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RESTful APIs are a type of web service that are widely used in industry. In the past few years, a lot of effort

in the research community has been spent in designing novel techniques to automatically fuzz those APIs to

find faults in them. Many real faults were automatically found in a large variety of RESTful APIs. However,

usually the analyzed fuzzers treat the APIs as black-box, and no analysis of what is actually covered in these

systems is done. Therefore, although these fuzzers are clearly useful for practitioners, we do not know their

current limitations and actual effectiveness. Solving this is a necessary step to be able to design better, more

efficient, and effective techniques. To address this issue, in this article we compare seven state-of-the-art

fuzzers on 18 open source—1 industrial and 1 artificial—RESTful APIs. We then analyze the source code for

which parts of these APIs the fuzzers fail to generate tests. This analysis points to clear limitations of these

current fuzzers, listing concrete follow-up challenges for the research community.
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1 INTRODUCTION

RESTful APIs are widely used in industry. Arguably, REST is the most common kind of web service,
used to provide functionality (i.e., an API) over a network. Many companies worldwide provide
services via a RESTful API, like Google [8], Amazon [1], LinkedIn [12], Twitter [22], and Reddit [14],
among others. The websites (such as APIs.guru1 and RapidAPI Hub2) currently list thousands of
APIs available on the Internet, where most of them are implemented with REST. Furthermore,

1https://apis.guru/. Accessed on May 31, 2023.
2https://rapidapi.com/hub. Accessed on May 31, 2023.
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REST APIs are also commonly used when developing backend enterprise applications using a
microservice architecture [64].

Due to their wide use in industry, in recent years there has been large interest in the research
community [48] to design novel techniques to automatically test this kind of applications (e.g., [27,
37, 54, 60, 66, 67]). Compared to other kinds of applications (e.g., data parsers) and types of testing
(e.g., unit testing), system testing of RESTful APIs has some unique challenges, like dealing with
network communications (e.g., HTTP over TCP) and with accesses to databases (e.g., Postgres and
MySQL).

In the literature, different techniques have been proposed [48], which have been able to auto-
matically find many faults in existing APIs (e.g., [27, 37, 54, 60, 66, 67]). However, so far, most of the
investigated techniques are black-box, applied on remote web services on the internet. Although
those fuzzers have been useful to detect several faults, it is unclear how effective they truly are at
testing these APIs. For example, most studies do not report any form of code coverage, as the Sys-

tem Under Tests (SUTs) are typically remote black-boxes with no access to their source code. For
example, it can be possible that most found faults are simply in the first layer of input validation
of these SUTs, with little to no code of their businesses logic executed [57]. Without an in-depth
analysis of which parts of the SUT code are not exercised by these fuzzers, it is not possible to
understand their limitations. This hinders further research development for novel techniques to
achieve better results.

To address these issues, in this article we compare seven state-of-the-art fuzzers, namely (in
alphabetic order) bBOXRT [54], EvoMaster [27], RESTest [60], RestCT [67], RESTler [37],
RestTestGen [66], and Schemathesis [50]. We applied them on 13 RESTful APIs running on
JVM (i.e., 12 open source and one industrial) and 6 open source RESTful APIs running on NodeJS,
for which we collected line coverage metrics using JaCoCo [10] (for JVM) and c8 [5] (for NodeJS).
Experiments are carried out both for black-box and white-box testing. To compare the effectiveness
of black-box fuzzers at finding faults, also a new artificial REST API was implemented specifically
for this study.

This large set of experiments (which takes roughly 120 days if run in sequence) enables us to
analyze in detail the current limitations of the state of the art in fuzzing RESTful APIs. These tools
achieve different degrees of code coverage, but there are still many issues that need to be addressed
to achieve better results. These include, for example, how to deal with underspecified schemas, and
how to deal with interactions with external services.

In this article, we provide the following novel research contributions:

• We carried out one of the largest and most variegated to date empirical comparisons of
fuzzers for RESTful APIs.
• Instead of using black-box metrics, we report actual coverage results on the employed APIs.
• We provide in-depth analyses of the current challenges in this testing domain.

The article is organized as follows. Section 2 provides background information on the seven
compared tools. Related work is discussed in Section 3. Section 4 presents the details of the tool
comparisons. Section 4.7 provides the main scientific contribution of this work, with an analysis of
the current open problems identified by our empirical study (with in-depth analyses on each stud-
ied API provided in the appendix). Threats to validity are discussed in Section 5. Finally, Section 6
concludes the article.

2 BACKGROUND: USED TOOLS

In this article, we compare seven different fuzzers for RESTful APIs, namely bBOXRT, EvoMaster,
RESTest, RestCT, RESTler, RestTestGen, and Schemathesis. In this section, they are described
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briefly in alphabetic order. For the tool comparisons, we used their latest released versions, as per
May 23, 2022.

To the best of our knowledge, this selection represents the current state of the art in fuzzing
RESTful APIs, as those are the most used, most popular (e.g., number of stars and download stats
from GitHub), and most cited works in the literature. For example, some tools in the literature like
QuickRest [52] do not seem available online, whereas others like ApiTester [45] have no documen-
tation and have not been updated in years [3]. The recent tool Morest [55] is not open source, and
its replication package appears to provide no executable nor code to replicate its experiments3 but
only the data analysis. Thus, no comparison seems possible with these other tools. In addition,
there exist some open source fuzzers made by practitioners in industry, such as APIFuzzer [2],
Dredd [11], and Tcases [21]. However, since these fuzzers do not appear in the scientific literature
(i.e., they do not have scientific articles describing the techniques they use to generate test cases),
and considering that in a previous study [53] these tools achieve worse results compared to the
other fuzzers, we do not include them in this study.

All of these tools require a OpenAPI/Swagger [13] schema to operate. Based on such a schema,
these tools send syntactically valid HTTP requests, using different strategies (e.g., random and
search based) to choose how to create the input data (e.g., query parameters and JSON body
payloads).

bBOXRT [54] aims at black-box robustness testing of RESTful APIs. The tool is written in Java,
and its source code has been available online on the authors’ institute pages [4] since 2020. We
could not find any released version, so we used the latest version on its Git master branch (commit
7c894247 ).

EvoMaster [27–30, 32–34, 70, 75] is a search-based tool that uses evolutionary computation to
generate test cases for RESTful APIs. It supports both black-box and white-box testing [30] (but
the latter only for programs running on JVM and JavaScript/TypeScript). The tool is written in
Kotlin, open sourced on GitHub [6] since 2016. For this study, we used version 1.5.0. We are the
authors of this tool.

RESTest [59–62, 65] is black-box testing tool, open sourced on GitHub [16] since 2018. One of
the main features of this tool is the ability to analyze interdependencies among input parameters.
The tool is written in Java. We used its 1.2.0 version.

RestCT [67] uses Combinatorial Testing for black-box testing of RESTful APIs. It has been open
sourced on GitHub [15] since 2022. The tool is written in Python. We used its 1.0 version.

RESTler [37, 38, 46, 47] is a black-box fuzzer for RESTful APIs. It has been open sourced on
GitHub [17] since 2020. The tool is written in Python and F#. It does not have any published
release, although its Git repository has tagged commits. We use the version of the repository with
the latest tag v8.5.0.

RestTestGen [44, 66] is another black-box fuzzer for RESTful APIs. It is written in Java, but the
original versions used in the work of Viglianisi et al. [66] are not open source. Since late 2021, a
new rewrite of the tool as open source has been available on GitHub [18]. Then, in this study, we
use the version with the latest tag v22.01.

Schemathesis [50] is a black-box fuzzer that employs property-based testing techniques [56],
whose development started in 2019. The fuzzer is capable of deriving structure and semantics of
SUTs based on their API schemas, such as OpenAPI [13]. It is written in Python and can be installed
with pip. In this study, we use the version 3.15.2 [20].

These seven tools have different levels of maturity, usability, and quality of documentation. On
the one hand, achieving high code coverage and fault detection might not be so important for

3The website https://anonymous.4open.science/r/morest-rest-8CAE/ currently gives a “The repository is expired” error.
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practitioners if a tool cannot be used because it is too complex to set up and does not have doc-
umentation. On the other hand, most of these tools are academic prototypes, primarily meant to
study research questions, and not for wide use by practitioners.

As we are the authors of EvoMaster, we are too biased to comment on its maturity and usability.
We can only state that it is the oldest of these seven, and it is actively maintained.

Among the other six tools, Schemathesis is clearly the one that puts the most emphasis on
usage by practitioners, with its user-friendliness (e.g., GitHub Actions support) and extensive
documentation. For example, tools like RESTler and RestTestGen require cloning of their Git
repositories and building the tools locally (e.g., in contrast to Schemathesis that can be installed
with pip, or EvoMaster that provides installers for all major operating systems, such as .msi
for Windows). RESTest provides released jars and useful documentation, but in our experiments
it was not as user-friendly as Schemathesis (e.g., it requires a few manual steps to set it up). At
the time of this writing, the other tools (i.e., bBOXRT, and RestCT) have not been updated for
several months (according to the commit history in their Git repositories). Therefore, they may
no longer be maintained.

3 RELATED WORK

To achieve better results (e.g., higher code coverage and fault detection), we need to understand
the limitations of current testing techniques. Throughout the years, different studies have been
carried out to provide this insight, such as studying the limitations of Dynamic Symbolic Execution
(DSE) [68, 69] and Search-Based Software Testing (SBST) for unit testing [24, 26, 49]. However, to
the best of our knowledge, no work has been carried out to study the limitations of fuzzing RESTful
APIs (most work is for black-box testing, where achieved code coverage is usually not reported,
and no analysis of what was not covered is carried out).

Regarding tool comparisons for fuzzing RESTful APIs, there has been some work in the literature.
For example, the authors of RestTestGen compared four black-box tools (RestTestGen, RESTler,
bBOXRT, and RESTest) on 14 APIs [43]. These APIs are written in different languages (e.g., Java,
C#, PHP, JavaScript, and Go), with the largest having up to 24,044 Lines of Code (LOCs). However,
no code coverage was reported. From this comparison, RestTestGen seems the most effective tool,
whereas RESTler is the most robust (i.e., could be used on more APIs without crashing).

The authors of RESTest and EvoMaster compared the two tools [58], aiming at studying the
tradeoffs between black-box and white-box testing. For example, they studied the impact on per-
formance of using “custom generators,” with test data provided by the users.

The authors of RestCT, when they introduced their tool [67], compared it with RESTler on 11
APIs coming from two projects (i.e., GitLab and Bing Maps), showing better results for RestCT.

The authors of Morest [55] compared it against black-box EvoMaster, RestTestGen, and
RESTler on six APIs. They claimed that Morest gives the best results. However, as Morest is not
available for comparisons (in contrast to EvoMaster, RestTestGen, and RESTler), such claims
cannot be independently verified.

In previous work, we compared EvoMaster’s black-box and white-box mode on eight SUTs [30],
seven open source and one industrial, showing better results for its white-box mode. The SUTs
used in this work are a super-set of the open source SUTs used in the work of Arcuri [30] (i.e., for
the experiments on JVM, we used the same SUTs plus another five).

In parallel, at the same time of the first arXiv version of this work [71], Kim et al. [53] made
a comparison of tools for fuzzing RESTful APIs. A total of nine different tools (the same as here,
minus the recent RestCT, but plus the aforementioned APIFuzzer [2], Dredd [11], and Tcases [21])
were compared on 20 APIs running on JVM (where half of them are the same as here, which
come from our own EMB [7] repository of APIs we use to experiment with EvoMaster). To better
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differentiate from this existing work that was done in parallel, and to better generalize our results,
here we include 6 JavaScript/TypeScript APIs running on NodeJS, as well as 1 industrial API com-
ing from one of our industrial partners. Furthermore, where the focus of Kim et al. [53] seems to
be the comparison of tools, our focus is on the in-depth analysis of the open problems in fuzzing
RESTful APIs (Section 4.7). The comparison of tools is only a means to identify the one that gives
the best results, as the tests generated by such a tool are the starting point of the in-depth anal-
yses. In both studies [53, 71], black-box EvoMaster gives the best results, closely followed by
Schemathesis, and white-box testing gives better results than black-box. Kim et al. [53] do not
seem to be authors of any of the compared tools. On the one hand, their comparison is therefore
unbiased. This is different from our case, as we are the authors of EvoMaster, which turned out
to be the best in all of these comparisons. One should always be a bit skeptical of studies where the
tool of the authors gives the best results, especially if such results are not possible to be replicated
by third parties. This is one of the main reasons EvoMaster is open source, with all of its exper-
iment scripts stored in its Git repository, automatically updated on Zenodo for long-term storage
at each new release (e.g., version 1.5.0 [35]), as well preparing all SUTs for experiments in a single
repository (i.e., EMB [7]). On the other hand, being the authors of the most performant tool gives
us a unique insight when analyzing and discussing the current open problems in fuzzing RESTful
APIs (Section 4.7).

4 EMPIRICAL ANALYSIS

In this article, we aim at answering the following research questions:

• RQ1: How do the seven compared black-box fuzzers fare in terms of line coverage?
• RQ2: What is the impact of the time budget on the performance of the black-box fuzzers?
• RQ3: What kind of faults can the compared black-box fuzzers find?
• RQ4: What line coverage and fault detection results are obtained with white-box fuzzing?
• RQ5: What are the main open problems currently hindering the results?

To answer these research questions, we carried out three different sets of experiments on the
case study described in Section 4.1. The first set is for black-box testing aimed at code coverage
(RQ1 and RQ2, in Sections 4.3 and 4.4, with the common setup described in Section 4.2), then for
fault finding (RQ3, Section 4.5), and then for white-box testing (RQ4, Section 4.6). From the results
of these experiments, the in-depth analysis of the results for RQ5 follows in Section 4.7.

4.1 Case Study

To carry out experiments in this work, we used a collection of 19 RESTful APIs plus one artificial
case study named rest-faults for the experiment on fault detection. Table 1 shows the statistics of
these 20 APIs.

As we need to measure code coverage and analyze the source code to check which parts are
not covered, we needed open source APIs that we could run on a local machine. Furthermore,
to simplify the collection of code coverage results, it is easier to use APIs written in the same
programming language (e.g., Java), or at least use not too many different languages, as each pro-
gramming language would need to configure its own code coverage tool to analyze the test results.
Considering that we wanted to do comparisons with white-box testing as well, which currently
only EvoMaster supports, and that requires some manual configurations (e.g., to set up bytecode
instrumentation for the white-box heuristics), we decided to use the same case study that we main-
tain for EvoMaster. In particular, we maintain a repository of RESTful APIs called EMB [7], which
is stored as well on Zenodo [36]. Note that one of these APIs is coming from one of our industrial
partners, which of course we are not allowed to store on EMB. These 19 APIs are written in four
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Table 1. Statistics on 18 RESTful APIs from EMB [7], 1 Industrial API, and 1 Artificial API

SUT Language Endpoints Files File LOCs c8/JaCoCo LOCs

cyclotron JavaScript 50 25 5803 2458
disease-sh-api JavaScript 34 57 3343 2997
js-rest-ncs JavaScript 6 8 775 768
js-rest-scs JavaScript 11 13 1046 1044
realworld-app TypeScript 19 37 1229 1077
spacex-api JavaScript 94 63 4966 3144

catwatch Java 23 106 9636 1835
cwa-verification Java 5 47 3955 711
features-service Java 18 39 2275 457
gestaohospital-rest Java 20 33 3506 1056
ind0 Java 20 75 5687 1674
languagetool Java 2 1385 174781 45445
ocvn-rest Java 258 526 45521 6868
proxyprint Java 115 73 8338 2958
rest-ncs Java 6 9 605 275
rest-news Kotlin 7 11 857 144
rest-scs Java 11 13 862 295
restcountries Java 22 24 1977 543
scout-api Java 49 93 9736 2673

rest-faults Java 8 3 115 26

Total (X, Y)∗ 778 (214,564) 2640 (203,2437) 285013 (17162,267851) 76448 (11488,64960)

∗ Note that, regarding Total (X, Y), Total represents the total of the statistic on all case studies, whereas X represents

the total on just JavaScript/TypeScript APIs and Y represents the total on JVM APIs.

different languages: Java, Kotlin, JavaScript, and TypeScript. They run on two different environ-
ments/runtimes: JVM and NodeJS. For each SUT, we report the number of total source files (i.e.,
ending in either .java, .kt, .js, or .ts), and their number of lines (LOCs). As these also include
import statements, empty lines, comments, and tests, for the APIs running on JVM we also report
the number of actual line targets for code coverage (measured with the tool JaCoCo [10]).

