving traditional business objectives [4–6]. The NG-IoT paves

he way for better understanding of manufacturing processes and en-
bles effective and sustainable production [7–9]. IoT devices produce
huge amount of data that requires the use of smart data analytics,

ot only to process the data, but also to secure the various communi-
ations between NG-IoT nodes. Securing NG-IoT and big data systems
s a challenging task and has become an active research topic in the
ast two years [10–12]. NG-IoT devices are often distributed over a
arge area and have limited storage, processing, and energy resources.
hese characteristics make the networks and systems that contain such
evices particularly vulnerable and attractive targets for cyberattacks
y hackers. These systems have a large number of communication
hannels, storage, devices, and intrusion risks. These characteristics
ncrease the likelihood that intrusions will occur in different patterns at
ifferent points in the system, in addition to the limitations mentioned
bove. The Mirai incident, in which a large number of NG-IoT devices
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were compromised and used for distributed denial-of-service (DDoS)
attacks that crashed numerous servers, including Etsy, Github, Netflix,
Shopify, Soundcloud, Spotify, Twitter, and many others, is a typical
example of a NG-IoT attack. This highlights the need for efficient and
proactive intrusion detection systems that can not only detect and alert
intruders, but also provide the user with a better understanding of the
detection process.

1.1. Motivation

Many strategies have been taken into account when devising IoT in-
trusion detection systems [13–16]. While signature-based methods can
identify the attack, they are only effective against known threats and
cannot detect new patterns. Anomaly-based solutions, usually based
on monitoring the traffic flow of individual devices and comparing it
to typical patterns, can be used to detect them. The traffic patterns
of individual devices are often treated separately to find anomalies.
Both solutions are limited and so far are only suitable for use in NG-
IoT environments where different types of attacks may be present in
real time. Advanced deep learning [17–20] has been widely explored
in many areas of IoT. They have achieved great success in many
applications. In addition, eXplanaible AI (XAI) [21–23] will be included
to achieve a better understanding of the black box deep learning models
used during the detection process.
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1.2. Contributions

Motivated by the success of advanced deep learning solutions and
explainable AI in addressing IoT challenges, we propose a new frame-
work called Interpretable Recurrent Neural Network (IRNN) for intru-
sion detection in NG-IoT. The main contributions are listed below:

1. We provide normalization and feature selection steps based on
the MinMax and marine predator algorithm to select the most
relevant features to be used in the learning phase.

2. We present an effective deep learning method for extracting
intrusion information from NG-IoT data. The model uses an
attention mechanism to compute the relevant features with the
recurrent neural network to avoid the vanishing gradient prob-
lem.

3. We develop a strategy based on shape values to calculate the
contribution of each feature in the detection process. This allows
the user to better understand the developed black-box deep
learning model.

4. Using various criteria and an extensive intrusion detection
dataset, the proposed methodology is evaluated. The results
clearly show the superiority of the proposed framework over the
standard methods.

The rest of the paper is organized as follows. Modern techniques for
intrusion detection are discussed in Section 2. The proposed framework
and its essential elements are described in Section 3. The design and
results of the experiment are summarized in Section 4. Section 5
presents discussions and future directions of this paper. The paper is
then concluded in Section 6.

2. Related work

To create adversarial hostile traffic records intended to evade de-
tection by intrusion detection systems, a generative hostile network
framework known as IDSGAN was proposed in [24]. Since attackers do
not know the basic structure and parameters of the detection system,
adversarial attack examples use black box attacks against the system.
IDSGAN uses a generator to convert the initial malicious traffic records
into adversarial malicious records. The real-time blackbox detection
system is dynamically learned by a discriminator that also categorizes
traffic instances. Moreover, for the generation of the malicious data,
the constrained modification technique has been developed to preserve
the original attack capabilities of the hostile traffic data. To provide
justifications for important Deep Learning (DL)-based decisions for IoT-
related IDS, Zakaria et al. [25] created a new framework based on XAI.
To find IoT-related intrusions, they used a unique IDS for IoT networks,
which they had also created using deep neural networks. To the DL-
based model, they added three primary XAI techniques, e.g., RuleFit,
Local Interpretable Model-Agnostic Explanations (LIME), and SHapley
Additive exPlanations (SHAP). To improve the interpretation of DL-
based judgments, they provide both local and global explanations.
While global explanations focus on identifying the key factors that led
to each decision made, local explanations focus on a single/specific
DL outcome (e.g., intrusion detection). To identify security risks in IoT
contexts, a brand-new deep learning-based intrusion detection system
(DL-IDS) was presented [26].

