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Abstract
C# is one of the most widely used programming languages. However, to the best of our 
knowledge, there has been no work in the literature aimed at enabling search-based soft-
ware testing techniques for applications running on the .NET platform, like the ones writ-
ten in C#. In this paper, we propose a search-based approach and an open source tool to 
enable white-box testing for C# applications. The approach is integrated with a .NET byte-
code instrumentation, in order to collect code coverage at runtime during the search. In 
addition, by taking advantage of Branch Distance, we define heuristics to better guide the 
search, e.g., how heuristically close it is to cover a branch in the source code. To empiri-
cally evaluate our technique, we integrated our tool into the EvoMaster test generation tool 
and conducted experiments on three .NET RESTful APIs as case studies. Results show that 
our technique significantly outperforms gray-box testing tools in terms of code coverage.

Keywords  .NET instrumentation · White-box test generation · SBST · RESTful APIs

1  Introduction

C# is one of the most popular programming languages for building standalone and web 
enterprise systems (The State of the Octoverse), e.g., cloud-based applications. However, 
there are barely any existing techniques for automatically generating system tests for C# 
applications.

Search-based testing techniques (SBST) have achieved many successful stories in both 
research (Harman et al., 2012) and industry (Mao et al., 2016). To the best of our knowl-
edge, there does not exist any SBST tool for C# applications. Considering the widespread 
use of C# in industry, this is a major gap in the research literature.
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EvoMaster  (Arcuri et  al.,  2021) is an open-source fuzzer which applies evolutionary 
algorithms for enabling automated black-box and white-box testing of REST and GraphQL 
APIs (Arcuri,  2018a; Belhadi et  al.,  2022). Regarding the white-box testing, however, 
it only supports JVM and NodeJs based APIs (Arcuri,  2019; Zhang et  al.,  2022). The 
performance of EvoMaster in the white-box mode has been studied in several empirical 
studies by comparing with other techniques (Arcuri,  2018b, 2020;  Kim et  al.,  2022; 
Zhang et al., 2022; Zhang & Arcuri, 2022). In this paper, we extend EvoMaster (Arcuri 
et  al.,  2021) for enabling the white-box fuzzing of.NET/C# REST APIs (i.e., adopt the 
search algorithm and fitness function of EvoMaster with our .NET/C# SBST heuristics). 
C# is an object-oriented language which can be compiled into the Common Intermediate 
Language (CIL) bytecode instruction set. To deal with white-box testing, we first 
develop a .NET bytecode instrumentation and add probes for enabling collecting code 
coverage at runtime. Additionally, for more effective search guidance, we employ branch 
distance (Alshraideh & Bottaci, 2006) for our white-box SBST heuristics, in particular for 
numeric and string data types.

To evaluate the effectiveness of our approach, we integrated our bytecode instrumenta-
tion and branch distance-based heuristics into EvoMaster, named EvoMaster.NET. Apart 
from the configurations needed for enabling C#, we used EvoMaster with its default set-
tings (e.g., Resource-based Sampling (Zhang et al., 2019)). We conducted an experiment 
by comparing EvoMaster.NET with a gray-box testing approach on three open-source .NET 
REST APIs. Two of them are based on numerical (i.e., cs-rest-ncs) and string problems 
(i.e., cs-rest-scs), whereas the third one is an API which handles a restaurant’s menu and 
deals with a Postgres database (i.e., menu-api). Results show that our approach achieves a 
clear and significant improvement over the gray-box testing approach for cs-rest-ncs and 
cs-rest-scs and statistically equivalent results on menu-api. With further investigation into 
code coverage achieved by the generated tests, we found that our approach is capable of 
solving most of the numeric and string branches, demonstrated by a high line coverage (i.e., 
up to 98% for numeric problems and up to 86% for string problems). However, for menu-
api which deals with a database, no better performance was achieved, as implementing and 
adapting techniques to handle SQL databases are necessary (Arcuri & Galeotti, 2020).