For the APIs running on NodeJS, the code coverage is measured with the tool c8, which uses
native V8 coverage. By default, the tool c8 will count code coverage only for the files that are
loaded by the engine [5]. For instance, regarding cyclotron, different LOCs between Files and
c8 are due to unreachable files (i.e., api.analyticselasticsearch.js, api.analytics.js,
api.statistics-elasticsearch.js). However, all of the files will be only reached by manu-
ally modifying a configuration in config.js (i.e., the default value is false). Therefore, we report
the number of line targets measured by c8 that could be loaded with the default SUT settings.

For the experiments on fault detection for the black-box fuzzers (Section 4.5), we created a small
artificial API, written in Java, with 10 seeded faults. This API is open source, currently available
on GitHub.4

4.2 Black-Box Testing Experiment Settings: Code Coverage

For each SUT, we created Bash scripts to start them, including any needed dependency (e.g., as
ocvn-rest uses a MongoDB database, this is automatically started with Docker). Each SUT is started
with either JaCoCo (for JVM) or c8 (for NodeJS) instrumentation, to be able to collect code coverage
results at the end of each tool execution.

4https://github.com/EMResearch/rest-faults.
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Each of the seven compared tools was run on each of the 19 SUTs, repeated with different seeds
a certain amount of times (e.g., repeated 10 times for a budget setting of 1 hour), to keep into
account the randomness of these tools. Each script starts a SUT as a background process and then
one of the tools. Each script runs the SUT on a different TCP port, to enable running any of these
scripts in parallel on the same machine.

The code coverage is computed based on all HTTP calls done during the fuzzing process and
not on the output of the generated test files (if any). This was done for several reasons: not all tools
generate test cases in JUnit on JavaScript format, the generated tests might not compile (i.e., bugs
in the tools), and setting up the compilation of the tests and running them for collecting coverage
would be quite challenging to automate (as each tool behaves differently). This also means that if
a tool crashes, we are still measuring what code coverage it achieves. If a tool crashes immediately
at startup (e.g., due to failures in parsing the OpenAPI/Swagger schemas), we are still measuring
the code coverage achieved by the booting up of the SUT.

All experiments for this article were run on a Windows 10 machine with a 2.40-GHz, 24-core
Intel Xeon processor with 192 GB of RAM. To avoid potential issues in running jobs in parallel (e.g.,
exhausting the resources of the operating system, which could lead to possible timeout issues), we
only ran eight jobs at a time. This means that each experiment had 3 cores (six virtual threads) and
24 GB of RAM.

Regarding the selected seven fuzzers, fuzzers exist that do not provide an option to configure a
global time budget to terminate fuzzing (e.g., Schemathesis [19] and RESTest [16]). Additionally,
although some fuzzers provide the option of a timeout (e.g., RestTestGen), they might terminate
much earlier than the specified timeout value [44]. To make the comparison of the fuzzers more fair
by applying the same time budget, given the same time budget X (e.g., 1 hour), for each fuzzer we
run it in a loop with the same X timeout (i.e., if the fuzzer runs out of time, it would be terminated,
and if the fuzzer completes but there is still some time remaining, it would be restarted to generate
more tests). Thus, all coverage we collected is based on the same time budget for all fuzzers.

To compare these tools, we use the line coverage reported by JaCoCo and c8 as the metric.
Another important metric would be fault detection. However, how to compute fault detection in
an unbiased way, applicable for all compared tools, is far from trivial. Each tool can self-report
how many faults they find, but how such fault numbers are calculated might be quite different
from tool to tool, making any comparison nearly meaningless. Manually checking (possibly tens
of) thousands of test cases is not a viable option either. Therefore, for this type of experiment, line
coverage was the most suitable metric for the comparisons. Still, fault detection is a very important
metric needed to properly compare fuzzers. For the black-box fuzzers, this will be evaluated with an
ad hoc API, as explained in more detail in Section 4.5. For the white-box experiments (Section 4.6),
this is not a problem, as we use the same tool (i.e., EvoMaster).

Regarding experiment setup, as a black-box testing tool for fuzzing REST APIs, all tools are
required to configure where the schema of the API is located. In all of these SUTs used in our
case study, the schemas are provided by the SUTs directly via an HTTP endpoint. However, we
found that most of the tools do not support fetching the schema with a given URL, such as http:
//localhost:8080/v2/api-docs. To conduct the experiments with these tools, after the SUT starts, we
developed a Bash script that manages to fetch the schema and download it to the local file system,
and then configure a file path for the tools to specify where the schema can be accessed.

Regarding additional setups to execute the tools, EvoMaster, RestCT, and Schemathesis were
the simplest to configure because they require only one setup step, as all of their options can be
specified with command line arguments. However, RestCT currently does not work directly on
Windows [15]. Therefore, for these experiments, we simply ran it via the Windows Subsystem
for Linux. This might introduce some time delays compared to running it directly on a Linux
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machine. However, RestCT is the only tool that has constraints on the type of operating system
on which it can run, and practitioners in industry who use Windows would have to run it with
the Windows Subsystem for Linux (or Docker) as well. RestTestGen requires having a JSON
file (i.e., rtg_config.json) to configure the tool with available options [18]. RESTler requires
multiple setup steps—for example, RESTler needs to generate grammar files first and then employ
such grammars for fuzzing. However, with its online available documentation, we could write a
Python script about how to run the tool. For RESTest, it requires a pre-step to generate a test
configuration to employ the tool, and such generation could be performed automatically by a
utility CreateTestConf provided by the tool. To use bBOXRT, a Java class file is required to load
and set up the API specification. At the time of writing this article, specific documentation about
how to specify such Java class does not exist. However, in its open source repository, there exist
many examples that helped us create these Java classes for the SUTs in our case study. Note that
for these experiments in this article, all of the preceding setups were performed automatically with
our Bash scripts.

All manual steps to configure the tools that we automated in our Bash scripts take some time.
However, such time was not taken into account in the time budget (e.g., 1 hour) used in the ex-
periments. In other words, each tool was run for the same amount of time regardless of the time
it took to set it up. There are two main reasons for this. First, evaluating the cost of each manual
step in a sound way would require empirical studies with human subjects, taking into account
several different properties (e.g., experience/seniority of the participants and familiarity with the
existing fuzzers). But this kind of empirical study would be beyond the scope of this work. Second,
tool setups on an API are a one-time cost. The same API would be tested continuously throughout
its lifecycle (e.g., on a Continuous Integration server), each time new changes/features are intro-
duced. In this context, such one-time setup cost would be negligible. Furthermore, when dealing
with several APIs to test (e.g., in a microservice architecture), it can well be that the setups are
quite similar, and it could be just a trivial matter of copy&paste when setting up the fuzzers for a
new API (e.g., this is what we have experienced when applying EvoMaster in large companies
like Meituan [73]). As anyway those manual costs were small in terms of time (in order of min-
utes) but excluding the time to study the documentation of these tools, we do not consider this as
a major threat to the validity of our study.

The first time we ran the experiments, we could collect results only for EvoMaster, RESTler,
and Schemathesis. All of the other tools failed to make any HTTP calls. For example, this was
due to a mismatched schema format or missing/misconfigured information in the schemas. More
specifically, bBOXRT only allows a schema with YAML format. In the SUTs used in this study,
there is only 1 specified with YAML (i.e., restcountries) out of the 19 schemas (the remaining ones
use JSON). RestTestGen only accepts a schema with OpenAPI v3 in JSON format [18]. There are
only 2 (i.e., cwa-verification and spacex-api) out of the 19 SUTs that expose OpenAPI v3 in JSON
format. In addition, RESTest and RestTestGen need the protocol information (e.g., http or https
with the servers/schemes tag) in the OpenAPI/Swagger schema. But since the servers/schemes
tag is not mandatory, such information might not always be available in the schema. For example,
7 (i.e., cyclotron, disease-sh-api, js-rest-ncs, js-rest-scs, realworld-app, features-service, and restcoun-

tries) out of the 19 SUTs have such protocol information specified in their schemas. Additionally,
to create HTTP requests, RestCT, RESTest, and RestTestGen require information specified in
host (for schema version 2) and servers (for schema version 3), but such information (typically
related to TCP port numbers) might not be fully correct (e.g., the host and TCP port might refer to
the production settings of the API and not reflecting when the API is running on the local host on
an ephemeral port for testing purposes). Those three tools do not seem to provide ways to over-
ride such information. For instance, in 19 SUTs, 10 SUTs (i.e., cyclotron, disease-sh-api, js-rest-ncs,
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js-rest-scs, realworld-app, spacex-api, cwa-verification, features-service, languagetool, and restcoun-

tries) are specified with a hard-coded TCP port, and in 1 SUT (i.e., scout-api), the TCP port is unspec-
ified. To avoid these issues in accessing the SUTs, we developed a utility using the swagger-parser
library that facilitates converting formats of schemas between JSON and YAML (only applied for
bBOXRT and RestTestGen), converting OpenAPI v2 to OpenAPI v3 (only applied for RestTest-
Gen), adding missing schemes information, and correcting/adding host and servers information
in the schemas.

Once these changes in the schemas were applied, we repeated the experiments, to collect data
from all the seven tools. Ideally, these issues should be handled directly by the tools. However, as
they are rather minor and only required changes in the OpenAPI/Swagger schemas, we decided
to address them, to be able to collect data from all seven tools and not just from three of them.

In addition, we needed to configure authentication information for five APIs, namely proxyprint,
scout-api, ocvn-rest, realworld-app, and spacex-api. For proxyprint, scout-api, and spacex-api, they
need static tokens sent via HTTP headers. This was easy to set up in RestCT, EvoMaster, and
Schemathesis, just by calling these tools with a --header input parameter. RESTest required
to rewrite the test configuration file by appending authentication configuration. RESTler and
RestTestGen required writing some script configurations. bBOXRT has no documentation to
setup authentication, but we managed to set it up by studying the examples it provides in its
repository.

Regarding ocvn-rest and realworld-app, for authentication, it requires making a POST call to a
form-login endpoint and then using the received cookie in all following HTTP requests. Out of the
seven compared tools, it seems that RESTler, bBOXRT, Schemathesis, and RestTestGen could
directly support this kind of authentication by setting it up with an executable script. Given the
provided documentation, we did not manage to configure it, as it requires writing different scripts
for different fuzzers to manually make such HTTP login calls and then handle responses. Techni-
cally, by writing manual scripts, it could be possible to use EvoMaster, RestCT, and RESTest as
well, by passing the obtained cookie with the --header option or the test configuration file. As
doing all of this was rather cumbersome, and considering that for this API the authentication is
needed only for admin endpoints, we decided to not spend significant time trying to set up this
kind of dynamic authentication token.

4.3 RQ1: Black-Box Testing Experiments

To answer RQ1, each of the seven compared tools was run on each of the 19 SUTs, repeated 10 times
to take into account the randomness of these tools. This resulted in a total of 7 × 19 × 10 = 1330
Bash scripts.

In each script, each tool was run for 1 hour, for a total of 1,330 hours (i.e., 55.4 days of compu-
tation efforts). Note that the choice of the runtime for each experiment might impact the results
of the comparisons. The choice of 1 hour is technically arbitrary, but based on what practitioners
might want to use these fuzzers in practice, and also not too long to make running all of these
experiments unviable in reasonable time.

Table 2 shows the results of these experiments. For each tool, we report the average (i.e., arith-
metic mean) line coverage, as well as the min and max values out of the 10 runs. Each tool is then
ranked (from 1 to 7) based on their average performance on each SUT (where 1 is the best rank).
A Friedman test is conducted to analyze the variance of these techniques, based on ranks of their
performance on the SUTs.

From these results, we can infer a few interesting observations. First, regarding the ranking,
EvoMaster seems to be the best black-box fuzzer (best in 11 out of 19 SUTs, with an average
coverage of 56.8%), closely followed by Schemathesis (best in 7 SUTs, with an average coverage

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.



144:10 M. Zhang and A. Arcuri

T
a
b

le
2.

E
xp

er
im

en
t

R
es

u
lt

s
o
f

th
e

S
ev

en
B

la
ck

-B
o
x

F
u

zz
er

s
o

n
th

e
19

R
E

S
T

fu
l

A
P

Is

SU
T

b
B

O
X

R
T

E
v

o
M

a
st

er
B

B
R

es
t

C
T

R
E

ST
le

r
R

E
ST

es
t

R
es

t
T

es
t

G
en

Sc
h

em
a

t
h

es
is

cy
cl

ot
ro

n
41

.3
[4

1.
3,

41
.3

]
(5

)
7

0
.3

[7
0

.1
,7

2
.3

]
(1

)
41

.3
[4

1.
3,

41
.3

]
(5

)
41

.3
[4

1.
3,

41
.3

]
(5

)
41

.3
[4

1.
3,

41
.3

]
(5

)
41

.3
[4

1.
3,

41
.3

]
(5

)
69

.1
[6

7.
7,

69
.7

]
(2

)
d
is

ea
se

-s
h

-a
p
i

56
.4

[5
5.

4,
57

.4
]

(3
)

60
.8

[6
0.

8,
60

.9
]

(2
)

48
.4

[4
8.

4,
48

.4
]

(6
.5

)
48

.5
[4

8.
5,

48
.5

]
(4

)
48

.5
[4

8.
4,

48
.5

]
(5

)
48

.4
[4

8.
4,

48
.4

]
(6

.5
)

6
1

.5
[6

1
.4

,6
1

.6
]

(1
)

js
-r

es
t-

n
cs

70
.2

[6
7.

3,
71

.1
]

(5
)

93
.0

[8
9.

8,
95

.8
]

(2
)

92
.2

[8
7.

5,
92

.7
]

(3
)

44
.3

[4
4.

3,
44

.3
]

(6
.5

)
44

.3
[4

4.
3,

44
.3

]
(6

.5
)

88
.6

[8
5.

8,
93

.0
]

(4
)

1
0

0
.0

[1
0

0
.0

,1
0

0
.0

]
(1

)

js
-r

es
t-

sc
s

83
.2

[8
3.

0,
83

.5
]

(5
)

8
8

.7
[8

7
.5

,8
9

.5
]

(1
)

83
.2

[8
3.

1,
83

.2
]

(6
)

54
.1

[5
4.

1,
54

.1
]

(7
)

84
.1

[8
3.

3,
84

.6
]

(4
)

86
.4

[8
5.

4,
87

.1
]

(2
)

86
.1

[8
5.

9,
87

.4
]

(3
)

re
a
lw

or
ld

-a
p
p

64
.2

[6
2.

8,
66

.4
]

(4
)

69
.4

[6
9.

4,
69

.4
]

(2
)

59
.7

[5
9.

7,
59

.7
]

(6
)

66
.5

[6
6.

5,
66

.5
]

(3
)

59
.7

[5
9.

7,
59

.7
]

(6
)

59
.7

[5
9.

7,
59

.7
]

(6
)

6
9

.7
[6

9
.1

,6
9

.8
]

(1
)

sp
a
ce

x
-a

p
i

76
.1

[7
6.

1,
76

.2
]

(6
)

84
.7

[8
4.

7,
84

.8
]

(2
)

76
.1

[7
6.

1,
76

.2
]

(7
)

76
.3

[7
6.

3,
76

.4
]

(3
)

76
.3

[7
6.

3,
76

.3
]

(5
)

76
.3

[7
6.

3,
76

.4
]

(4
)

8
5

.4
[8

5
.3

,8
5

.6
]

(1
)

ca
tw

a
tc

h
31

.0
[2

9.
2,

31
.8

]
(3

)
3

5
.9

[3
4

.3
,3

6
.9

]
(1

)
9.