Although several IDSs are described in the literature, they all have
deficiencies in learning and dataset management that significantly
impact the accuracy of attack detection. To achieve optimal detection,
the authors coupled the Spider Monkey Optimization (SMO) algorithm
and the Stacked-Deep Polynomial Network (SDPN). SMO selects the
best features from the datasets, while SDPN categorizes the data as
normal or anomalous. Denial of Service (DoS), User-to-Root (U2R),
probing, and Remote-to-Local (R2L) attacks are among the anomalies
that DL-IDS can identify. Tanzila et al. [27] presented a CNN-based

strategy for anomaly-based intrusion detection systems that leverages
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the potential of IoT and provides capabilities to effectively probe all
traffic in IoT. The proposed model has shown the ability to detect
potential intrusions and unusual traffic patterns. Using deep learning-
based recurrent models, Ravi et al. [28] provided a complete network
attack detection and classification model. The proposed model collects
hidden layer features from recurrent models and then selects the best
features using kernel-based principal component analysis (KPCA) for
feature selection. An ensemble meta-classifier is used to classify the
data after combining the best features from recurrent models. Based
on cost-sensitive deep learning and ensemble algorithms, CSE-IDS, a
three-layer NIDS, was proposed [29]. Layer 1 of the proposed CSE-
IDS uses a cost-sensitive Deep Neural Network to distinguish between
valid and malicious network traffic. These dubious samples are then
forwarded to Layer 2, where they are classified into normal, multiple
majority attack classes, and a single class encompassing all minority
attack classes using the eXtreme Gradient Boosting algorithm. Finally,
layer 3 uses Random Forest to assign appropriate classes to the minority
attacks found in layer 2. Zhang et al. [30] presented TIKI-TAKA, a com-
prehensive framework for evaluating the resilience of cutting-edge deep
learning-based NIDS against hostile tampering. They also incorporated
defense mechanisms to strengthen resistance against attacks using eva-
sion strategies. In particular, they developed five new types of attacks
to subvert three widely used neural network-based malicious traffic
detectors. Alladi et al. [31]presented an AI-based intrusion detection
architecture consisting of deep-learning models to identify and classify
vehicle traffic networks into potential types of cyberattacks. Due to the
mobility of vehicles and the real-time requirements of traffic network
channels, these deep-learning models are run on edge servers rather
than in a remote cloud. Thakkar et al. [32] have developed a fusion-
based solution that aims to improve the effectiveness of deep learning
systems for intrusion detection by presenting a new algorithm that
selects features based on the standard error variance of historical ob-
servations. Features are matched based on their rank, which is derived
from statistical significance fusion. Moreover, statistical significance
fusion aims to produce relevant features with high distinctiveness and
variance, which contributes to better learning. However, the strategy
used is not powerful for NG-IoT data where the data is collected in
different learning spaces.

Based on this relatively brief literature review, we conclude that
intrusion detection methods are efficient in identifying outliers. How-
ever, they are still far from being deployed in NG-IoT environments
where there may be different types of attacks in real time. Effective
preprocessing and feature extraction are required before the learning
process. Moreover, in most of the cases described, there is a lack of
explanations, so the network manager has difficulty in understanding
the features that contribute positively to learning and the features that
contribute negatively to learning. Indeed, an efficient interpretation
strategy is also needed. To overcome the problems of existing solutions,
and motivated by the success of advanced deep learning and XAI, we
introduce in the following section a suitable platform, called IRNN, for
network attack detection and understanding. Unlike existing solutions,
IRNN enables better extraction of relevant features from network traf-
fic data, accurate learning using advanced recurrent neural network
architecture, and better understanding of the learning process using
XAI.