At the time of this writing, EvoMaster has more than 260 stars on GitHub (EvoMaster,  
2023), and it has been downloaded more than 1400 times. No large numbers by any 
means, but it provides some indications of its actual usage among industrial practition-
ers. A concrete example is Meituan, a large Chinese e-commerce company with hun-
dreds of millions of customers, where EvoMaster is currently successfully integrated 
in their continuous integration systems (Zhang et al., 2022). When presenting EvoMas-
ter at different industrial venues throughout the years, one of most common questions 
from practitioners has been “does it support C#/.NET”? This has been the main indus-
try-driven  (Arcuri, 2018; Garousi & Felderer, 2017; Garousi et al., 2016, 2017, 2019) 
motivation for the scientific work carried out in this paper. Unfortunately, there is a 
well-known documented gap between academic research and industrial needs, as major 
software engineering efforts might be required to be able to scale academic proto-
types to be applicable to industrial systems. And all the research challenges are needed to  
be addressed to get there might be mistakenly labeled as mere “technical work.” For 
example, in the last few years, there has been many tools presented in the scientific lit-
erature for fuzzing RESTful APIs besides EvoMaster (e.g., Atlidakis et al., 2019; Hat-
field-Dodds et al., 2022; Laranjeiro et al., 2021; Martin-Lopez et al., 2021; Viglianisi 
et al., 2020; Wu et al., 2022). However, to the best of our knowledge, they are all black-
box, in which the source code of the tested applications is not analyzed. Building a 
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white-box fuzzer for this problem domain (i.e., for C#/.NET APIs) took months of work 
with over 10,000 lines of code just for the instrumentation and driver sides. It is far  
from trivial, which might explain why, albeit EvoMaster has been open-source since 2016, it  
is still the only white-box fuzzer for Web APIs.

The main contributions in this work include the following:

•	 The first use of white-box SBST techniques in the literature for.NET applications.
•	 A novel bytecode instrumentation with SBST heuristics for .NET, which could be 

plugged-in by other existing SBST techniques.
•	 An automated solution with an open-source tool implementation for enabling SBST of 

.NET applications.
•	 An empirical study in which we successfully replicated the fuzzing of RESTful APIs 

with SBST techniques.

The paper is organized as follows. Section 2 provides necessary information to better under-
stand the remaining parts of the paper. Section 3 discusses existing related work. Our approach 
for instrumenting C#/.NET applications with SBST heuristics is discussed in Section 4. Our 
empirical analyses are presented in Section 5. Threats to validity are discussed in Section 6. 
Finally, Section 7 concludes the paper.

2 � Background

2.1 � .NET programming

.NET is a developer platform by Microsoft for building many types of applications. In 
2016, Microsoft introduced .NET Core which is open source and cross platform (.NET 
Platform). It is possible to develop programs with .NET in C#, F#, or Visual Basic. 
Programs written in these languages are compiled into Common Intermediate Language 
(CIL), which is an object oriented and entirely stack-based bytecode instruction set. C# 
has been the most popular language for developing .NET applications, and currently, it 
is among the most widely used programming languages in the world (The State of the 
Octoverse). Let us consider the following simple method written in C#: 

The code snippet above contains a method which takes as input a, which is of type 
int. Then, it prints out a string to the console if a is greater than zero. The CIL code 
for such program is as follows: 
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.NET has a rich set of bytecode instructions (ECMA-335), which has a few similari-
ties (and some differences) with the bytecode of the Java virtual machine (JVM). In this 
example, ldarg.1 is pushing the value of the input a onto the stack. Then, the constant 0 
is pushed with ldc.i4.0. The instruction cgt pops these two values and pushes either 
0 or 1 based on their comparison. stloc.0 and ldloc.0 are only needed for helping 
debugging (e.g., when putting break points from an IDE) and would not be there when 
compiling in “release” mode. brfalse.s IL_0014 is a jump instruction. If the current 
value on stack is 0 (i.e., a is not greater than 0), then the computation jumps to the instruc-
tion labeled IL_0014, which just returns with ret from the method call. Otherwise, the 
constant string “a is greater than 0” is pushed onto the stack with ldstr, as needed to be 
popped by the call to WriteLine.