7
[9

.7
,9

.7
]

(7
)

17
.3

[1
4.

5,
20

.5
]

(5
)

20
.8

[1
5.

9,
23

.8
]

(4
)

15
.1

[1
2.

3,
18

.3
]

(6
)

35
.8

[3
3.

6,
39

.1
]

(2
)

cw
a
-v

er
ifi

ca
ti

on
43

.4
[4

2.
9,

43
.5

]
(4

)
49

.4
[4

9.
1,

49
.6

]
(2

)
21

.9
[2

1.
9,

21
.9

]
(6

)
21

.9
[2

1.
9,

21
.9

]
(6

)
21

.9
[2

1.
9,

21
.9

]
(6

)
43

.8
[4

3.
3,

43
.9

]
(3

)
4

9
.5

[4
9

.5
,4

9
.5

]
(1

)

fe
a
tu

re
s-

se
rv

ic
e

35
.7

[3
5.

7,
35

.7
]

(4
)

5
9

.7
[5

8
.4

,6
2

.1
]

(1
)

21
.0

[2
1.

0,
21

.0
]

(6
)

21
.0

[2
1.

0,
21

.0
]

(6
)

21
.0

[2
1.

0,
21

.0
]

(6
)

45
.9

[4
5.

1,
46

.8
]

(3
)

52
.0

[4
6.

6,
57

.1
]

(2
)

g
es

ta
oh

os
p
it

a
l-

re
st

36
.2

[3
6.

2,
36

.2
]

(4
)

50
.8

[4
4.

8,
54

.3
]

(3
)

19
.9

[1
9.

9,
19

.9
]

(7
)

21
.5

[2
1.

5,
21

.5
]

(6
)

29
.0

[2
8.

1,
32

.0
]

(5
)

57
.2

[5
1.

7,
58

.7
]

(2
)

5
8

.7
[5

5
.9

,6
2

.3
]

(1
)

in
d
0

8
.2

[8
.2

,8
.2

]
(3

)
8

.2
[8

.2
,8

.2
]

(3
)

7.
6

[7
.6

,7
.6

]
(6

.5
)

7.
6

[7
.6

,7
.6

]
(6

.5
)

8
.2

[8
.2

,8
.2

]
(3

)
8

.2
[8

.2
,8

.2
]

(3
)

8
.2

[8
.2

,8
.2

]
(3

)

la
n

g
u

a
g
et

oo
l

1.
7

[1
.7

,1
.7

]
(6

)
3

2
.6

[2
6

.0
,3

5
.1

]
(1

)
1.

5
[1

.5
,1

.5
]

(7
)

1.
9

[1
.9

,1
.9

]
(4

.5
)

2.
5

[2
.5

,2
.5

]
(2

)
1.

9
[1

.9
,1

.9
]

(4
.5

)
2.

2
[2

.1
,2

.5
]

(3
)

oc
vn

-r
es

t
10

.1
[1

0.
1,

10
.1

]
(5

)
2

7
.5

[2
7

.5
,2

7
.6

]
(1

)
10

.1
[1

0.
1,

10
.1

]
(5

)
10

.1
[1

0.
1,

10
.1

]
(5

)
10

.1
[1

0.
1,

10
.1

]
(5

)
10

.1
[1

0.
1,

10
.1

]
(5

)
27

.5
[2

7.
5,

27
.7

]
(2

)
p
ro

x
y

p
ri

n
t

4.
2

[4
.2

,4
.2

]
(5

)
3

4
.0

[3
2

.5
,3

5
.0

]
(1

)
4.

2
[4

.2
,4

.2
]

(5
)

4.
2

[4
.2

,4
.2

]
(5

)
4.

2
[4

.2
,4

.2
]

(5
)

4.
2

[4
.2

,4
.2

]
(5

)
4.

4
[4

.4
,4

.4
]

(2
)

re
st

-n
cs

55
.0

[5
2.

4,
56

.4
]

(5
)

64
.5

[6
4.

4,
64

.7
]

(3
)

85
.5

[8
5.

5,
85

.5
]

(2
)

40
.7

[4
0.

7,
40

.7
]

(6
)

5.
1

[5
.1

,5
.1

]
(7

)
64

.3
[6

4.
0,

64
.7

]
(4

)
9

4
.1

[9
3

.1
,9

4
.5

]
(1

)

re
st

-n
ew

s
34

.9
[3

4.
0,

36
.8

]
(5

)
6

9
.4

[6
9

.4
,6

9
.4

]
(1

)
13

.9
[1

3.
9,

13
.9

]
(6

.5
)

44
.4

[4
4.

4,
44

.4
]

(4
)

13
.9

[1
3.

9,
13

.9
]

(6
.5

)
47

.2
[4

7.
2,

47
.2

]
(3

)
68

.8
[6

7.
4,

70
.8

]
(2

)
re

st
-s

cs
60

.2
[5

9.
3,

61
.4

]
(6

)
6

6
.9

[6
4

.4
,7

0
.2

]
(1

)
60

.5
[6

0.
3,

61
.0

]
(5

)
58

.3
[5

8.
3,

58
.3

]
(7

)
61

.7
[6

1.
4,

62
.4

]
(4

)
65

.3
[6

4.
4,

67
.1

]
(2

)
64

.8
[6

4.
4,

65
.1

]
(3

)
re

st
co

u
n

tr
ie

s
65

.5
[6

3.
7,

68
.5

]
(5

)
7

6
.1

[7
6

.1
,7

6
.1

]
(1

)
3.

5
[3

.5
,3

.5
]

(7
)

50
.6

[5
0.

6,
50

.6
]

(6
)

73
.0

[7
1.

5,
74

.2
]

(4
)

75
.4

[7
3.

5,
76

.6
]

(2
)

73
.9

[7
2.

4,
75

.0
]

(3
)

sc
ou

t-
a
p
i

18
.1

[1
8.

1,
18

.1
]

(5
)

3
6

.7
[3

2
.8

,4
1

.1
]

(1
)

12
.0

[1
2.

0,
12

.0
]

(6
.5

)
26

.5
[2

6.
4,

26
.6

]
(2

)
12

.0
[1

2.
0,

12
.0

]
(6

.5
)

23
.0

[2
1.

4,
23

.8
]

(4
)

23
.0

[2
2.

1,
25

.1
]

(3
)

A
v
er

ag
e

41
.9

(4
.6

)
56

.8
(1

.6
)

35
.4

(5
.8

)
34

.6
(5

.1
)

33
.6

(5
.0

)
45

.4
(3

.9
)

54
.5

(1
.9

)

Fr
ie

d
m

an
T

es
t

χ
2

=
7

1
.8

4
5

,p
-v

a
lu

e
=
≤0

.0
0

1

Fo
r

ea
ch

to
o

l,
w

e
re

p
o

rt
th

e
av

er
ag

e
li

n
e

co
v
er

ag
e,

as
w

el
l

as
it

s
[m

in
,m

ax
]

v
al

u
es

o
u

t
o

f
th

e
10

ru
n

s.
E

ac
h

to
o

l
al

so
h

as
a

(r
a
n

k
)

b
as

ed
o

n
it

s
p

er
fo

rm
an

ce
o

n
ea

ch
SU

T
.T

ie
s

ar
e

b
ro

k
en

b
y

re
p

o
rt

in
g

th
e

av
er

ag
e

ra
n

k
.F

o
r

ea
ch

SU
T

,t
h

e
re

su
lt

s
o

f
th

e
b

es
t

to
o

ls
(e

.g
.,

ra
n

k
(1

))
ar

e
in

b
o

ld
.W

e
al

so
re

p
o

rt
th

e
χ

2
an

d
p

-v
al

u
e

o
f

th
e

Fr
ie

d
m

an
te

st
fo

r

v
ar

ia
n

ce
an

al
y

si
s

b
y

th
e

ra
n

k
s.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.



Open Problems in Fuzzing RESTful APIs: A Comparison of Tools 144:11

of 54.5%). The variance of the techniques is statistically significant at the significance level 0.05
(i.e., p ≤ 0.05) with the Friedman test. EvoMaster BB achieves the best average rank (i.e., 1.6),
whereas Schemathesis has the second best average rank (i.e., 1.9). Then, the remaining tools can
be divided in two groups: bBOXRT (average rank 4.6) and RestTestGen (average rank 3.9) with
similar coverage of 41.6% to 45.4%, then RESTler (average rank 5.1), RESTest (average rank 5.0),
and RestCT (average rank 5.8) with similar coverage of 33.6% to 35.4%. These results confirm a
previous study [43] showing that RestTestGen gives better results (in terms of black-box criteria)
than RESTler and RESTest, as well as RestCT being better than RESTler [67] (although in this
case, the difference in average coverage is small, only 0.8%). Compared to the analyses in the work
of Kim et al. [53], interestingly the ranking of the tools is exactly the same (recall that out of the
combined 29 APIs between our study and their study, only 10 APIs used in these empirical studies
are the same).

On all APIs but one of them, either EvoMaster or Schemathesis gives the best results. The
exception is the industrial API, where five tools achieve the same coverage of 8.2% on all 10 runs.
We will discuss this interesting case in more detail in Section 4.7. In 12 APIs, either EvoMaster
is the best followed by Schemathesis or the other way round. There is no single API in which
EvoMaster and Schemathesis were not at least the third best.

The other seven APIs (including the industrial one) show some interesting behavior for the other
five tools. For example, for js-rest-scs, RestTestGen gives the second best results, with an aver-
age 86.4%, compared to 86.1% of Schemathesis. The interesting aspect here is that out of the 10
runs, RestTestGen has worse minimum coverage (85.4% vs. 85.9%) and worse maximum coverage
(87.1% vs. 87.4%), although the average is higher (86.4% vs. 86.1%). This can happen when random-
ized algorithms are used. In gestaohospital-rest, RestTestGen and Schemathesis have similar per-
formance (i.e., 57.2% and 58.7%), whereas EvoMaster is quite behind (i.e., 50.8%). Similarly, the per-
formance of RestTestGen and Schemathesis are quite similar on rest-scs (65.3% and 64.8%) and
restcountries (75.4% and 73.9%), where EvoMaster is better only by a small amount (66.9% on rest-

scs and 76.1% on restcountries). In languagetool, RESTest is better than Schemathesis, but the dif-
ference is minimal (only 0.3%). In rest-ncs, there is large gap in performance between EvoMaster
(64.5%) and Schemathesis (94.1%), where the second best results are given by RestCT (85.5%).
Finally, on scout-api, RESTler is better than Schemathesis (26.5% vs. 23.0%), although it is way
behind EvoMaster (36.7%).

Another interesting observation is that there is quite a bit variability in the results of these
fuzzers, as they use randomized algorithms to generate test cases. We highlight some of the most
extreme cases in Table 2, for EvoMaster and Schemathesis. On languagetool, out of the 10 runs,
EvoMaster has a gap of 9.1% between the best (35.1%) and worst (26.0%) runs. On scout-api, the
gap is 8.3%. For Schemathesis, the gap on features-service is 10.5%, and 6.4% on gestaohospital-

rest. This is yet another reminder of the peculiar nature of randomized algorithms, as well as the
importance of how to properly analyze them. For example, doing comparisons based on a single
run is unwise.

Statistical tests [31] are needed when claiming with high confidence that one algorithm/tool is
better than another one. In this particular case, EvoMaster BB achieved the overall best perfor-
mance based on the significantp-value (i.e., <0.05) with the Friedman test and the best average rank
over all of the 19 APIs (i.e., 1.6) as shown in Table 2. Additionally, we compare EvoMaster’s per-
formance with all of the other tools, one at a time on each SUT (so 6× 19 = 114 comparisons), and
report the p-values of the Mann-Whitney-Wilcoxon U-Test in Table 3. Apart from very few cases,
the large majority of comparisons are statistically significant at levelα = 0.05. Often, 10 repetitions
might not be enough to detect statistically significant differences, and higher repetition values like
30 and 100 are recommended in the literature [31]. However, here the performance gaps are large
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Table 3. p-Values of the Mann-Whitney-Wilcoxon U-Test of EvoMaster’s Results Compared to All the

Other Tools, on Each SUT (114 Pairwise Comparisons in Total)

SUT bBOXRT RestCT RESTler RESTest RestTestGen Schemathesis

cyclotron 0.001 0.001 0.001 0.001 0.001 0.001

disease-sh-api 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-ncs 0.001 0.721 0.001 0.001 0.003 0.001

js-rest-scs 0.001 0.001 0.001 0.001 0.001 0.001

realworld-app 0.001 0.001 0.001 0.001 0.001 0.001

spacex-api 0.001 0.001 0.001 0.001 0.001 0.001

catwatch 0.001 0.001 0.001 0.001 0.001 0.909
cwa-verification 0.001 0.001 0.001 0.001 0.001 0.434
features-service 0.001 0.001 0.001 0.001 0.001 0.001

gestaohospital-rest 0.001 0.001 0.001 0.001 0.001 0.001

ind0 NaN 0.001 0.001 NaN NaN NaN
languagetool 0.001 0.001 0.001 0.001 0.001 0.001

ocvn-rest 0.001 0.001 0.001 0.001 0.001 0.033

proxyprint 0.001 0.001 0.001 0.001 0.001 0.001

rest-ncs 0.001 0.001 0.001 0.001 0.179 0.001

rest-news 0.001 0.001 0.001 0.001 0.001 0.069
rest-scs 0.001 0.001 0.001 0.001 0.039 0.007

restcountries 0.001 0.001 0.001 0.001 0.417 0.001

scout-api 0.001 0.001 0.001 0.001 0.001 0.001

Values lower than the α = 0.05 threshold are reported in bold. NaN values happen when there is no difference in the

compared datasets (they are exactly the same). They can be interpreted as a p-value equal to 1.

enough that 10 repetitions were more than enough in most cases. Note that, as explained in more
detail in the work of Arcuri and Galeotti [31], we have not applied any p-value correction on these
multiple comparisons (as they are controversial). We rather report the raw values (rounded up to
0.001 for readability) in case readers still want to apply such corrections when analyzing such data.
For completeness, as Schemathesis achieves the best results on few APIs, Table 4 reports the same
kind of analysis, in which Schemathesis is pairwise compared with all of the other tools.

When looking at the obtained coverage values, all of these tools achieve at least 30% coverage
on average. Only two of them (i.e., EvoMaster and Schemathesis) achieve more than 50%. But
no tool goes above 60% coverage. This means that although these tools might be useful for practi-
tioners, there are still several research challenges that need to be addressed (we will go into more
detail about this in Section 4.7). However, what level of coverage can be reasonably expected from
black-box tools (which have no information on the source code of the SUTs) is a question that is
hard to answer.

RQ1: All compared tools achieve at least 30% line coverage on average, but none goes above 60%.

Of the seven compared tools, EvoMaster seems to be the one giving the best results, closely

followed by Schemathesis.

4.4 RQ2: Time Budget

The choice of running experiments for 1 hour is arbitrary, and different results could be obtained
when using different time budgets. In the end, what to use as the time budget should be based on
how practitioners in industry would actually use these fuzzers in their daily jobs. However, as far
as we know, there is no scientifically sound data in the literature on how practitioners use these
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Table 4. p-Values of the Mann-Whitney-Wilcoxon U-Test of Schemathesis’s Results Compared to All the

Other Tools, on Each SUT (114 Pairwise Comparisons in Total)

SUT bBOXRT EvoMaster BB RestCT RESTler RESTest RestTestGen

cyclotron 0.001 0.001 0.001 0.001 0.001 0.001

disease-sh-api 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-ncs 0.001 0.001 0.001 0.001 0.001 0.001

js-rest-scs 0.001 0.001 0.001 0.001 0.001 0.081
realworld-app 0.001 0.001 0.001 0.001 0.001 0.001

spacex-api 0.001 0.001 0.001 0.001 0.001 0.001

catwatch 0.001 0.909 0.001 0.001 0.001 0.001

cwa-verification 0.001 0.434 0.001 0.001 0.001 0.001

features-service 0.001 0.001 0.001 0.001 0.001 0.001

gestaohospital-rest 0.001 0.001 0.001 0.001 0.001 0.168
ind0 NaN NaN 0.001 0.001 NaN NaN
languagetool 0.001 0.001 0.001 0.001 0.001 0.001

ocvn-rest 0.001 0.033 0.001 0.001 0.001 0.001

proxyprint 0.001 0.001 0.001 0.001 0.001 0.001

rest-ncs 0.001 0.001 0.001 0.001 0.001 0.001

rest-news 0.001 0.069 0.001 0.001 0.001 0.001

rest-scs 0.001 0.007 0.001 0.001 0.001 0.061
restcountries 0.001 0.001 0.001 0.001 0.014 0.019

scout-api 0.001 0.001 0.001 0.001 0.001 0.557

Values lower than the α = 0.05 threshold are reported in bold. N aN values happen when there is no difference in the

compared datasets (they are exactly the same). They can be interpreted as a p-value equal to 1.

tools in practice. The choice of 1 hour is based on our anecdotal experience of collaborating and
having a discussion with some engineers in industry.