3. IRNN design

In this section, we present a novel framework for intrusion de-
tection from the next generation Internet of Things. The proposed
framework, which we call IRNN (Interpretable Recurrent Neural Net-
work), is shown in Fig. 1. IRNN combines advanced deep learning
architectures with an interpretive process to identify intrusions in
the next-generation IoT environment. The process begins with pre-
processing and extraction of relevant features through normalization
and feature selection. The intruders are then detected using the Atten-
tion Segmental Recurrent Neural Network (ASRNN) algorithm [33]; the
interpretation of the derived intrusions is finally examined using the

Shapely value. Each phase is described in detail below:
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Fig. 1. IRNN Framework: Preprocessing is done first using normalization, and then the pertinent features are extracted using feature selection. The ASRNN technique is then used
to detect the intrusions, and the Shapely value is then used to interpret the resulting intrusions.
3.1. Preprocessing

Data preprocessing is the process of modifying raw data that is
duplicated, erroneous, irrelevant, redundant, incomplete, or incorrectly
formulated. Data preprocessing is the process of removing information.
The main goal was to remove data from the datasets to standardize data
analysis and make it easier to find relevant data for the study. Since
some of the data were already missing or unclear, it was important
to modify the existing data to improve quality by omitting inaccurate
information. The MinMax normalization method [34] is essential for
integrating and normalizing data. Where ‘‘one’’ is assigned as the lowest
feature value and ‘‘zero’’ as the highest value. The binary equivalents of
each value of 0 and 1 are calculated. For each sample x, the 𝑀𝑖𝑛𝑀𝑎𝑥
formula is determined as follows:

𝑀𝑖𝑛𝑀𝑎𝑥(𝑥) =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
, (1)

in which 𝑚𝑖𝑛(𝑥), and 𝑚𝑎𝑥(𝑥) are the minimum and the maximum values
of all samples, respectively. Due to corrupted traffic data, even after
complete normalization for unstructured data, the data is still suspect.
The collection of these attributes from many complex systems enables
the investigation of intrusion detection.

3.2. Feature selection

The feature values are automatically added to the feature selection
when using the data from the preprocessing phase, which helps to
increase accuracy. Feature values that are not needed, redundant, or
irrelevant are disregarded and no longer help classify attacks. There-
fore, to assess the accuracy of the search domain, feature selection
techniques are used to select essential features. The classifier eliminates
the irrelevant components and selects the top ten features based on
their relevance. Combining optimization strategies with exploration
algorithms strengthens the exploration capabilities. We used the Marine
Predators Algorithm (MPA) [35] to extract the relevant features for
prediction. It is a brand new meta-heuristic algorithm inspired by
nature. Similar to other meta-heuristic algorithms, the MPA algorithm
is used to solve practical optimization problems. The broad-scale for-
aging of marine predators and the encounters or interactions between
predators and prey serve as inspiration for MPA. Here, a predator
strategically controls encounter rates to increase its chances of survival
in the wild. Using L’evy flight and Brownian motion, MPA performs a
search using two basic random walk methods. The first type of random
walk is commonly used in meta-heuristic algorithms and is probably
most successful in preventing solution stagnation by performing an
194
advantageous search in local areas [36]. The latter, on the other hand,
is a well-known stochastic tool for global search. To maximize the bal-
ance between exploration and exploitation, the MPA inventors merged
the search efficiency of the two random walk algorithms. Similar to
a number of other population-based metaheuristic algorithms, MPA
begins the search process by randomly distributing 𝑁 search agents
over the search area using Eq. (2):