2.2 � The MIO algorithm

In the context of white-box system testing, there could exist tens/hundreds of thousands of 
testing targets to be optimized (e.g., each line is regarded as a target). To effectively handle 
such an amount of targets, MIO employs dynamic populations management, i.e., each tar-
get owns a population with a maximum size n, and the targets along with populations are 
managed dynamically during search. Inspired by (1+1) Evolutionary Algorithm (Lehre & 
Yao, 2007), MIO is composed of two main operators, i.e., sampling and mutator. 
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As shown in Algorithm 1, the search starts with an empty set of populations T and an 
empty archive A which saves feasible solutions for the targets. At each iteration, with either 
sampling (i.e., sample a test) or mutator (i.e., mutate a test sampled from T) controlled by 
a probability P

r
 , a new test p could be produced and then executed (i.e., run the test on the 

SUT). Note that with the execution, the testing targets could be not reached, reached, or 
covered. Consider the example of a branch target for if(x == 42) (at line 3) as below:

When x is a negative number or 0 (e.g., −5), the target is not reached (as return − 1 is 
executed). When x is any positive number but not 42, the target is reached but not covered 
yet. Only if x is 42, the target could be considered covered. Thus, based on targets achieved 
by executing p, the populations T could be updated (referred to as dynamic populations) as 
follows:

•	 If the target k is newly reached, a new population T
k
 which contains p is created and 

added to T.
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•	 If the target k is covered, p would be added to the archive A, and T
k
 would be removed 

from the populations T (i.e., the search would not need to optimize this target).
•	 Otherwise, add p to T

k
 , if the size of T

k
 exceeds n, then remove the worst solution.

At the end, the search outputs A which contains a set of best solutions (referred to as a test 
suite) which are feasible to solve testing targets.

Regarding white-box system testing, there might exist some infeasible targets, and users 
would only care about what targets are covered rather than how the targets are heuristi-
cally close to be covered. Thus, in order to focus on the targets which could be possibly 
covered within the search budget, MIO integrates a feedback-directed sampling to sample 
tests which achieve recent improvements as candidates to perform the next mutation (see 
SampleIndividual(T) at line 7). In addition, to trade off between exploration and exploita-
tion of the search landscape, MIO handles parameters (such as F, P

r
 and n) dynamically 

throughout the search. For instance, at the beginning of the search, the exploration (i.e., 
sampling) helps to reach new targets quickly. Based on the passing of time, the probability 
of perforating the sampling P

r
 is linearly reduced. Then, at a certain point F (e.g., 50% of 

the budget has been used), the search would start to focus more on the exploitation (i.e., 
P
r
= 0 and n = 1 ) in order to focus on covering the reached targets.

2.3 � Branch distance

To achieve high code coverage, there is the need to define heuristics to guide the search to 
generate inputs that can solve the constraints in the system under test (SUT) (e.g., complex 
predicates in if statements). The most common heuristics in the literature is the so-called 
branch distance (Korel, 1990). It was originally designed to handle numerical constraints, 
but it has also been extended to handle string constraints (Alshraideh & Bottaci, 2006). As 
an example, consider a simple statement such as if(x==42). In this statement, if x is 
taken randomly, there would be 264 possibilities, where only one of them does fulfill the 
constraint. However, a value such as x = 50 is heuristically closer to solve the constraint 
compared to much larger numbers. In this example, for any given x, the branch distance 
would be calculated as d(x) = |x − 42| . The search would hence have gradient to modify 
x to minimize such distance d(x). For a full list of these distance functions, we refer the 
reader to Korel (1990). A major research challenge we address in this paper is how to apply 
these branch distances to .NET CIL bytecode.

3 � Related work

EvoSuite (Fraser & Arcuri, 2011) is a SBST tool that produces unit test cases with asser-
tions for Java classes. EvoSuite does this by employing a hybrid technique that produces 
and optimizes whole test suites in order to meet coverage objectives. EvoSuite is perhaps 
the most known SBST tool and does bytecode instrumentation for the JVM, supporting 
branch distance computations.

Where there has been much work on testing Java programs in literature (Panichella 
et al., 2021) (besides EvoSuite), comparatively not so much has been done for .NET. The 
most famous example is Pex (Tillmann & de Halleux, 2008), which uses dynamic symbolic 
execution to generate small unit test suites for programs developed with .NET. Pex accom-
plishes this by determining test inputs for parameterized unit tests by a systematic program 
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analysis. By observing execution traces, Pex learns about the program’s behavior. Pex gen-
erates new test inputs with varying program behavior with the help of a constraint solver.