Still, it is interesting to see how results would vary when using different time budgets. These
would still represent realistic scenarios, such as engineers who would like to get some results
quickly (e.g., in just a few minutes) or running fuzzing sessions on a Continuous Integration server
for several hours during the night. To address RQ2, we hence ran a new set of experiments, in which
we used 1/10 of the budget (i.e., 6 minutes) and 10 times the budget (i.e., 10 hours). Unfortunately,
running each experiment for 10 hours would take a huge amount of time, even when paralleliz-
ing the running of the experiments (unless a large number of machines can be used). For this
reason, for these experiments we only used the two most performing tools (i.e., EvoMaster and
Schemathesis), with the experiments repeated only three times. Still, with these reduced settings,
these experiments took 2 × 19 × ((6 × 10) + (600 × 3))m = 49 days of computational effort.

Table 5 shows the results of these experiments. A graphical representation is given in Figure 1.
Statistical analyses in which the results of how the different time budgets compare with each other
are reported in Table 6.

From this data, a few key observations can be made:

• In most cases, increasing the time budget does increase the achieved code coverage.
• Increases in coverage can be substantial (e.g., +20.5% for EvoMaster on languagetool) or

very minimal (e.g., only +0.2% for spacex-api).
• When there is high variability in the results, experiments with longer time budgets might

give worse results by chance. This is not common, but it can happen (e.g., this is the case for
EvoMaster on scout-api).
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Table 5. Results of Experiment on Various Time Budget Settings (i.e., {6m, 1h, 10h})

SUT EvoMaster BB Schemathesis

6m 1h 10h 6m 1h 10h

cyclotron 70.1 [70.1,70.1] 70.3 [70.1,72.3] 70.1 [70.1,70.1] 68.0 [67.0,69.1] 69.1 [67.7,69.7] 68.9 [68.1,69.7]
disease-sh-api 60.8 [60.7,60.9] 60.8 [60.8,60.9] 60.8 [60.8,60.8] 61.4 [61.1,61.7] 61.5 [61.4,61.6] 61.4 [61.3,61.6]
js-rest-ncs 85.4 [82.4,90.4] 93.0 [89.8,95.8] 95.8 [95.8,95.8] 98.8 [98.4,100.0] 100.0 [100.0,100.0] 100.0 [100.0,100.0]
js-rest-scs 85.5 [85.1,86.3] 88.7 [87.5,89.5] 90.6 [90.0,91.2] 85.6 [85.2,86.1] 86.1 [85.9,87.4] 87.2 [87.1,87.4]
realworld-app 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.5 [68.9,69.8] 69.7 [69.1,69.8] 69.6 [69.3,69.8]
spacex-api 84.7 [84.7,84.8] 84.7 [84.7,84.8] 84.9 [84.8,84.9] 85.3 [84.8,85.6] 85.4 [85.3,85.6] 85.6 [85.6,85.7]

catwatch 32.9 [23.6,36.6] 35.9 [34.3,36.9] 40.5 [36.9,46.8] 33.1 [31.1,34.3] 35.8 [33.6,39.1] 38.8 [37.0,40.0]
cwa-verification 49.2 [49.1,49.6] 49.4 [49.1,49.6] 49.6 [49.6,49.6] 48.6 [47.3,49.5] 49.5 [49.5,49.5] 49.5 [49.5,49.5]
features-service 58.5 [58.4,59.5] 59.7 [58.4,62.1] 60.2 [59.3,61.7] 50.4 [46.4,57.5] 52.0 [46.6,57.1] 55.9 [51.4,64.3]
gestaohospital-rest 51.0 [44.8,54.5] 50.8 [44.8,54.3] 51.1 [48.8,53.5] 52.0 [48.5,57.5] 58.7 [55.9,62.3] 59.8 [59.2,60.4]
ind0 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2] 8.2 [8.2,8.2]
languagetool 15.6 [6.8,25.3] 32.6 [26.0,35.1] 36.1 [35.9,36.3] 2.1 [2.1,2.5] 2.2 [2.1,2.5] 2.3 [2.1,2.5]
ocvn-rest 25.7 [22.7,27.1] 27.5 [27.5,27.6] 27.6 [27.6,27.7] 19.1 [16.9,19.9] 27.5 [27.5,27.7] 27.8 [27.8,27.9]
proxyprint 32.5 [32.4,33.6] 34.0 [32.5,35.0] 35.0 [35.0,35.1] 4.4 [4.4,4.4] 4.4 [4.4,4.4] 4.4 [4.4,4.4]
rest-ncs 64.4 [64.4,64.4] 64.5 [64.4,64.7] 65.6 [64.7,66.9] 92.6 [92.4,93.8] 94.1 [93.1,94.5] 95.3 [94.5,96.7]
rest-news 69.4 [69.4,69.4] 69.4 [69.4,69.4] 69.4 [69.4,69.4] 67.8 [65.3,70.1] 68.8 [67.4,70.8] 70.8 [70.8,70.8]
rest-scs 64.3 [63.7,65.4] 66.9 [64.4,70.2] 72.9 [72.2,73.6] 64.0 [63.7,64.4] 64.8 [64.4,65.1] 66.3 [66.1,66.4]
restcountries 75.8 [74.8,76.1] 76.1 [76.1,76.1] 76.2 [76.1,76.2] 72.2 [71.1,73.8] 73.9 [72.4,75.0] 75.3 [75.1,75.5]
scout-api 35.5 [30.9,39.6] 36.7 [32.8,41.1] 35.0 [31.3,37.7] 22.2 [21.4,24.3] 23.0 [22.1,25.1] 24.0 [23.1,24.8]

We report average, minimum, and maximum of coverage (i.e., mean [min, max]) achieved by the best two black-box

fuzzers (i.e., EvoMaster and Schemathesis) with each time budget setting on each of the 19 REST APIs.

• Relatively, already with a low time budget (i.e., 6 minutes), reasonable coverage results can
be achieved. This is important to take into account considering that many faults in these
REST APIs lay in the first layer of input validation [57].
• There are cases in which there is no difference in results even when using a 100 times larger

time budget (i.e., 10 hours vs. 6 minutes). This is the case for the industrial API (i.e., ind0).
Interestingly, white-box testing does achieve much better results than using black-box tech-
niques (we will show this in Section 4.6). Although giving more time does improve the per-
formance of black-box fuzzers, there are cases in which it is not enough, and more advanced
techniques like white-box testing are required.

RQ2: Already with a small time budget of 6 minutes, good results can be achieved. Longer time

budgets can provide better results, but the magnitude of the improvements can vary significantly

among the tested APIs.

4.5 RQ3: Black-Box Fault Detection

4.5.1 Issues in Measuring Fault Detection. As stated previously, each tool can self-report how
many faults they find, but how such fault numbers are calculated might be quite different from
tool to tool, making any comparison nearly meaningless. Manually checking (possibly tens of)
thousands of test cases is not a viable option either, especially when they are generated in different
programming languages (e.g., Java and Python).

Some authors, such as Kim et al. [53], use the number of unique exception stack traces in the
SUT’s logs as a proxy of detected faults. On the one hand, a tool that leads the SUT to throw more
exceptions could be considered better. On the other hand, using such a metric as proxy for fault
detection has many shortcomings, such as the following: (1) not all exceptions reported in the logs
are related to faults; (2) not all SUTs actual print any logs by default (e.g., this is the case for several
SUTs in our study); and (3) crashes (which lead to responses with HTTP status code 500) are only
one type of fault in RESTful APIs detected by these fuzzers [57], where, for example, all faults
related to response mismatches with the API schema would leave no trace in the logs. For all of
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Table 6. Results of Comparison on Coverage Achieved by Various Time Budget Settings

(i.e., {6m, 1h, 10h}) Applied on the Best Two Black-Box Fuzzers

(i.e., EvoMaster and Schemathesis) for All of the 19 REST APIs

EvoMaster BB

SUT 1h vs. 6m 10h vs. 1h 10h vs. 6m

Â12 p-Value Diff% Relative Â12 p-Value Diff% Relative Â12 p-Value Diff% Relative

cyclotron 0.60 0.168 +0.24 +0.35% 0.40 0.502 –0.24 –0.35% 0.50 NaN 0.00 0.00%
disease-sh-api 0.82 0.010 +0.06 +0.10% 0.33 0.392 –0.04 –0.06% 0.77 0.176 +0.02 +0.03%
js-rest-ncs 0.99 ≤0.001 +7.63 +8.93% 0.90 0.045 +2.80 +3.01% 1.00 0.013 +10.43 +12.21%

js-rest-scs 1.00 ≤0.001 +3.17 +3.71% 1.00 0.007 +1.94 +2.18% 1.00 0.014 +5.11 +5.97%

realworld-app 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
spacex-api 0.50 1.000 0.00 0.00% 0.98 0.004 +0.14 +0.17% 0.98 0.004 +0.14 +0.17%

catwatch 0.97 ≤0.001 +2.94 +8.92% 0.98 0.013 +4.62 +12.87% 1.00 0.010 +7.55 +22.93%

cwa-verification 0.73 0.024 +0.26 +0.52% 0.70 0.246 +0.23 +0.46% 0.93 0.005 +0.48 +0.98%

features-service 0.77 0.007 +1.23 +2.11% 0.65 0.487 +0.44 +0.73% 0.96 0.001 +1.67 +2.86%

gestaohospital-rest 0.48 0.939 –0.11 –0.22% 0.50 1.000 +0.29 +0.58% 0.48 1.000 +0.18 +0.35%
ind0 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
languagetool 1.00 ≤0.001 +16.97 +108.44% 1.00 0.007 +3.50 +10.72% 1.00 0.003 +20.47 +130.79%

ocvn-rest 1.00 ≤0.001 +1.82 +7.09% 0.87 0.048 +0.10 +0.35% 1.00 0.010 +1.92 +7.46%

proxyprint 0.95 ≤0.001 +1.47 +4.52% 0.98 0.017 +1.01 +2.98% 1.00 0.010 +2.49 +7.64%

rest-ncs 0.65 0.036 +0.11 +0.17% 0.95 0.015 +1.10 +1.71% 1.00 ≤0.001 +1.21 +1.88%

rest-news 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
rest-scs 0.95 ≤0.001 +2.66 +4.14% 1.00 0.014 +5.93 +8.86% 1.00 0.008 +8.60 +13.37%

restcountries 0.75 0.011 +0.24 +0.31% 0.83 0.010 +0.12 +0.16% 0.92 0.022 +0.36 +0.47%

scout-api 0.60 0.448 +1.19 +3.35% 0.37 0.554 –1.68 –4.58% 0.50 1.000 –0.49 –1.38%

#Significance 12 10 12

Schemathesis

SUT 1h vs. 6m 10h vs. 1h 10h vs. 6m

Â12 p-Value Diff% Relative Â12 p-Value Diff% Relative Â12 p-Value Diff% Relative

cyclotron 0.86 0.007 +1.06 +1.56% 0.47 0.932 –0.19 –0.27% 0.73 0.271 +0.87 +1.28%
disease-sh-api 0.71 0.096 +0.06 +0.10% 0.32 0.380 –0.12 –0.19% 0.37 0.540 –0.06 –0.09%
js-rest-ncs 0.90 ≤0.001 +1.25 +1.27% 0.50 NaN 0.00 0.00% 0.90 0.021 +1.25 +1.27%

js-rest-scs 0.93 ≤0.001 +0.53 +0.62% 0.92 0.028 +1.08 +1.26% 1.00 0.012 +1.62 +1.89%

realworld-app 0.70 0.097 +0.17 +0.25% 0.33 0.364 –0.11 –0.16% 0.53 0.931 +0.06 +0.08%
spacex-api 0.61 0.401 +0.13 +0.16% 0.97 0.020 +0.21 +0.24% 0.97 0.022 +0.34 +0.40%

catwatch 0.96 ≤0.001 +2.80 +8.46% 0.93 0.028 +2.95 +8.24% 1.00 0.010 +5.75 +17.39%

cwa-verification 0.93 ≤0.001 +0.94 +1.94% 0.50 NaN 0.00 0.00% 0.93 0.022 +0.94 +1.94%

features-service 0.64 0.238 +1.64 +3.26% 0.56 0.814 +3.93 +7.55% 0.74 0.231 +5.57 +11.06%
gestaohospital-rest 0.94 ≤0.001 +6.76 +13.01% 0.62 0.611 +1.11 +1.89% 1.00 0.007 +7.87 +15.14%

ind0 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
languagetool 0.41 0.468 +0.05 +2.46% 0.67 0.385 +0.15 +6.77% 0.69 0.323 +0.20 +9.39%
ocvn-rest 1.00 ≤0.001 +8.44 +44.28% 1.00 0.011 +0.32 +1.17% 1.00 0.010 +8.76 +45.96%

proxyprint 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00% 0.50 NaN 0.00 0.00%
rest-ncs 0.96 ≤0.001 +1.54 +1.66% 0.83 0.076 +1.16 +1.24% 1.00 0.001 +2.70 +2.92%

rest-news 0.76 0.032 +1.06 +1.57% 0.95 0.023 +2.01 +2.93% 1.00 0.007 +3.08 +4.54%

rest-scs 0.97 ≤0.001 +0.84 +1.32% 1.00 0.011 +1.51 +2.34% 1.00 0.007 +2.36 +3.68%

restcountries 0.94 ≤0.001 +1.76 +2.44% 1.00 0.013 +1.32 +1.78% 1.00 0.009 +3.08 +4.27%

scout-api 0.82 0.010 +0.82 +3.70% 0.83 0.112 +0.96 +4.15% 0.90 0.037 +1.78 +8.00%

#Significance 12 7 12

#TotalSignificance 24 17 24

To compare the settings of a and b (i.e., a vs. b, where a is longer than b , e.g., 1h vs. 6m), we report the p-value using

Mann-Whitney-Wilcoxon U-tests and effect sizes (Â12) using Vargha-Delaney statistics. Values in bold indicate that a

is significantly better than b in statistics (i.e., p-value < 0.05 and Â12 < 0.5) and values in regular type indicate that

there is no significantly difference between a and b in statistics. Note that NaN values o the p-value happen when a

and b are exactly the same. For each of the fuzzers, among 19 SUTs, #Significance represents a number of the SUTs

whose results are significantly improved with greater time budget settings (i.e., a is significantly better than b). We

also report the difference and relative difference between average a and average b (i.e., Diff %=mean(a)−mean(b) and

Relative=(mean(a) − mean(b))/mean(b).
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these reasons, we did not do this kind of analysis on the logs, as we do not believe that they provide
much more information compared to line coverage—especially considering that the infrastructure
to do such analysis would need to be implemented, which might not be a trivial task.

An alternative that we considered was to build a proxy HTTP server, to be used between the
fuzzer and the SUT. With such a proxy, it would be possible to record all responses from the
SUT—for example, to log all the endpoints returning a 500 HTTP status code—regardless of the
employed fuzzer. We discarded this idea for two main reasons: (1) it could introduce a not trivial
delay to all test case evaluations, which could bias the experiments (slower fuzzers would get a
relative advantage if each HTTP call takes artificially longer to execute because going through a
proxy), and (2) such an approach would not be able to distinguish between different faults triggered
in the same endpoint.