⃖⃖⃖⃗𝑋𝑖 = ⃖⃖⃖⃗𝑙𝑏𝑖 + 𝑟 × (⃖⃖⃖⃖⃗𝑢𝑏𝑖 − ⃖⃖⃖⃗𝑙𝑏𝑖); 𝑖 ∈ {1, 2,… , 𝑁} (2)

where ⃖⃖⃖⃗𝑙𝑏𝑖 and ⃖⃖⃖⃖⃗𝑢𝑏𝑖 are two vectors that indicate the lower and higher
bounds for the search to be conducted within, and 𝑟 denotes a random
variable between [0, 1]. Another 𝑁×𝐷 matrix made up of search agents
with the best fitness values is formed during initialization along with
the primary population matrix, where 𝑁 and 𝐷 stand for population
size and problem dimensions, respectively. MPA refers to it as Elite,
which is composed by the set of vectors with top fitness. Prey is a
different matrix of the same dimension as Elite, and the predators
adjust their places in accordance with it. The initialization creates
the initial Prey in a single term from which the strongest individual
(predator) creates the Elite. These two matrices play a key role in
the optimization process. After initialization, the main iterative search
process begins. This process is divided into three phases that simulate
various predator–prey scenarios while coming up with various search
tactics. These phases are based on iterations 𝑡 ∈ {1, 2, 3… 𝑡𝑚𝑎𝑥} where
𝑡𝑚𝑎𝑥 is maximum iterations. Note that MPA updates candidate solutions
dimension-wise during these phases.

3.3. Learning

The traffic network is used to detect intrusions with the ASRNN
algorithm [33]. LSTM (Long Short Term Memory) performs better
than the currently used RNN-based systems. Namely, the LSTM model
ensures correlation between different elements in a sequence where
a long dependency is checked. This allows to mitigate the vanishing
gradient problem of the RNN-based systems. Therefore, the LSTM
model is used in the modified ASRNN model proposed in this study.
Two different LSTM models are used to learn from the traffic network.
While the second model uses the attention mechanism to determine
the local features of each element in the context vector, the first
model is based on determining the context vector on the flow time.
At each timestamp, a Bi-LSTM is used to retrieve the context vector,
and a second Bi-LSTM is used in a recursive manner to dynamically
generate the segmental representation for each segment using an at-
tention mechanism. Dynamic recursion is used in the computation of
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the segment. Then, each segmental representation is subjected to label
categorization using a fully connected layer. The score computed by a
fully linked layer is directly used to compute the neural feature scores.
Since the sum of the neural feature scores can be greater than one, the
softmax operation with the fully connected layer is not required for
label classification. The semi-CRF model [37] is then trained together
with the computed neural feature values, which are transferred to the
model along with the traditional semi-CRF features. For the network
structure, the hidden dimension in both the lower and upper Bi-LSTM
networks was set to 50, resulting in a character-level representation
vector with 100 dimensions. The hidden dimension of the lower Bi-
LSTM network and the upper network was set to 100 for the word-level
encoder, resulting in a segmental representation with 200 dimensions.
The output size of the fully linked layer, which had a hidden size of
256 and a number of labels for each task, was equal to the number
of labels. For optimization, we used a mini-batch stochastic gradient
descent with 10 batches and a momentum of 0.9. The initial learning
rate was set to 0.01 and the decay rate to 0.1. To avoid ‘‘breaking out
the gradient’’, the gradient clipping was set to 5.

3.4. Shapely value

Shapley values are an idea from cooperative game theory. Shapley
values were introduced to fairly allocate a player’s contribution to the
final outcome of a game. Suppose we have a cooperative game where
a group of players work together to create value. If we can calculate
the total payoff of the game, the Shapley values capture each player’s
marginal contribution to the final outcome. More formally, suppose we
have a game with 𝑛 players, with players 1, 2, … , 𝑛 and a value function
v that accepts a small proportion of players and returns the real value
of the game if only those players participated. We also have S as a
coalition or subset of players. Formally, then, the contribution 𝛩 of the
𝑖th player is defined as:

𝛩(𝑣)𝑖 =
∑

𝑆⊂{𝑁−{𝑖}}

|𝑆|!(𝑁 − |𝑆| − 1)!
𝑁!