Randoop (Pacheco et al., 2007) is a tool for Java and .NET that creates unit tests by the 
aid of a feedback directed random testing technique. The goal is to avoid producing illegal 
and redundant inputs by leveraging execution feedback from executing test inputs while 
they are created. Randoop builds method sequences one at a time by picking a method call 
at random and choosing arguments from previously built sequences which acts as a guide 
to create the new inputs.

To the best of our knowledge, there does not exist any SBST technique in the literature 
for white-box testing of.NET programs.

Regarding fuzzing RESTful APIs, several tools have been presented in the literature 
besides EvoMaster, such as Restler (Atlidakis et  al.,  2019), RestTestGen (Viglianisi 
et  al.,  2020), Restest (Martin-Lopez et  al.,  2021), RestCT (Wu et  al.,  2022), bBOXRT 
(Laranjeiro et al., 2021), and Schemathesis (Hatfield-Dodds et al., 2022). However, they are 
all black-box. Different studies comparing such tools showed black-box EvoMaster (with 
no instrumentation and no SBST heuristics) giving better results (Kim et al., 2022; Zhang 
& Arcuri, 2022), closely followed by Schemathesis (Hatfield-Dodds & Dygalo, 2022). In 
these experiments, SBST white-box fuzzing gave better results than the black-box variant. 
The work presented in this paper enables practitioners to use white-box testing for .NET 
applications as well besides JVM ones, which provides better results than black-box 
testing when the source code is available (e.g., in the case of developers and continuous 
integration systems).

4 � .NET instrumentation

4.1 � Bytecode instrumentation

Our implemented instrumentation for .NET programs is done by the aid of Mono.Cecil1 
library, which makes it possible to analyze and modify CIL code. It works with .NET 
libraries that are compiled and generated as a DLL (i.e., dynamic linked library), which 
means that the instrumentation is performed offline and we can not instrument .NET librar-
ies on the fly. Instrumentation needs to be integrated with an SBST technique to generate 
tests. For conducting the experiments in this paper, we have taken advantage of EvoMas-
ter, that generates system-level test cases for RESTful APIs. There are two main compo-
nents in EvoMaster: a core process and a driver process which not only starts/stops/resets 
the SUT, but also is responsible for applying the instrumentation on the SUT with SBST 
heuristics and generate the instrumented version. The driver provides its functionalities as 
RESTful APIs which the core communicates with them through HTTP. The instrumenta-
tion is implemented as a .NET Core console application. The main method of this console 
application takes the path of the target SUT as an input parameter, performs instrumenta-
tion on it, and finally saves the instrumented file in the specified location.

To use EvoMaster for an SUT, we have implemented a driver written in C# that imple-
ments the same endpoints as the original JVM driver. Regarding the core which is written 
in Kotlin, all we had to do was adding a new sort of output type for C#. EvoMaster is now 

1  https://​www.​mono-​proje​ct.​com/​docs/​tools+​libra​ries/​libra​ries/​Mono.​Cecil/

https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/
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able to generate test cases which are sequences of HTTP calls to the different endpoints of 
the SUT based on xUnit. More details on how our technique for .NET is integrated in Evo-
Master will be discussed in Sect. 4.4.

4.2 � Code coverage

A .NET program is made up of a number of assemblies, each one containing some classes. 
Each class contains methods, which we instrument one by one. Each statement in a method 
will become a testing target, and we insert probes before and after them to keep track of 
whenever they get covered during the search. The aim of EvoMaster is to generate system-
level test cases which yield the highest possible number of covered targets.