Another alternative was to use some Mutation Testing [51] tool. However, we are not aware
of any such tool aimed at system testing (i.e., they all seem to be tailored for unit testing).
Furthermore, there could be major technical challenges in using a Mutation Testing tool when
the generated tests and the SUT are written in different programming languages (e.g., Python
and Java). Designing a novel Mutation Testing tool for RESTful APIs would be useful, but that is
outside the scope of this work.

Existing work on comparing fuzzers in different domains, such as for data parsers (e.g., [41]),
use SUT crashes as an oracle to detect faults. Those are easy to identify (the SUT is no longer
running), although smart techniques need to be used to distinguish possible different faults in
the same SUT when it crashes. This does not happen in RESTful APIs, as crashes in the business
logic do not crash the HTTP servers they run on. The HTTP servers catch these exceptions and
return a HTTP response with status 500. Additionally, as already stated, this is only one type
of fault that can be automatically detected in RESTful APIs [57]. Different kinds of automated
oracles have been defined in the literature [48]. Only focusing on that type of fault could be
too restrictive.

4.5.2 Experiment Setup. In the end, for a more fair comparison on fault detection among the
different fuzzers for RESTful APIs, we created an artificial API, with 10 distinctive types of artificial
faults in it (as mentioned in Section 4.1). We then ran each black-box fuzzer on it and manually

evaluated their generated test cases to check if the faults were identified.
The API is designed in a way that triggering faults in it should be trivial. In other words, just

calling an endpoint would trigger a fault, regardless of any input. The goal here is to check if
the fuzzers are able to identify if the obtained responses are indeed faulty. In other words, we are
empirically checking which range of automated oracles each fuzzer employs.

Regardless of the achieved code coverage, a fuzzer could be extended with more automated ora-
cles from the literature. But how to integrate them is not necessarily trivial. For example, consider
robustness faults, in which wrong data (according to the schema) is sent, and a fuzzer then verifies
if the HTTP response has status code in the 4xx family (i.e., representing a user error). Sending
invalid data might negatively impact the efforts on maximizing code coverage in the SUT, as input
validation is done in the first layer of the API. How often and when to send invalid inputs to check
this type of automated oracle is hence a non-trivial design decision in a fuzzer.

In our artificial API, we have injected the following 10 different types of faults for which an
automated oracle can be defined. Note that this is not meant to be an exhaustive list of all possible
faults that can be automatically detected with an oracle. For example, we have not considered
security-related faults (e.g., based on access policies). This selection is only meant as a starting
point, to shed more light on this important issue.
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The 10 fault types are the following:

(1) Thrown exception in the business logic of the API, which results in a returned 500 HTTP
status code.

(2) An endpoint returns a payload, where a field has wrong type, based on the schema.
(3) An endpoint returns a success status code (i.e., in the 2xx family) that is not declared in the

schema.
(4) A payload requires a numeric field to be constrained within a certain maximum value, but

this constraint is ignored in the API.
(5) A payload requires a string field to be constrained within a certain enumeration of values,

but this constraint is ignored in the API.
(6) A payload requires a Boolean field to be present, but this constraint is ignored in the API.
(7) A POST endpoint returns a location header (pointing to the newly created resource) that is

invalid, resulting in a 404 status code if it is used in a GET call.
(8) A DELETE endpoint returns status code 200, but it does not delete anything (i.e., a GET on the

same URL would still return the non-deleted resource).
(9) A PUT endpoint wrongly applies a partial update (with similar semantics to RFC 7396 JSON

Merge Patch) instead of doing a full resource replacement (which can be detected by fetching
the modified resource with a GET), as per HTTP semantics.

(10) A PUT endpoint wrongly applies a non-idempotent modification. Therefore, calling the same
endpoint more than once leads to different results, which can be checked by fetching the
modified resource with a GET. Recall that all HTTP verbs are idempotent except POST and
PATCH.

We ran each of the seven black-box fuzzers on the artificial API. As the endpoints of such APIs
are trivial to cover, we ran each tool only once, for just 6 minutes. Then, we manually checked all
the generated test cases to see which of the 10 faults were correctly identified.

4.5.3 Experiment Results. Table 7 shows the results of these experiments. On this API, RestCT
did not manage to generate any test case, as it seems like it has issues when dealing with endpoints
not having query or path parameters. Although the API is trivial, RESTest and RestTestGen did
not manage to achieve full coverage, in contrast to the other four fuzzers.

Of the 10 faults, only #1 is reliable found by most tools. Fault #2 was found only by bBOXRT.
For fault #3, it was found only by EvoMaster and Schemathesis. None of the other 7 faults was
properly identified by any of the fuzzers. However, there are some clarifications to make:

bBOXRT: According to Laranjeiro et al. [54], this fuzzer should be able to find robustness test-
ing faults, (i.e., #4, #5, and #6), but it did not. It seems that it tried to send different kinds
of faulty inputs, but with wrong payload types, where all of these HTTP requests ended
up with a 415 status code (i.e., Unsupported Media Type). However, it was the only fuzzer
correctly identifying fault #2.

RESTler: According to Atlidakis et al. [38], this fuzzer should be able to find #8, but it did not.
RESTest: We were not able to determine if this fuzzer finds any fault. It generated 121 JUnit

files, containing 968 test cases. But none of the test cases shows what faults it detects in its
source code. They need to be run, where faults are checked via custom log statements in the
used HTTP library (i.e., RestAssured). Running such tests requires a library from RESTest,
which is released on Maven Central. But such a library, at the time of this writing, seems
to be missing some transitive dependencies, and so it was not possible to run any of the
generated tests.

RestTestGen: Like bBOXRT, according to Corradini et al. [44], this fuzzer should be able
to detect faults #4, #5, and #6. It might have, but it is unclear which faults it finds. For
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Table 7. Results of the Experiment on Fault Detection Using All Selected

Black-Box Fuzzers on rest-faults

Fuzzer Line Coverage % #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

bBOXRT 100.0 � �
EvoMaster BB 100.0 � �
RestCT 26.9
RESTler 100.0 �
RESTest 61.5
RestTestGen 92.3 � ? ? ?
Schemathesis 100.0 � �

For each fuzzer, we report the achieved line coverage and the type of detected faults.

example, it can generate test sequences with 20 HTTP calls, with a final comment stating,
“The erroneous test sequence was accepted as valid by the server.” But there is no information
on what makes the test sequence “erroneous.”

The results of this experiment clearly show that current fuzzers only detect a small subset of
possible fault types in RESTful APIs. As reported in a recent survey by Golmohammadi et al. [48],
most fuzzers are able to find hundreds/thousands of faults in existing APIs. This is typically done
by detecting 500 HTTP status codes (i.e., like in fault #1). However, not all faults have the same
severity. For example, many cases of the 500 status code is simply wrong handling of invalid in-
puts [57]. Returning a 500 instead of 400 on wrong inputs is not as serious as a fault like #10. In
this case, this latter type of fault can have catastrophic consequences, as it not only can corrupt
the data of the API but also would be hard to reproduce and debug due to the non-determinism
and low frequency of re-executing idempotent methods on the HTTP stack.

RQ3: Existing fuzzers detect only a small number of types of faults in RESTful APIs.

4.6 RQ4: White-Box Testing Experiments

Out of the seven compared tools, only EvoMaster supports white-box testing. EvoMaster uses
evolutionary computation techniques, where the bytecode of the SUTs is instrumented to compute
different kinds of heuristics. Due to possible conflicts with JaCoCo and c8 instrumentation, and
due to the fact that EvoMaster uses its own driver classes (which need to be written manually)
to start and stop the instrumented SUTs, this set of experiments was run differently compared to
the black-box ones.

We ran EvoMaster on each SUT for 10 repetitions (so, 190 runs), each one for 1 hour (like for the
black-box experiments). However, JaCoCo and c8 are not activated. After each run, EvoMaster
generates statistic files, including information on code coverage and fault detection. However, as
there can be differences on how line coverage is computed between EvoMaster and JaCoCo/c8, it
would be difficult to reliably compare with the results in Table 2. Therefore, for the comparisons,
we ran EvoMaster as well in gray-box mode (for another 190 runs). This mode generates test
cases in exactly the same way as black-box mode, with the difference that the SUT is instrumented,
and coverage metrics are computed at each test execution. A further benefit is that besides code
coverage, we can reliably compare fault detection as well, as this metric is computed in exactly
the same way (as it is the same tool). As EvoMaster is the black-box fuzzer that gives the highest
code coverage (Section 4.3), it is not a major validity threat to compare white-box results only with
EvoMaster. These 380 runs added a further 15.8 days of computational effort.
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Table 8. Experiment Results for White-Box Evolutionary Search (WB) and and Gray-Box

Random Search (RS), Using EvoMaster on the 19 RESTful APIs

SUT Line Coverage % # Detected Faults

RS WB Â12 p-Value RS WB Â12 p-Value

cyclotron 31.2 31.3 0.69 0.158 32.2 30.9 0.13 0.004
disease-sh-api 18.1 19.5 1.00 0.001 30.0 36.2 1.00 0.001
js-rest-ncs 60.7 83.2 1.00 0.001 6.0 6.0 0.50 1.000
js-rest-scs 60.9 76.2 1.00 0.001 1.0 1.0 0.50 1.000
realworld-app 24.6 24.4 0.03 0.001 25.0 30.5 1.00 0.001
spacex-api 41.5 41.5 0.58 0.540 52.2 50.9 0.32 0.170

catwatch 41.1 50.0 1.00 0.001 18.0 23.7 1.00 0.001
cwa-verification 40.4 46.9 1.00 0.001 4.0 4.0 0.50 1.000
features-service 68.8 81.8 1.00 0.001 22.2 31.4 1.00 0.001
gestaohospital-rest 39.4 39.5 0.72 0.024 15.0 22.0 1.00 0.001
ind0 8.4 18.8 1.00 0.001 1.0 48.1 1.00 0.001
languagetool 28.9 39.5 0.93 0.001 16.6 12.8 0.55 0.731
ocvn-rest 35.3 24.8 0.00 0.001 279.9 257.9 0.00 0.001
proxyprint 53.3 51.6 0.28 0.120 84.1 86.3 0.59 0.531
rest-ncs 61.9 93.0 1.00 0.001 5.0 6.0 1.00 0.001
rest-news 55.4 66.5 1.00 0.001 5.0 7.8 1.00 0.001
rest-scs 63.3 86.2 1.00 0.001 1.0 12.0 1.00 0.001
restcountries 74.9 77.1 1.00 0.001 2.0 2.0 0.50 1.000
scout-api 54.7 53.4 0.37 0.346 94.0 88.6 0.14 0.008

Average 45.4 52.9 0.77 36.5 39.9 0.67

We report the average line coverage measured with EvoMaster itself (not JaCoCo, nor c8), as well as

the number of faults detected in these APIs. When the differences are statically significant at the

α = 0.05 level, the effect sizes Â12 are reported in bold.

Table 8 shows these results. A few things appear quite clearly. First, on average, line coverage
goes up by 7.5% (from 45.4% to 52.9%). Even with just 10 runs per API, results are statistically
significant in most cases.

For APIs like rest-ncs, average coverage can go even higher than 90%. For other APIs like
features-service, improvements are more than 13% (e.g., from 68.8% to max 81.1%). In the case of
ind0, although achieved coverage is relative low (i.e., <20%), it still more than double (i.e., from
8.4% to 18.8%).

Although results are significantly improved compared to black-box testing, for nearly half of
these SUTs it was still not possible to achieve more than 50% line coverage. Additionally, there
are two interesting cases in which results with white-box testing are actually significantly worse

(i.e., for realworld-app and ocvn-rest). In the former case, the difference is minimal, just 0.2%. In
the latter case, however, the difference is substantial, as it is 10.5% (from 35.3% down to 24.8%).
This is not an unusual behavior for search algorithms, as it all depends on the quality of the fitness

function and the properties of the search landscape [42]. If a fitness function gives no gradient to
the search algorithm, it can easily get stuck in local optima. In such cases, a random search can
give better results. EvoMaster uses several heuristics in its fitness function to try to maximize
code coverage, but those do not work for ocvn-rest, as we will discuss in more detail in Section 4.7.
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However, improving the fitness function in this case can be done (which we will address in future
versions of EvoMaster).

Regarding fault detection, white-box testing leads to detection of more faults. In the context of
REST API testing, a 500 status code is regarded as a potential fault occurring in the SUT, which
can be identified by both black-box and white-box approaches, by extracting information from the
HTTP responses. It is not unexpected that a white-box approach achieves better performance, as
usually there is a strong correlation between code coverage and fault detection [41]. For example,
you cannot detect a fault if the code it hides in is never executed. However, it also relies on the
employed fitness functions and heuristics, such as whether they focus more on fault detection
than on other test criteria (e.g., code coverage and schema-related coverage [48]). The interesting
aspect here is that the improvement is not much, just 3.4 more faults on average. In these experi-
ments, random testing can find 36.5 faults on average, and so the relative improvement is less than
10%. For the problem domain of fuzzing RESTful APIs (and likely web APIs in general), this is not
surprising [57]. Many of these APIs do crash as soon as an invalid input is provided, instead of
returning a proper user error response (e.g., with the HTTP status code in the 4xx family). Addi-
tionally, random search is quite good at generating invalid input values. Therefore, many faults
can be easily found this way with a fuzzer at the very first layer of input validation in the SUT’s
code, even when the achieved code coverage is relatively low.

RQ4: White-box fuzzing leads to significantly higher results compared to black-box fuzzing, up to

7.5% more code coverage and 3.4 more detected faults on average. However, still, for many APIs,

coverage results were less than 50%.

4.7 RQ5: Open Problems

To identify open problems, we performed detailed analysis based on results of existing fuzzers
on real APIs (18 open source and 1 industrial). We ran seven tools/configurations on 19 RESTful
APIs, with a budget of 1 hour per experiment. However, only in one single case was it possible to
achieve 100% line coverage (i.e., Schemathesis on js-rest-ncs, recall Table 2). In general, it might
not be possible to achieve 100% line coverage, as some code can be unreachable. For example,
this is a common case for constructors in static-method-only classes, as well as catch blocks for
exceptions that cannot be triggered with a test. However, for several of these SUTs, it was not even
possible to reach 50% line coverage.

It is not within the scope of this work to define a good coverage target to aim for (80%? 90%?).
However, clearly, the higher the code coverage, the better it would be for practitioners using these
fuzzers. Therefore, to improve those fuzzers, it is of paramount importance to understand their
current limitations. To answer this question, we studied in detail the logs of the tools in Section 4.7.1
and large parts of the source code of the SUTs in Section 4.7.2 (recall that those are more than
280,000 LOCs; see Table 1). An in-depth analysis of the current open problems in fuzzing RESTful
APIs is an essential scientific step to gain more insight into this problem. This is needed to be able
to design novel and more effective techniques.

Here, we do two different types of analyses. First, we look at the logs generated by the tools
(Section 4.7.1), which helps in pointing out possible major issues in these fuzzers (e.g., when they
crash, they might generate log messages with stack traces). Second, we run the generated tests and
manually check the code they execute (Section 4.7.2), to analyze what was not covered. This helps
provide hypotheses to explain why that was the case, which is needed to be able to design new
techniques to achieve higher coverage. Finally, we summarize all of these findings (Section 4.7.3).

It is important to stress that the goal of these analyses is to identify general problems, or in-
stances of problems that are likely going to be present in other SUTs as well. Designing novel
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techniques that just overfit for a specific benchmark is of little to no use. Ultimately, what is impor-
tant will be the results that the practitioners can obtain when using these fuzzers on their APIs.

4.7.1 Analysis of the Logs. From the tool logs, at least four common issues are worthy of dis-
cussion. First, OpenAPI/Swagger schemas might have some errors (e.g., this is the case for cy-

clotron, disease-sh-api, cwa-verification, features-service proxyprint, and ocvn-rest). This might hap-
pen when schemas are manually written, as well as when they are automatically derived from
the code with some tools/libraries (as those tools might have faults). In these cases, most fuzzers
just crash, without making any HTTP call or generating any test case. It is important to warn the
users of these issues with their schema, but likely fuzzers should be more robust and not crash
(e.g., endpoints with schema issues could be simply skipped).