(𝑣(𝑆 𝑐𝑢𝑝{𝑖}) − 𝑣(𝑆)) (3)

The Shapley score is a metric that can used in explainable machine
learning to quantify the contributions of input features (players) to
the output of an instance-level machine learning model. The goal is
to break down the model prediction into its components and assign
Shapley values to each instance feature given a single data point.
The only requirement for a cooperative game for the interpretation
proposed in this research is that the model can produce a scalar-
valued output, such as the probability of assigning a class label to
an instance. Since the principle of efficiency applies, determining the
Shapley value in such a game leads to a complete deconstruction of
the process of intrusion detection. Missing values of input features are
replaced by a reference value, e.g., the mean value determined from
numerous examples, and the Shapley values of the feature values are
explanatory assignments to the input features. We suppose that the
Shapley values are approximated over linear time. Our goal is to model
the explainability of neurons using a game in which neurons are actors
and neural attributions are rewards. These games will be solved and
the attributions will be computed with respect to the neurons and
filters. The output of the neural network obtained by hiding certain
neurons is what is known in practice as ‘‘payoffs’’. Individual neurons
can be evaluated using the Shapley values obtained in these games.
The proposed strategy is exclusive to deep learning and shares goals
and designs with the games mentioned in universal explainability.

4. Performance evaluation

Extensive simulations were performed to validate the performance
of the proposed IRNN system. The evaluation uses the True Positive
195
Rate (TPR) and True Negative Rate (TNR), which are commonly used
to evaluate intrusion detection systems. They are specified as follows:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (4)

and,

𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

, (5)

here the TP, FP, and TN variables stand for the number of true
ositives, false positives, and true negatives, respectively.

In this experiment, the performance of the IRNN algorithm with the
ollowing baseline solutions: TIKI-TAKA [30], CSE-IDS [29], and DL-
DS [26]. For the training data, we use a batch size of 512 samples by
efault and reduce the batch size if the model does not fit in memory.
e find that we achieve the same speed with batch sizes of 64, 128,

56, or 512. The stack size of the training phase is used to determine
he number of training epochs and the learning rate. The final layer of
ur framework and the baseline models is treated with a dropout rate
f 0.7.

.1. Data description

The NSL-KDD dataset [38] represents an improved version of the
DD’99 dataset that DARPA had previously published, adding a wide
ange of actual attacks on a transportation network. Like the KDD’99
ataset, the NSL-KDD dataset contains 41 network-related features
ollected from TCP/IP dumps, as well as examples of 23 different
ttacks in the training set and 17 new attacks in the test set. The
SL-KDD dataset improves upon the KDD’99 dataset in several ways,

ncluding deleting duplicate data streams and using a proportional
nclusion approach to reduce class imbalances caused by unusual attack
ypes. These improvements are expected to improve consistency and
airness when comparing different NIDS. In this paper, we train and
est our approach using the datasets ‘‘KDDTrain+’’ and ‘‘DDTest+’’.
oth datasets are annotated where ground truth is available. This
acilitates both the training process for building supervised learners
nd the testing process for evaluating the developed system before
eployment. Although the NSL-KDD dataset has certain limitations in
apturing examples of more recent attack methods, it is one of the few
ublicly available datasets that can be used to evaluate the performance
f a NIDS when the training and testing distributions differ.

.2. Inference runtime and accuracy

Extensive testing was performed to evaluate the inference time
f the IRNN. The experimental data was divided into buckets, each
ontaining a certain amount of network data. The first bucket contains
0% of the test data, the second 50%, the third 80%, and the last 100%
all test data). The models were trained first and then the inference was
erformed with the test data to calculate the inference time. Fig. 2
hows how the inference times for IRNN and baseline approaches differ.
t can be seen that as the percentage of data features and test data
ncreases, the inference time for the four methods also increases. The
esults also show the superiority of the proposed strategy, with a time
ifference of more than 500 ms for the data from NSL-KDD. These
esults are justified by combining a state-of-the-art feature selection
echnique with a powerful recurrent neural network architecture and
n effective attention mechanism. While IRNN explores a novel MPA-
ased method, the baseline methods use traditional feature selection
echniques such as PCA. Extensive experiments have been conducted
o evaluate the quality of traffic network performance in intrusion
etection. The TPR and TNR values are obtained for each iteration
f the experiments. The results are highlighted in the Tables 1, 2.
ompared to the baseline approaches, the numerical results show that

RNN can identify the correct interventions. The feature selection used
n this study and a deep learning model that analyzes and learns from
he numerous correlations between the input data to determine the
nterventions were both carefully employed to achieve these results.
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Fig. 2. Inference time in milliseconds of IRNN vs. state-of-the art NG-IoT intrusion detection algorithms.
Table 1
TNR of IRNN vs. state-of-the art NG-IoT intrusion detection algorithms.