To insert probes before and after each statement, the first step is to identify them. As 
discussed in Sect. 4.1, we use Mono.Cecil to analyze and alter CIL code that are fetched 
and iterated over for each method to detect the statements and insert probes before and 
after them. In our method, for each instruction, we consider its starting coordination (i.e., 
line and column numbers) in the source code as an indicator of a new statement. That 
information is obtained from an object of type SequencePoint which is assigned to the 
instruction. If the obtained sequence point is not null and it posses different line and col-
umn numbers compared to the previously accessed instruction which we save at the end of 
the loop, the current instruction is identified as beginning of a statement, and we insert an 
EnteringStatement probe before it. This instruction is not only an indicator of a new state-
ment, but also could be the end of another statement, except the cases which the statement 
is the first one in the method. As a result, we also insert another CompletedState-
ment probe to signal the end of previous statement. Take this simple instrumented code as 
an example: 

The instrumented code would be as follows:

The probes, i.e., EnteringStatement  and CompletedStatement, are 
inserted before and after the variable assignment. They are simply invocations  of  
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static methods inside the console application developed to support the instrumentation. 
The parameters passed to these probes include class name, method name, line number, 
and column number, respectively, as they are necessary to create unique IDs for the 
targets (i.e., statements). The initial and final curly braces which surround the method’s 
body are also considered statements. Their counterpart instructions in the CIL which is 
nop and ret for the opening and closing curly braces, respectively, have their own line 
and column number. Besides, it is useful to have them as we can find out if a method 
is reached even if it is empty or if the execution of a method is completed. The probes 
(i.e., MarkStatementForCompletion) to mark completion of the curly braces 
are inserted at lines 3 and 7 in the instrumented code above. To provide the heuristics 
on code coverage, we take the same technique with the SBST heuristic values as it is 
done with EvoMaster now. Each target will be assigned a heuristic value in the range 
h ∈ [0, 1] , with 1 indicating that the target has been completely covered and 0 show-
ing that the target has not been reached throughout the test case evaluation. The values 
between 0 and 1 show how close a test case came to covering the target heuristically.

As mentioned earlier, by executing each probe, a static method will be called. Whenever 
EnteringStatement is executed, the targets for class and line are marked as covered 
by setting their values to 1. For the statement, it is set to 0.5. The reason behind this is that 
statements may throw exceptions, and we will not know if no exceptions were thrown until 
the statement is fully executed. The heuristic value for statements is set to 1 only if the 
CompletedStatement is reached. The significance of having two probes per statement 
is clear here. If we merely reported the line targets with h = 1 , the search would have no 
way to realize if an exception was thrown and would not exploit input data that does not 
lead to an exception. On the other hand, consider the case where an exception is thrown in 
the statement (e.g, a divide by zero operation), and h = 0.5 . Because SBST technique (such 
as EvoMaster) typically only outputs test cases for targets that are fully covered, if there 
was no target for the line, the test case would not be included in the final output test suite.

Inserting EnteringStatement  and CompletedStatement is not always 
straightforward as shown in the example above. When it comes to instructions which 
change the control flow, the program may become corrupted or the logic may change if not 
handled cautiously. For any instruction that we put EnteringStatement before, it is 
likely that it would be target of a jump instruction somewhere else in the code. In that case, 
the EnteringStatement probe may not get reached. To solve this, we have to check if 
the current instruction is the target of any jump. This is done by iterating over the method’s 
body instructions which is an array. If yes, the target value of the jump(s) should change 
to the first instruction of EnteringStatement probe. For CompletedStatement 
probe, the main challenge is that they should not be put after instructions which perform 
jump or exit unconditionally (i.e., br, throw, rethrow, endfinally, leave, and 
ret). If this happens, we have to insert the CompletedStatement probe before 
those instructions to mark them as completed. This should not be a problem as there is 
no instruction in between which may throw exception or change the control flow. Another 
issue that we faced during enabling instrumentation was that there exist instructions which 
there is also a short form for them such as ldarg which is a two byte instruction and 
ldarg.s that is one-byte. When altering CIL code, the number of arguments, local vari-
ables, or method bytes may change. In this case, an overflow may occur and affect the 
CIL. To prevent that, we convert every short form instruction to its non-short version by 
calling SimplifyMacros of Mono.Cecil which is an extension method for Meth-
odBody. When finally the instrumentation is done, we can call another method named 
OptimizeMacros which converts them back to their short form if possible.
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4.3 � Branch distance

4.3.1 � Numeric

Covering an acceptable number of targets is hard to achieve without taking the branch 
instructions into consideration. Complex predicates, such as conditions in if statements, 
can affect the SUT’s control flow. As the example shown in Listing 1 (Sect. 2.1), the if-
statement would be compiled into cgt, and brfalse.s is to manage the control flow 
with a result (either 0 or 1) of the if predicate a>0.