The second issue can be seen in languagetool. Most fuzzers for RESTful APIs support HTTP
body payloads only in JSON format. However, in HTTP, any kind of payload type can be sent.
JSON is the most common format for RESTful APIs [63], but there are others as well, like XML
and the application/x-www-form-urlencoded used in languagetool. From the results in Table 2,
it looks like only EvoMaster supports this format. On this API, EvoMaster achieves between
26% and 35.1% code coverage, whereas no other fuzzer achieves more than 2.5%.

The third issue is specific to scout-api, which displays a special case of the JSON payloads. Most
tools assume a JSON payload to be a tree—for example, a root object A that can have fields that
are object themselves (e.g., A.B), and so on recursively (e.g., A.B.C.D and A.F.C), in a tree-like
structure. However, an OpenAPI/Swagger schema can define objects that are graphs, asis the case
for scout-api. For example, an object A can have a field of type B, but B itself can have a field of type
A. This recursive relation creates a graph that needs to be handled carefully when instantiating A
(e.g., optional field entries can be skipped to avoid an infinite recursion, which otherwise would
lead the fuzzers to crash).

The fourth issue is related to the execution of HTTP requests toward the SUTs. To test
a REST API, the fuzzers build HTTP requests based on the schema and then use different
HTTP libraries to send the requests toward the SUT—for example, JerseyClient is used in
EvoMaster. By analyzing the logs, we found that for several case studies, some fuzzers seem to
not have problems in parsing schemas, but they fail to execute the HTTP requests. For instance,
javax.net.ssl.SSLException: Unsupported or unrecognized SSL message was thrown
when RestTestGen processed realworld-app with OkHttpClient. For js-rest-ncs, js-rest-scs, and
ind0, we found that 404 Not Found responses were always returned when fuzzing them with
RESTler v8.5.0. By checking the logs obtained by RESTler, we found that it might be due to
a problem in generating the right URLs for making the HTTP requests. For the SUT whose
basePath is /, RESTler seems to generate double slash (i.e., //) in the URL of the requests.
However, whether to accept the double slash to match a real path depends on the SUTs (i.e.,
js-rest-ncs, js-rest-scs, and ind0 do not allow it). In Figure 2, we provide the logs obtained by
RESTler, representing the processed requests that contain the double slash and responses
returned by js-rest-ncs (Figure 2(a)) and rest-ncs (Figure 2(b)).

4.7.2 Analysis of the Source Code. For each SUT, we manually ran the best (i.e., highest code
coverage) test suite (which are the ones generated by EvoMaster) with code coverage activated.
Then, in an IDE, we manually looked at which branches (e.g., if statements) were reached
by the test case execution but not covered, as well as looking at the cases in which the test
execution is halted in the middle of a code block due to thrown exceptions. This is done to try to
understand what are the current issues and challenges that these fuzzers need to overcome to get
better results.
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Fig. 2. Different handling of requests with different techniques.

To be useful for researchers, these analyses need to be of a “low level”, with concrete discussions
about the source code of these APIs. No general theories can be derived without first looking
at and analyzing the single instances of a scientific/engineering phenomenon. As such software
engineering discussions might depend on different groups of readers who might target different
levels of detail in the software, or considering readers who might not be currently active in the
development of a fuzzer, here we provide only a summary. Full analyses for each SUT are provided
in Appendix A.

Table 9 summarizes all identified main issues for each SUT. There can be many reasons a higher
coverage was not achieved. Here, based on our analyses, we have categorized six main issues:

Authentication: In some cases, there is the need to provide authentication information with
specific roles, using specific types of authentication (e.g., an API can provide different ways
to authenticate).

Databases: The execution might depend on the data returned by database queries, but those
return nothing, as constraints are not satisfied (e.g., the content of WHERE clauses in SQL
SELECT queries). It might be hard to generate the right data to satisfy those constraints.

External services: The API depends on specific interactions with external services (e.g., other
APIs on the internet). However, from the point of view of the fuzzers, there is no way to
control what those external services return.

Schema inconsistencies: The schema of the API might be underspecified (e.g., some data con-
straints are missing, and some query parameters used in the API might not be described) or
also might provide wrong information (e.g., wrong types for input parameters).

String constraints: String input data might need to match specific formats (e.g., based on regular
expressions), which is not simple to infer.

Unreachable code: Some code can be simply unreachable via the entry points of the API. It
might be dead code, or code executed by other scripts or functionality (e.g., a GUI and back-
ground threads).
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Table 9. Main Issues Preventing Higher Coverage, Reported for Each SUT
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catwatch �
cwa-verification � �
cyclotron � � �
disease-sh-api �
features-service �
gestaohospital-rest �
ind0 �
js-rest-ncs

js-rest-scs �
languagetool �
ocvn-rest � � �
proxyprint � � � �
realworld-app �
rest-ncs

rest-news � �
rest-scs �
restcountries �
scout-api � � �
spacex-api � �
Total 3 6 1 5 7 7

Note that these are only the main issues we currently face. Solving them does not imply maximiz-
ing code coverage. As more code is executed, more issues could be identified. A concrete example
is cwa-verification. Such an API does connect to an external service, but the code doing this is cur-
rently not executed by any of the fuzzers. Dealing with external services would hence currently
give no improvement on cwa-verification. However, when the other issues in cwa-verification are
solved (recall Table 9), then dealing with external services will be needed to improve coverage
results further.

4.7.3 Discussion. Based on the analyses of the logs and tests generated for the 19 APIs, some
general observations can be made:

• Many research prototypes are not particularly robust and can crash when applied on new
SUTs. For example, we have faced this issue with EvoMaster many times, such as when
adding a new API to EMB [7]. Although we add new APIs to EMB each year, EMB has been
available as open source since 2017, and anyone can use it for their empirical studies and
make sure their tools do not crash on it. However, it is important to stress that in this work,
we have compared tool implementations rather than techniques. For example, a tool with low
performance (e.g., due to crashes) could still feature novel techniques that could be quite
useful (e.g., if integrated or re-implemented in a more mature tool).
• Like software, schemas can also have faults and/or omissions (e.g., constraints on some in-

puts might be missing). This issue seems quite common, especially when schemas are writ-
ten manually. Although this problem could be addressed by white-box testing (currently
supported only by EvoMaster) by analyzing the source code of the SUTs, it looks like a
major issue for black-box testing, which might not have a viable solution.
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• Interactions with databases are common in RESTful APIs. To execute the code to fetch some
data, such data should first be present in the database. The data could be created with end-
points of the API itself (e.g., POST requests), as well as inserted directly into the database
with SQL commands. Both approaches have challenges, such as how to properly link differ-
ent endpoints that work on the same resources, and how to deal with data constraints that
are specified in the code of the API and not in the SQL schema of the database. The compared
fuzzers provide different solutions to address this problem, but it is clear that more still need
to be done.
• Currently, no fuzzer deals with the mocking of external web services (e.g., using libraries like

WireMock). Testing with external live services has many shortcomings (e.g., the generated
tests can become flaky), but it might be the only option for black-box strategies. For white-
box strategies, mocking of web services will be essential when testing industrial enterprise
systems developed with a microservice architecture (as in this class of software, interactions
between web services are quite common).
• Authentication information needs to be provided when fuzzing APIs that require different

users to login. Even with a white-box fuzzer, it might not be feasible to automatically create
different users with different roles. For example, typically passwords in databases are hashed,
and reverse engineering on how to create valid hashed passwords (e.g., when creating data
into the database as part of the tests [32]) is out of reach from current fuzzers. To reach
specific parts of the code, there might be the need of specific users with specific roles. If
those are not provided/set up before the fuzzing is done, then such code cannot be executed.
A tester might provide different user profiles for fuzzing, but some important roles/setups
might be missing from these manual configurations.
• Constraints on strings input seem quite common in RESTful APIs. Those constraints

might be missing in the schema (e.g., a specific string input needs to satisfy a given
regular expression). White-box fuzzers can analyze the code to see how such strings are
manipulated, but it is not trivial. Black-box fuzzers could try to infer these constraints with
natural language processing (e.g., based on the names of these inputs, and possibly their
description, if any is provided).

Many of the challenges we have identified (e.g., dealing with databases and underspecified
schemas) are specific for RESTful APIs, although they would likely apply to the fuzzing of other
types of web services as well (e.g., GraphQL [39, 40] and RPC [72, 73]). These challenges would not
be meaningful in different testing contexts (e.g., unit test generation or fuzzing of parser libraries).

Issues with providing manual auth configurations would likely apply to any kind of software
that needs authentication information. Dealing with constraints on string data is likely the most
general challenge, as it applies as well, for example, to unit testing.

This means that solving these challenges would not only help in the testing of RESTful APIs,
but it likely can have positive effects on other testing domains as well.

RQ5: There are several open challenges in fuzzing RESTful APIs, including, for example, how to

deal with underspecified schemas, and how to deal with interactions with their environment (e.g.,

databases and other external APIs).

5 THREATS TO VALIDITY

Internal Validity. Besides writing the scaffolding to run and analyze the experiments, before run-
ning the experiments we did not make code modifications in any existing tool for this study. Al-
though we are the authors of EvoMaster, to try to be fair, we used the latest release before running
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these experiments, without re-running them after fixing any new issues. However, as we have used
all of these APIs in our previous studies, EvoMaster did not crash on any of them.

The use of EMB [7] as the case study might bias the results toward EvoMaster. To avoid
EvoMaster overfit on it, EMB has been extended each year with new APIs, of different size and
complexity. Furthermore, as EMB has been open source for a few years, anyone can use it as case
study to evaluate the effectiveness of their fuzzers.

We used seven existing tools, with their latest release versions when possible. However, there
is a possibility that we might have misconfigured them, especially considering that some of those
tools have minimal documentation. To avoid such a possibility, we carefully look at their execution
logs to see if there was any clear case of misconfiguration. Furthermore, we release all of our scripts
as open source in the repository of EvoMaster, so anyone can review them and replicate the study
if needed.

Any comparison of tools made by the authors of one of these tools is bound to be potentially
biased, especially if the tool turns out to give the best results (as in our case with EvoMaster).
However, the relative performance of the other six tools among them would be not affected by
this issue. Likewise, the in-depth analysis of the SUTs is not affected by this issue either.

All of the compared fuzzers use randomized algorithms. To take this into account, each exper-
iment was repeated either 3 times (budget of 10 hours) or 10 times (budgets of 6 minutes and 1
hour), and we analyzed them with the appropriate statistical tests.

External Validity. The chosen seven fuzzers are arguably representing the state of the art in test-
ing RESTful APIs. However, results on 19 APIs might not generalize to other APIs as well, although
we also selected different programming runtimes (e.g., JVM and NodeJS) including 1 industrial API.
This kind of system testing experiments is expensive (more than 120 days of computational effort
in our case), which makes using more APIs challenging. Furthermore, finding RESTful APIs in
open source repositories is not so simple, and considerable effort might then be needed to config-
ure them (e.g., set up external dependencies like databases and find out how/if they use any form
of authentication).

6 CONCLUSION

RESTful APIs are widely used in industry, so several techniques have been developed in the
research community to automatically test them [48]. Several reports in the literature show the
usefulness in practice of these techniques, by reporting actual faults automatically found with
these fuzzers. However, not much has been reported on how the different techniques compare,
nor on how effective they are at covering different parts of the code of these APIs. This latter is
usually the case due to the testing of remote APIs, for which researchers do not have access to
their source code.

To address these issues, in this article we compared the state of the art in fuzzing RESTful APIs,
using seven fuzzers to test 20 APIs (18 open source, 1 industrial, and 1 artificial used only for
fault analysis). This totaled more than 280,000 LOCs (for their business logic, but not including the
millions of LOCs of all third-party libraries they use). Each fuzzer was run for 1 hour, and each
experiment was repeated 10 times, to take into account the randomness of these tools. To get a
better understanding of the results, the best fuzzers were also run for 6 minutes and 10 hours (but
the latter was repeated only 3 times).

The results showed different degrees of coverage for the different black-box testing tools, where
EvoMaster seems to be the tool giving the best results (i.e., highest code coverage on average)
on this case study, closely followed by Schemathesis. However, no black-box fuzzer was able
to achieve more than 60% line coverage on average. Furthermore, the experiments show that
white-box testing gives better results than black-box testing. Still, large parts of these APIs are left
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uncovered, as the fuzzers do not manage to generate the right data to maximize code coverage.
Additionally, only a small number of types of faults were detected by these fuzzers. Although
these fuzzers are already useful for practitioners in industry, more needs to be done to achieve
better results.

To address this issue, this large empirical analysis was then followed by an in-depth analysis
of the source code of each of the 19 APIs, to understand the main issues that prevent the fuzzers
from achieving better results. Several issues were identified, including, for example, how to deal
with underspecified schemas, and how to deal with interactions with external services (e.g., other
APIs and databases). This provides a useful list of common problems that researchers can use to
drive new research efforts in improving performance in this problem domain.

For a few of these issues, we discussed possible solutions, but those will need to be empirically
validated. Future work will aim at using the new knowledge and insight provided in this work to
design new variants of these tools, to be able to achieve better results (in terms of code coverage
and fault detection). In particular, the insight provided in this study is shaping the current research
efforts in EvoMaster, pointing to clear research issues that need to be prioritized.

Comparing existing tools provides insight on the current limitations of fuzzing RESTful APIs.
Although comparing results on code coverage is not particularly complex, there are major issues
when trying to do fair comparisons based on fault detection, especially in an automated way. Fu-
ture work will be needed to design automated code infrastructure and scaffolding to run experi-
ments based on fault detection.

All tools and APIs used in this study are available online. To enable the replicability of this study,
all of our scripts used in our experiments are published as open source, available online in the
repository of EvoMaster, at www.evomaster.org. Documentation is provided to specify how to
use them (e.g., in the “Replicating studies” section of the website). These scripts are automatically
stored on Zenodo at each new release (e.g., version 1.5.0 [35]).

APPENDIX

A SOURCE CODE ANALYSIS

In this appendix, we discuss the execution of test cases on each SUT, in alphabetic order, one at a
time. Hypotheses are then provided to explain why higher coverage was not achieved.

Note that when we refer to the code coverage achieved by white-box EvoMaster, we refer to the
results in Table 8. These coverage values are computed with the instrumentation of EvoMaster
itself, and they are not exactly the same as what other coverage tools like JaCoCo and c8 would
report (as there can be differences on how coverage is computed). For example, coverage results
reported by c8 might be significantly higher, as those are computed only on the script files that are
loaded (based on all of the experiments), whereas for EvoMaster, all source files were considered.
In other words, if on each run i a tool covers Xi lines out of Ni total reported, then the coverage
percentage ci is computed as ci = Xi/N , where N = max (Ni ). Furthermore, a current limitation
of EvoMaster for JavaScript is that the recorded coverage does not include the coverage achieved
at boot time, but only from when the search starts. This was an issue that has been fixed for JVM,
but not yet for JavaScript. Therefore, the numbers in Table 8 are not directly comparable with the
numbers in Table 2.

A.1 catwatch

With an average line coverage of 50%, catwatch can be considered a non-trivial API. The main
issue is that this SUT makes a call to an external service (more specifically, to the GitHub APIs to
fetch project information). But such call seems to get stuck for a long time (and possibly timeout),

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.

www.evomaster.org


144:28 M. Zhang and A. Arcuri

Fig. 3. A function snippet from the ExternalTanController class in the API cwa-verification.

which leads to none of the code parsing the responses (and do different kind of analyses) being
executed. Calling external services is a problem for fuzzers. External services can go down or
change at any time. They can return different data at each call, making assertions in the generated
tests become flaky. Although testing with the actual external services is useful and should be done,
the generated tests would likely not be suitable for regression testing. This is a known problem
in industry, and there are different solutions to address it, like mocking the external services (e.g.,
in the JVM ecosystem, WireMock [23] is a popular library to do that). Enhancing fuzzers to deal
with mocked services (e.g., to setup the mock data they should return) is going to be an important
venue of future research.