Number of Epochs IRNN TIKI-TAKA CSE-IDS DL-IDS

100 25 20 8 7
200 41 27 15 13
500 78 63 38 34
800 95 89 61 54

Table 2
TPR of IRNN vs. state-of-the art NG-IoT intrusion detection algorithms.

Number of Epochs IRNN TIKI-TAKA CSE-IDS DL-IDS

100 38 18 4 3
200 66 41 29 26
500 87 53 41 38
800 94 75 58 56
196
4.3. Interpretation

To understand the behavior of the IRNN model, an experiment
was conducted to visualize the output of the Shapely value. Fig. 3
shows the SHAP value for the eight most important variables in the
learning process. It is worth noting that when the SHAP value is
less than 0, the variable has a negative impact on learning, while
when the SHAP value is greater than 0, the variable has a positive
impact on learning. From Fig. 3, we can conclude that there are many
variables that contribute positively to learning, but that more robust
feature selection methods are needed to weed out the variables that
contribute negatively to learning. This will improve intrusion detection
performance. Even though MPA performs very well in selecting the
most relevant features, more efforts need to be made. For example,
combining traditional methods such as PCA with MPA could be a good
direction for future work.
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Fig. 3. Contribution of the most relevant features for the IRNN model output.
5. Discussions and future directions

The first challenge is to build a comprehensive dictionary of at-
tack signatures in complex NG-IoT systems. This makes detecting a
zero-day attack difficult. Since IRNN lacks attack data, modern data
augmentation techniques such as generative adversarial network and
variable auto-encoder can be useful to generate relevant training data
with different attack types. Although not all attacks generated by data
augmentation models are actual attacks, the comprehensive attack dic-
tionary created appears to be an effective strategy for defending against
zero-day attacks. Heterogeneous data in IoT, especially in NG-IoT, is
considered more vulnerable to a variety of threats than their wired
counterparts. This is because of the complex network topology and high
connectivity between traffic variables. Adversaries face a large attack
surface that includes multiple entry points. Moreover, the attackers
can change their behavior, rendering the initial learning of the IRNN
ineffective. The second challenge is to develop an IRNN model that is
capable of detecting new attacks in a traffic network using a lifetime
learning mechanism. Federated learning (FL) has recently attracted the
interest of academia and industry as an alternative to the traditional
centralized ML approaches. FL has a significant privacy advantage, as
training nodes can build a global model without transmitting their data.
The learning process occurs over a set number of training rounds, in
which each node continuously monitors the parameters of a modeling
framework by training with its local data. In each training round, these
parameters are then accumulated by a central entity to compute an
updated copy of the global model, which is in turn communicated to
the nodes. The third challenge of this work is to take advantage of FL in
the context of IRNN to create distributed models that are shared among
different entities in the network without these entities having access to
their own data.

6. Conclusion

This study presents a revolutionary paradigm for the next genera-
tion Internet of Things dedicated to intrusion detection. The MinMax
normalization approach is used to collect and preprocess the dataset.
The Marine Predator algorithm is then used to select features. The
selected feature is then trained with an advanced recurrent neural
network that includes an attention mechanism. The introduction of the
Shapely value is the final step to determine how each feature affects the
final output. The dataset NSL-KDD was subjected to extensive simula-
tion. The results illustrate the benefits of the framework provided and
how it outperforms state-of-the-art techniques. In the future, we plan to

explore other Deep Learning architectures for intrusion detection, such
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as those based on convolutional neural networks [39]. We also plan to
consider group detection [40] as a future strategy in next-generation
IoT. Exploring genetic algorithm, pattern mining, and decomposition
in learning [41–43] is also on our agenda.
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