There are different types of instructions that are identified as branch instructions. 
Based on the values popped from the evaluation stack, numerical value types can 
yield either one or two instructions. Table  1 shows all branch-related instructions that 
we have handled in our instrumentation. We categorize these branch instructions into 
three groups. One-arg jump instructions pop a value from the stack and transfer con-
trol to a target instruction based on the popped value. These instructions are brtrue, 
brtrue.s, brfalse, and brfalse.s. They perform the transfer control provided 
that the popped value is true, not null, or non-zero. Two-arg compare includes compari-
son instructions that pop two values from the stack, compare them, and push the result 
which could be either 0 or 1. This group consists of ceq, clt, clt.un, cgt, and cgt.
un instructions. As an example, cgt compares two values and pushes 1 if the first one 
is strictly greater; otherwise, 0 is pushed. Two-arg jump instructions perform a jump to 
another instruction after popping and comparing two values from the stack. This includes 
bgt, bgt.un, bge, bge.un, ble, ble.un, blt, blt.un, beq, bne.un, and also 
their short forms (i.e.,followed by .s e.g.,bge.s). As an example, blt transfers control 
to a target instruction if the first value is strictly lower than the second one.

In order to calculate branch distance, we insert another group of probes into the 
code. These probes need the value(s) passed to the branch statement (e.g., an if state-
ment) to calculate how far they are to fulfill the constraint. However, since the values 
are on top of the evaluation stack, and the branch instruction pops them, they have to 
be duplicated. For one-arg jumps, the duplication is straightforward. In the code below, 
brfalse.s pops from the evaluation stack and performs a jump to another instruc-
tion at IL_001C if the popped value is false (i.e., zero). Examples of the jumps and the 
instrumented version would be as follows:

Table 1   Branch instructions that our instrumentation deals with for distance calculation

Name Branch instructions Description

One-arg jump brtrue, brtrue.s Jump instruction with one argument
brfalse, brfalse.s

Two-arg compare ceq, clt, clt.un Compare instruction with two arguments
cgt, cgt.un

Two-arg jump bgt, bgt.s, bgt.un, bgt.un.s Jump instruction with two arguments
bge, bge.s, bge.un, bge.un.s
ble, ble.s, ble.un, ble.un.s
blt, blt.s, blt.un, blt.un.s
beq, beq.s, bne.un, bne.un.s
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The probe for calculation of branch distance is inserted right before the branch instruction. 
Apart from the values needed for marking the branch target that are opCode, className, 
lineNo, and branchCounter (starts from zero, indicates the number of branches per 
line), the actual value which the brfalse.s pops needs to be passed to the probe as well. It  
is achieved by adding the dup instruction which duplicates the value pushed by its previous one  
(i.e., ldloc.1 at IL_008a) onto the evaluation stack.

Calculating branch distance for two-arg compare and two-arg jump instructions presents 
additional challenges. The first challenge is that these sorts of instructions take two values 
as input, but it is not possible to duplicate the top two values on the stack as we handle for 
one-arg jump instructions, as previously shown. As a result, we take advantage of bytecode 
method replacements. Whenever an instruction of types two-arg compare and two-arg jump 
is reached, we replace it with a method which performs the same semantic as the original 
instruction in addition to calculating the branch distance.

For example, the ceq instruction pops two values from arguments of the method, com-
pares them, and pushes 1 if they both are equal and 0 if they are not. The instrumented code 
for the example above would be like this:
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The ceq instructionis no longer used and it is replaced by a method call Compar-
eAndComputeDistance. This method first calculates the distance by passing the first  
two numeric values pushed by instructions at IL_012a and IL_012b. It then determines 
the value to be pushed onto the stack based on the opcode string pushed at IL_012c.