A.2 cwa-verification

On the cwa-verification API, achieved coverage is less than 50% (i.e., 46.9%). There are two inter-
esting cases to discuss here, which have major impact on the achieved coverage.

First, Figure 3 shows a snippet of code for one of the endpoint handlers (i.e., External
TanController, but the same issue happens as well in ExternalTestStateController and
InternalTanController). Here, the condition actual.isPresent() is never satisfied, which
leads to missing a large part of the code. A token is given as input as part of the body payload, and
then a record matching such token in the database is searched for. However, none is found, and
EvoMaster is unable to create it directly. In theory, a case like this should be trivial to handle with
SQL support [32], but this was not the case. The reason is the peculiar properties of such token.
This type of token has the given constraint in the OpenAPI schema:

1 " r e g i s t r a t i o n T o k e n " : {

2 " p a t t e r n " : " ^[ a−f0 −9 ] { 8 } − [ a−f0 −9 ] { 4 } −4 [ a−f0 −9 ] { 3 } − [ 8 9 aAbB ] [ a−f0 −9 ] { 3 } − [ a−f0

− 9 ] { 1 2 } $ " ,

3 " type " : " s t r i n g "

4 }

This results in the token having a length of 36 characters. EvoMaster has
no problem in sampling strings that match such a regular expression, like
bfe8b80b-dca1-458d-B312-96ecae446be0. However, such constraint is not present in the
SQL database, where the column for these tokens is simply declared with the following:
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Fig. 4. A function snippet from the InternalTanController class in the API cwa-verification.

1 − column :

2 name : r e g i s t r a t i o n _ t o k e n _ h a s h

3 type : v a r c h a r ( 6 4 )

When EvoMaster generates data directly into the database, they would be random strings that
do not satisfy such regular expression. Again, this should not a problem thanks to taint analy-
sis [33]. The reason it is not working is due to the length of the string, which is 36 characters. By
default, EvoMaster does not generate random strings with more than 16 characters. Even if with
taint analysis we could inject the right string into the database, currently this does not happen due
to 36 being greater than 16.

Note that having a constraint on the length of strings is essential. Sampling unbound random
strings with billions of characters would have too many negative side effects. The choice of the
value 16 is arbitrary: it could have been higher or lower. Still, whatever limit is chosen, an SUT
could need strings longer than such a limit, as happens in this case for cwa-verification.

A solution to address this issue is to distinguish between two different max-length limits: a hard

one that should never be violated (e.g., a constraint in the OpenAPI or SQL schemas) and a soft

one (e.g., 16). The soft limit would be used when sampling random strings but could be violated in
some specific circumstances (e.g., in taint analysis).

The second interesting case to discuss is present in the endpoint handler Internal
TanController, shown in Figure 4. Here, an HTTP header with the value TELE_TAN_TYPE_
HEADER="X-CWA-TELETAN-TYPE" can be provided as input. However, such information is missing
from the OpenAPI schema. Therefore, the object teleTanType is always null. This is an example
of underspecified schema.

A.3 cyclotron

On the cyclotron API, there is not much difference between white-box and gray-box testing. There
are at least three major issues worthy of discussion.

First, a non-negligible amount of code is executed only if some configuration settings are on.
But those are off by default (e.g., like config.analytics.enable and config.enableAuth in
config.js). All code related to these functionalities cannot be tested via the RESTful endpoints.
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Fig. 5. A function snippet from the api.data.js file in the API cyclotron, for the endpoint

/data/{key}/upsert.

Fig. 6. Snippet of the OpenAPI schema for the API cyclotron.

Second, like for several other APIs in this study, the schema here is not fully correct/complete.
For example, Figure 5 shows a snippet for the handler of the endpoint /data/{key}/upsert, where
the two fields data and keys are read from the input object in the HTTP body payload of the re-
quest. However, the schema has no formal definition about those fields, as they are just mentioned
as a comment (see line 17 in Figure 6).

Third, the API does several accesses to a MongoDB database. Several endpoints start by re-
trieving data from the database, such as with commands like Dashboards.findOne({ name:
dashboardName }). If the data is missing, no following code is then executed. But it is hard to get
the right ID (e.g., dashboardName in this example) by chance. Although EvoMaster has support
for SQL databases (i.e., to analyze all executed queries at runtime), it does not for MongoDB, and
not for NodeJS (i.e., SQL support is currently only implemented for JVM).
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Fig. 7. A function snippet from the ConfigurationEvaluator class in the API features-service.

A.4 disease-sh-api

On disease-sh-api, there is not much difference between EvoMaster (both black-box and white-
box) and Schemathesis. After an analysis of the generated tests, practically all achievable coverage
is obtained, as the remaining code is not reachable through the REST endpoints in the API.

First, the schema refers only to version v3 of the API, but in the source code there is still all
the implementation of the endpoints for version v2. Those endpoints are not executable based on
the information in the schema. Second, large part of the code deals with the fetching of disease
records from online databases, and storing them in a local Redis instance. But such code is executed
only via scripts and not from the RESTful endpoints. Note that when the experiments are run, the
database was populated with a selection of valid data, as there is no REST endpoint to add it.

A.5 features-service

With an average line coverage of 81.8%, features-service can be considered one of the easier APIs.
Quite a bit of code cannot be reached with any generated system test, such as getters/setters that
are never called or some functions that are only used by the manually written unit tests. There
are still some branches that are not covered, related to properties of data in the database. In other
words, when a GET is fetching some data, some properties are checked one at a time, but to be able
to pass all of these checks, a previous POST should have created such data. Figure 7 shows one such
case, where the code inside the if statement does not get executed. Tracing how database data is
impacting the control flow execution, and which operations should be called first to create such
data, is a challenge that needs to be addressed.

A.6 gestaohospital-rest

On the gestaohospital-rest API, there is not much difference between white-box and gray-box
EvoMaster (i.e., average coverage 39.5% vs. 39.4%; recall Table 8). Furthermore, RestTestGen
and Schemathesis give better results than EvoMaster (recall Table 2).

One specific property of this API compared to most of the other SUTs in our empirical study is
that this type of API uses a MongoDB database. In contrast to SQL databases, white-box EvoMas-
ter has no support for NoSQL databases (like MongoDB). As this API does many interactions with
the database (e.g., there are a lot of calls like service.findByHospitalId(hospital_id)), not
much coverage is achieved if such accessed data is not present in the database, and the evolution-
ary search has no gradient to create it. In this regard, it seems that RestTestGen and Schemath-
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esis do a better job at creating resources with POST commands and use such created data for their
following GET requests. Still, although quite good, the coverage is at most 62.3% (measured with
JaCoCo for Schemathesis), which means that there remain some challenges to overcome.

We could not analyze in detail the output of these tools in an IDE for the Java program
gestaohospital-rest (e.g., using a debugger), as RestTestGen generated only JSON files with the
descriptions of the tests (and no JUnit file), and the outputs of Schemathesis are in YAML for the
VCR-Cassette format (which is mainly for Ruby and Python, where ports in Java for handling tests
with VCR-Cassette format seem to have not been under maintenance for several years).

A.7 ind0

The closed-source API ind0 was provided by one of our industrial partners. Therefore, we cannot
provide any code example for it, but we can still discuss it at a high level. This API is a service in
a microservice architecture. Although in terms of size it is not particularly big (recall Table 1), it
is the most challenging API in our case study. No black-box fuzzer achieves more than 8.2% line
coverage, and white-box testing goes only up to 18.8% (on average).

Out of 20 endpoints, all but 1 endpoint require string inputs satisfying a complex regular expres-
sion, but such information is not present in the OpenAPI schema. Therefore, a random string is
extremely unlikely to satisfy such constraint. Furthermore, the constraint is expressed in a @ anno-
tation, which is handled by the Spring framework before any of the HTTP handlers are executed.

Thanks to taint analysis, EvoMaster can handle these cases [33], even when constraints are
evaluated in third-party libraries (and not just in the business logic of the SUT). Still, there is
quite a bit of variability in the results—that is, given the average coverage 18.8%, the standard
variation is 7.0, with coverage going from a minimum of 11.9% to a maximum of 32.6% (out of the
10 repeated experiment runs). EvoMaster manages to solve these constraints, although not in all
runs, as such strings not only get matched with a regular expression, but they then are checked
further with other constraints. However, as the regular expression is exactly the same for all of
these 19 endpoints, applied on a URL path variable with the same name, it should be possible to
design strategies to re-use such information to speed up the search, instead of resolving the same
constraints each time for each endpoint. Even with the run with the highest coverage of 32.6%,
many endpoints are not covered due to this issue.

A.8 js-rest-ncs

The artificial API js-rest-ncs uses numerical computation functions (e.g., Triangle Classifica-
tion [25]) behind REST endpoints. As this is a re-implementation in JavaScript of rest-ncs, we will
defer to Section A.14 for the analyses.

One thing to notice, however, is that the coverage values are higher for a very simple reason: the
fetching of the OpenAPI schema is part of business logic of the API, and code coverage is computed
for it (as the schema is inside a JavaScript file as a string inside an HTTP endpoint declaration),
whereas for Java, the schema is handled as a JSON resource.

A.9 js-rest-scs

Similarly to the case of js-rest-ncs, js-rest-scs is a JavaScript re-implementation of rest-scs, which
involved string-based computation functions. We therefore will defer to Section A.16 for the
analyses.

As for js-rest-ncs, the fetching of the schema impacts the computed code coverage. However,
for white-box EvoMaster, coverage is worse for js-rest-scs than for rest-scs. The reason is rather
simple: the support for white-box testing of JavaScript code in EvoMaster is a much more recent
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Fig. 8. A function snippet from the ApiV2 class in the API languagetool.

addition [74], and not all features implemented for JVM (e.g., different forms of taint analysis [33])
are supported currently.

A.10 languagetool

On the languagetool API, coverage is up to 39.5%. This is the largest and most complex API in
our study (recall Table 1). This is a CPU-bound (e.g., no database) application, doing complex
text analyses. This API has only two endpoints: /v2/languages, which is a simple GET with no
parameters (and so it is trivially covered by just calling it once), and /v2/check, which is a POST
with 11 input parameters. However, looking at the source code of ApiV2.handleRequest, it seems
that there are some more endpoints, although those are not specified in the OpenAPI/Swagger
schema. Without an extensive analysis of this SUT, it is unclear how much of its code would not
be coverable due to this issue.

Following the execution from the entry point /v2/check, there are a few missed branches
worthy of discussion. In Figure 8, the last statement crashes due to mapper.readTree throw-
ing an exception (and so all statements after it cannot be executed). Here, when a form
in an application/x-www-form-urlencoded payload is received, 1 out of the 11 parame-
ters is treated as JSON data (i.e., the input called data). Such information is written in the
schema as a comment, although the type is registered as a simple string. It is unlikely that
a random string would represent a valid JSON object. Another issue is when entering in the
class TextChecker. Several if statements refer to input parameters that are undefined in the
schema, such as textSessionId, noopLanguages, preferredLanguages, enableTempOffRules,
allowIncompleteResults, enableHiddenRules, ruleValues, sourceText, sourceLanguage,
and multilingual. Dealing with underdefined schemas is a major issue with fuzzers, especially
black-box ones. Technically, these can be considered as faults in the schemas, which should be fixed
by the users. However, schemas can be considered as documentation, and issues in the documen-
tation might receive less priority compared to faults in the API implementation. Still, as fuzzers
heavily rely on such schemas, a more widespread use of fuzzers might lead to changes in industrial
practice by giving compelling reasons to timely update and fix those schemas.

As there are tens of thousands of lines that were not covered in this SUT, there are many
other missed branches that would be interesting to discuss in detail. However, it is unclear how
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related or independent they are from the aforementioned issues. Once the issue of dealing of
underdefined schemas is solved, it will be important to re-run these experiments to identify which
major issues remain.

A.11 ocvn-rest

On the ocvn-rest API, with black-box testing line, coverage was up to 35.3%, which is significantly
higher than the 24.8% achieved by white-box testing. It is the second largest API in our study,
following languagetool, based on the number of LOCs. However, in terms of endpoints, it is the
largest, with 192 of them. It would not be possible, given the space, to discuss each of these 192
endpoints. To analyze the achieved coverage, we hence used the test suites generated with both
white-box and black-box testing. These have hundreds of test cases. Even calling each endpoint
just once would result in at least 192 HTTP calls in the generated tests. Considering the complexity
of this SUT, maybe using a larger search budget over 1 hour could be recommended.

More than 35% of the codebase (packages org.devgateway.ocvn and org.devgateway.
ocds.persistence) deal with connections to databases such as SQL and MongoDB, but such
code does not seem to be executed. This might happen if the endpoint executions fail before writ-
ing/reading from the databases (e.g., due to input validation). The definitions of HTTP handlers in
the package org.devgateway.ocds.web.rest.controller take up more than 30% of the code-
base. But only half of it (i.e., around 15%) gets covered by the tests. Few endpoints (e.g., in the
class UserDashboardRestController) were not covered because they require admin authentica-
tion, which was not set up for these experiments (recall the discussion about authentication in
Section 4.3). The class CorruptionRiskDashboardIndicatorsStatsController defines several
HTTP endpoints, but none of them appears in the OpenAPI/Swagger schema. Therefore, they
cannot be called by the fuzzers.

Around 5% of the codebase seems to deal with the generation of Excel charts, but that code is
not covered. Out of the 14 HTTP endpoints dealing with this functionality, they all fail on the very
first line (and so a substantial part of the codebase is not executed, possibly much higher than 5%),
which is a variation of the following statement with different string inputs as the second parameter:

1 f i n a l S t r i n g c h a r t T i t l e = t r a n s l a t i o n S e r v i c e . g e t V a l u e (

2 f i l t e r . ge tLanguage ( ) ,

3 " c h a r t s : c a n c e l l e d F u n d i n g : t i t l e " ) ;

Here, the language is given as input in the HTTP requests, which then gets matched with a
regular expression. This makes the translationService.getValue call crash when the regular
expression is not satisfied. White-box testing can analyze these cases, but it can be hard for
black-box techniques if the information on such regular expressions is not available in the
OpenAPI/Swagger schemas.

Another large part of the code that is not covered (around another 5%) is in the package
org.devgateway.ocds.web.spring. However, most of this code seems to only be called by the
frontend of the OCVN application (and the jar file for ocvn-rest does not include this type of mod-
ule). From the point of view of the HTTP endpoints, this can be considered dead code, because it
cannot be reached from those endpoints.

It might be surprising that white-box testing gives significantly worse results than gray-box
testing, by a large margin (i.e., 10.5%). In a combinatorial optimization problem, this can happen
when the fitness function provides little to no gradient to the search, generating the so-called fitness

plateaus. Mutation operators that only do small changes to the chromosome of an individual (i.e., an
evolved test case in this context) would have lower chances to escape from such local optima. Evo-
Master has some advance mechanisms to address these cases, such as adaptive hypermutation [70].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 144. Pub. date: September 2023.



Open Problems in Fuzzing RESTful APIs: A Comparison of Tools 144:35

Fig. 9. A function snippet from the CountPlansTendersAwardsController class in the API ocvn-rest.

However, it was not enough to handle ocvn-rest. The problem here is that most endpoints take a
JSON object as input, with several constraints that must be satisfied. However, those constraints
are not evaluated in the business logic of the SUT but rather in a third-party library. These con-
straints are not specified in the OpenAPI schema. Figure 9 shows an example, in which the JSON
input is unmarshalled into an YearFilterPagingRequest instance. Because this input is marked
with the annotation @Valid, its validity is evaluated before the method countTendersByYear()
is called. If it is not valid, then the Spring framework returns an HTTP response with status 400
(i.e., user error), without calling the method countTendersByYear().

As shown in Figure 10, the class YearFilterPagingRequest has nine fields on which
javax.validation constraints are declared. Only one (out of nine) violated constraints is needed
to invalidate the whole object. Because the constraints are evaluated in a third-party library, the
fitness function has no gradient to guide the search to solve all of them. Looking at the results, it
seems like generating valid instances at random is feasible, albeit with low probability. However,
small mutations on an existing invalid instance have little to no chance to make the object valid.

To address these issues, there could be at least three strategies:

• White-box: Compute the fitness function to optimize the coverage (using different search
heuristics) on all code, including third-party libraries, and not just the business logic of the
SUT. In this way, there would be gradient for generating tests in which the code that eval-
uates @Valid constraints returns true. Although theoretically possible, this does not sound
like a very promising approach (unless only the needed code in the third-party libraries is
instrumented). In most cases, the code of the business logic of the SUT is just tiny compared
to the source code of all used third-party libraries, which includes application frameworks
such as Spring, HTTP servers such as Tomcat, and ORM libraries such as Hibernate. Instru-
menting everything to compute advance heuristics on all third-party libraries would likely
have huge performance overhead. This is particularly the case for all code that is executed
before the business logic (e.g., the unmarshalling of incoming HTTP requests).
• White-box: Natively support @Valid in the fitness function, by creating a branch dis-

tance for each field, with the objective of minimizing the distance for all fields. Different
branch distances can be computed for the different constraints that are part of the standard
javax.validation (e.g., javax.validation.constraints.Min). A new testing target (to
optimize for) could be created for each @Valid annotation in the business logic of the SUT.
However, one major challenge here is that javax.validation allows the creation of custom
constraint annotations. This is, for example, the case for @EachPattern and @EachRange
used in Figure 10.
• Black-box: Even if the information on the field constraints are missing in the OpenAPI

schema, it can be detected in the schema that the same object type is used as input in more
than one endpoint. If that is the case, and if for an endpoint it is difficult to create a valid
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Fig. 10. All fields with declared constraints (nine in total) in the class YearFilterPagingRequest in the API

ocvn-rest.

instance (e.g., all evaluated HTTP calls so far return a response with HTTP status 400), then
a possible strategy could be to re-use as input an instance created for another endpoint for
which a 2xx status code was returned (if any has been created so far during the search).

A.12 realworld-app

On the realworld-app API, there is a small difference between EvoMaster black-box and
Schemathesis (c8 instrumentation: 69.4% vs. 69.7%), and between gray-box and white-box
EvoMaster (EvoMaster instrumentation without bootstrap coverage: 24.6% vs. 24.4%).

Most of the code is covered. What is left are either unfeasible branches or branches related to
fetching data from the database (MySQL in this case) with some given properties. Figure 11 shows
one such example, where three queries into the database are executed, based on the two inputs id
and slug. The condition of the if statement at the end of that code snippet is never satisfied, as it
depends on these three SQL queries. Recall that although EvoMaster has support for SQL query
analyses (which could help in this case), it is currently only for JVM and not NodeJS.

A.13 proxyprint

With a line coverage of up to 53.3%, proxyprint is an API in which reasonable results are
achieved, but more could be done. Several functions in this API are never called, and there-
fore they are impossible to cover, such as the methods sendEmailFinishedPrintRequest and
sendEmailCancelledPrintRequest in the class MailBox, and the private methods singleFile
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Fig. 11. A function snippet from the article.service.js file in the API realworld-app.

Fig. 12. Snippet of function handler for the endpoint /consumer/request in proxyprint .

Handle and calcBudgetsForPrintShops in the class ConsumerController. Thus, 100% coverage
is not possible on this API.

This API provides a selection of various branches that are not covered. However, it is not
straightforward to discover the interesting challenges here. One problem is that the number of
HTTP calls on this API is low, and therefore not much search is actually carried out compared
to the other SUTs when using a 1-hour budget. For example, the generated statistic files of
EvoMaster report an average of 37393 HTTP calls per experiment on proxyprint, whereas for
rest-news, it is 372733 (i.e., nearly 10 times more). Thus, many of these missed branches could
be covered if running EvoMaster for a longer amount of time. Still, some of these branches
seem quite unlikely to be covered even with larger search budgets. Let us discuss a few of them.
Some are related to authentication. For example, in Figure 12, the code inside the if statement
is never executed. To reach that statement, an HTTP call with valid authentication information
needs to be provided. Such authentication information is validated with the database when the
Principal object is instantiated by the framework (Spring Security in this case). Authentication
information needs to be available when the SUT starts (unless the API has some way to register
new users directly on-the-fly from the API itself). Therefore, to deal with security (especially
when involving hashed passwords), some initialization script is required (e.g., to register a set of
users with valid username/password information). In the case of proxyprint, some other data in
other tables is created as well (e.g., in the Consumer table). To be able to cover this type of branch,
a fuzzer should find a way to either create new valid users or modify the existing data in the
database (e.g., EvoMaster can add new data but not modify the existing one [32]).

Figure 13 shows an example in which the line defining the variable quantity throws an ex-
ception, due to Double.valueOf being called on a null input. Here, an HTTP object request is
passed as input to the constructor of IPNMessage, which is part of the PayPal SDK library. Inside
this type of library, request.getParameterMap() is called to extract all parameters of the HTTP
request, which are used to populate the map object returned by ipnlistener.getIpnMap(). How-
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Fig. 13. Snippet of function handler for the endpoint /paypal/ipn/consumer/{consumerID} in proxyprint .

ever, as such parameters are read dynamically at runtime, the OpenAPI/Swagger schema has no
knowledge of them (as for this SUT, the schema is created automatically with a library when the
API starts). Therefore, there is no information to use an HTTP parameter called mc_gross of type
double. As this kind of parameter is used directly without being transformed, testability transfor-
mations with taint analysis might be able to address this problem [33], but such techniques would
need to be extended to support getParameterMap() and Map.get.

Figure 14 shows another interesting example, where the value of a string field in a JSON pay-
load is used directly to instantiate an enum value (i.e., the statement Item.RingType.valueOf(-
rti.getRingType())). This fails, as a random string is extremely unlikely to represent a valid
value from a restricted set. This might be handled by providing such information in the Open-
API/Swagger schema (which supports defining enumerations on string fields), or also by handling
valueOf() in enumeration by extending the techniques in the work of Arcuri and Galeotti [33] to
support it.

The handler calcBudgetForPrintRequest for the endpoint /consumer/budget is never called
(and so all business logic related to this endpoint remains uncovered by the tests). This type of
endpoint requires a payload with type multipart/form-data as input, but the schema wrongly
specifies the application/json type. A fuzzer might be able to handle this case automatically,
but it could be considered as a major issue in the schema, which should be fixed by the users like
a fault in the SUT. In other words, there is a big difference between not providing all information
(e.g., missing enum value constraints like in the case of /printshops/{id}/pricetable/rings)
and providing wrong information (i.e., wrong payload type as in the case of /consumer/budget).

A.14 rest-ncs

On the rest-ncs SUT, white-box testing with EvoMaster achieves an average of 93%. An analysis
of the non-covered lines shows that those are not possible to reach (i.e., dead code). An example is
checking twice if a variable is lower than 0, and returning an error if so. In this case, it is impossible
to make the second check true. Therefore, as the maximum achievable coverage is obtained in each
single run, this can be considered as a solved problem.
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Fig. 14. Snippet of function handler for the endpoint /printshops/id/pricetable/rings in proxyprint .

Regarding black-box testing, all but two fuzzers achieve more than 50% line coverage, with
Schemathesis achieving 94.1% coverage (computed with JaCoCo), followed by RestCT achieving
85.5% average coverage. On this API, black-box EvoMaster gives worse results (i.e., 64.4%).

This is a rather interesting phenomenon, which is strongly dependent on some design choices
these fuzzers make. For example, some branches in this API depend on whether two or more integer
inputs are equal (e.g., in the case of Triangle Classification). Given two 32-bit integers X and Y ,
there is only a 1/232 chance that X = Y . On average, it will need to sample more than 2 billion
values before obtainingX = Y . With such constraints, it will be quite difficult for a black-box fuzzer
to cover this kind of branch if integer inputs are sampled at random. However, a fuzzer does not
need to sample from the whole spectrum of all possible integers. For example, it could sample from
a restricted range (e.g., [−100, 100]). On the one hand, the shorter the range, the higher the chances
to sample X = Y . On the other hand, a short range could make it impossible to cover branches
that require values outside such range (e.g., 12345). This is a tradeoff that needs to be made.

A.15 rest-news

On this API, it was possible to achieve up to 66.5% line coverage. As for the other SUTs, most
of the missing coverage is due to dead code, which is impossible to execute. However, there are
some branches that should be possible to cover, but they were not. All of these seem to be re-
lated to the same issue, which is the update of existing data in the database. Databases allow
the defining of constraints on their data (e.g., a number should be within a certain range), using
SQL commands such as CHECK. White-box EvoMaster can generated test data directly into SQL
databases [32], taking into account all of these constraints (as all of this information is available
in the schema of the database). If any constraint is not satisfied, then the INSERT SQL commands
will fail. The problem here is that the SUT might define further constraints on such data. In JVM
projects, this is commonly done with javax.validation annotations when using ORM libraries
such as Hibernate [9]. But EvoMaster does not seem to handle this and generates data that is
valid for the database (as all of the CHECK operations pass and the INSERTs do not fail) but not
for these further constraints. Therefore, in an update endpoint, invalid (from the point of view of
javax.validation constraints) data can be read from the database, which the SUT then fails to
write back (as these javax.validation constraints are checked on each write operation) when
the update endpoint has done its computations.
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Fig. 15. Snippet of subject function from the FileSuffix class in the API rest-scs.

Fig. 16. Code snippet from the CountryRestV2 class in the API restcountries.

A.16 rest-scs

With a line coverage of up to 86.2%, rest-scs is an API in which white-box testing is highly effective.
Two types of branches were not covered: the ones involving regex checks with Pattern.matches
and the other involving the dot character (‘.’). In this latter case, it is due to EvoMaster not using
this type of character when sampling random strings, which makes the if statement in Figure 15
impossible to cover. This might sound like something rather simple to fix. However, as soon as
special characters are used in random strings, extra care needs to be taken into consideration
when outputting test cases (e.g., the character ‘$’ has special meaning in Kotlin and would need to
be escaped when used in strings, which is not the case for Java). Character escaping rules can be
quite different based on the context in which they are used in a test case (e.g., inside a URL, inside a
JSON object passed as HTTP body payload, or data injected into a SQL database). All of these cases
have to be handled, as otherwise the tools would end up generating test cases that do not compile.

A.17 restcountries

On the restcountries API, high coverage is achieved (i.e., 77.1%). Like the other SUTs, there is quite
a bit of dead code due to getters/setters that are never called and catch blocks for exceptions that
might not be possible to throw via test cases. The class StripeRest presents an interesting case,
as it defines the endpoint /contribute, but its information is not in the schema (and thus this
type of endpoint is never called).

Figure 16 shows a code snippet that is repeated several times with small variations in a few
endpoints. Here, this API returns a list of countries based on different filtering criteria, such as
country codes. However, the response with NOT_FOUND is never returned. The problem is that
even if the HTTP requests provide invalid inputs (e.g., a country code that does not exist), the
countries list is wrongly populated with null values, and thus the list is never empty. This is
an interesting bug in the API, which then results in a crash (i.e., a returned 500 status code), as
parsedCountries throws an exception. However, until this fault in the API is fixed, all of these
statements with NOT_FOUND are technically dead code that cannot be reached with the tests.

Similarly to rest-ncs, the fuzzing of this API might be considered as a solved problem, at least for
its current faulty version.
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Fig. 17. Snippet of create function from the MediaFileResource class in the API scout-api.

A.18 scout-api

On scout-api, white-box EvoMaster achieves slightly worse results (53.4% vs. 54.7%), although
the difference is not statistically significant (based on 10 runs). A large part of its codebase (more
than a third) cannot be executed. For example, in the background, scout-api can start a thread to
fetch and analyze some data, independently from the RESTful endpoints (i.e., the whole module
data-batch-jobs). This type of thread is deactivated by default, and therefore nearly 30% of the
whole codebase is not executed. Another non-negligible part of the codebase (around 5%) is related
to authentication using OAuth via Google APIs (scout-api provides different ways to authenticate).

There is a large part of the codebase that could be executed, but it is not due to an if statement
at the beginning of one of the HTTP endpoints. This is shown in Figure 17. Here an incoming
JSON payload is unmarshalled into a MediaFile object, which has a string field that is treated
as a URI. Most random strings are a valid URI, as a URI can just be a name. However, it is ex-
tremely unlikely that a random string would represent a URI with a valid scheme component, and
so uri.getScheme() returns null. However, this is a case that likely would be trivial to solve with
taint analysis (e.g., by extending the techniques in the work of Arcuri and Galeotti [33] to sup-
port URI objects). However, this does not mean that much higher coverage would be achieved; it
depends on all remaining code that is executed once that predicate is satisfied.

Even without code analyses, this type of challenge could also be addressed with black-box tech-
niques. For example, in this API, the string field representing the URI is called uri. An analysis of
the names of the fields can be used to possibly infer their expected type. For example, any field
whose name starts or ends with uri could be treated as an actual URI when data is generated.
Additionally, some types are quite common in RESTful APIs, like strings representing URLs and
dates. Instead of sampling strings completely at random, it could make sense to sample with some
probability strings with given types that are commonly used. This might now work in all cases,
but it is something worthy of investigation.

A.19 spacex-api

Similarly to realworld-app, on spacex-api, there is only a small difference between EvoMaster
black-box and Schemathesis (c8 instrumentation: 84.7% vs. 85.4%), and between gray-box and
white-box EvoMaster (EvoMaster instrumentation without bootstrap coverage: 41.5% vs. 41.5%,

but with Â12 = 0.58). There are two main issues affecting the coverage results here.
First, this API requires authentication, where each API endpoint requires specific authorization

roles for execution. For these experiments, a user with the right credentials was created in the
database, and the fuzzers were given the authorization information to send HTTP messages on
behalf of this user. The setting up of this user was done manually, in a script. However, after
running the experiments and analyzing the generated tests, we realized that some authorization
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Fig. 18. Snippet of the handle for the GET /cores/:id endpoint in the API spacex-api.

Fig. 19. Snippet of the handle for the POST /cores endpoint in the API spacex-api.

roles were missing (e.g., capsule:create). Therefore, a few endpoints were not covered due to
misconfigured authentication.

The second main issue is related to the database. Figure 18 shows an example in which a record
is searched by ID. No test generated by EvoMaster was able to make a call that returned a 200
HTTP status code. For white-box testing, EvoMaster fails to do this because it is not able to
analyze queries on MongoDB databases. Even with black-box testing, it could be possible to create
a new record with a POST and use its ID for a following GET. Fuzzers can exploit this kind of
information to create sequences of HTTP calls where ids are linked. However, this all depends
on how the link is defined. Figure 19 shows the implementation of the POST endpoint to create
this type of record. EvoMaster has no issue in fully covering the code of such an endpoint and
creating valid records. Additionally, EvoMaster uses different strategies to link endpoints that
manipulate the same resources [29, 75]. However, those are based on the recorded interactions
with the database (not done here for NodeJS and MongoDB), and on best practices in RESTful
API design. For example, it is a recommended practice that POSTs on collections of resources (e.g.,
/cores) create a new resource, whose id (chosen on the server, to guarantee it is unique, unless it
is a UUID) is present in the location HTTP header of the response (e.g., location: /cores/42).
EvoMaster can use these location headers to create POST requests followed with the appropriate
linked GET. However, on this API, the POST implementation in Figure 19 does not seem to follow
best practices in REST API design. For example, it does not set up the location header in the
response, and neither does it return the generated id (e.g., in the body payload). However, it could
still be possible to test this kind of API by doing the following: create a new resource with POST
/cores, followed by a GET of the whole collection (i.e., GET /cores), and then extract the id
fields from this response to call GET /cores/:id with a valid id. Note that this is assuming that
the collection is empty. If it is not, then the first POST is not even necessary. However, this also
assumes that the name of the field representing the ID is the same (or at least very similar) in both
the body payload and endpoint path parameter (so they can be matched).
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