For two-arg jump instructions, the replaced method is different. These kinds of instruc-
tions first compare the two input values and then jump to another point based on the com-
parison result which is on the evaluation stack. It allows us to replace each of them with a 
two-arg compare instruction followed by a one-arg jump instruction. Table 2 contains the 
information on how we map those instructions.

The second challenge for two-arg compare and two-arg jump instructions is that not 
only the two values should be duplicated, but also their data type has to be detected. The 
values in the examples above are of type int, but they could be of any other numeric types 
such as float or long. Knowing the data type is a must as it is necessary for calling the 
right probe. A handy solution to this might be having a method which takes values of type 
object as input so it can handle any type of value. However, this is not possible because 
the input values first have to be boxed to object. There exists an instruction for boxing to 
object, but it also takes the sub-type (e.g., int) as input which we do not have. There-
fore, a feasible solution would be to have methods with different overloading for handling 
various numeric data types and detect the type of values pushed by the last two instructions 
before the instruction of type two-arg jump during instrumentation in order to insert the 
right probe to call.

The detected type depends on the last two instructions. The branch instruction 
could appear after many kinds of instructions that push values on the evaluation stack.  
Since both values are always of the same type, detecting the type of either of them suffices. 
For FieldDefinition, VariableDefinition, and MethodReference (e.g.,  
calling a method which puts an int onto the stack), the type can be inferred by casting 

Table 2   Mapping two-arg jump instructions to two-arg compare and one-arg jump instructions

Original instruction Converted instructions Original instruction Converted instructions

bgt cgt + brtrue ble cgt + brfalse
beq ceq + brtrue blt clt + brtrue
bge clt + brfalse bne ceq + brfalse
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the instructions’ operand and returning its type property. If the instruction is loading from 
method’s argument (e.g., ldarg_0 which pushes first parameter of the method), all we 
have to do is to detect its index and find the element with the same index in the method’s 
parameters which can be inferred using Mono.Cecil from current method’s metadata and 
return its datatype. Another possibility is that the previous instruction is loading a local 
variable (e.g., ldloc). These instructions load the local variable at a specific index onto 
the evaluation stack. Every ldloc variable comes after a stloc which stores a value at 
the specified index at the local variables list. However, these two instructions might not 
be necessarily close to each other. For tackling this issue, we store every local variable 
name and its datatype in a Dictionary by detecting stloc instructions. Whenever 
we reach a ldloc, all we have to do is to get the type of the current local variable by 
referring to the dictionary. There is also a group of instruction which their datatype can 
be detected based on their title. For example, Ldc_I4, Ldc_I8, Ldc_R4, and Ldc_
R8 push a value of type int, long, double, and float respectively onto the stack. 
Therefore, we can detect their data type just by parsing their OpCode.

4.3.2 � String

Besides the numeric value types, there would be a need to provide branch distances for the 
string type. To enable this, we identify all operators and methods of System.String 
that return a boolean, such as “ == ” operator, Equals, Contains, StartsWith, and 
EndsWith during the instrumentation. Then, we replace the method with a corresponding 
probe which calculates the distance (e.g., based on Alshraideh & Bottaci, 2006) and per-
forms the intended operation (recall the instrumentation should not modify the semantics 
of the program). Consider the code example a.Equals(b, StringComparison.
OrdinalIgnoreCase). Its equivalent CIL code is as follows:

The code above, takes a and b from method’s parameters, compares them, and 
pushes the result onto the evaluation stack. During instrumentation, once the System.
String::Equals is identified, we would replace it with a method to enable SBST 
white-box heuristics. The instrumented version is as follows:
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As the instrumented version, the Equals method is replaced with a method call (i.e., 
StringCompare) which does calculates the branch distance, performs the compari-
son, and pushes the result onto the evaluation stack. There are four other CIL instructions 
between the method call and the instructions for loading the arguments which push the 
necessary information to mark the string comparison operation, i.e., string comparison 
operator, class name, line number, and branch counter. With the four arguments, we define 
a unique target ID as idTemplate for this comparison. Regarding string comparison 
operator, we now support “ == ,” Equals, Contains, StartsWith, and EndsWith. 
The implementation of Equals as this example is shown in Fig. 1. The method would 
take caller (e.g.,a), anotherString (e.g.,b), and comparisonType as inputs. 
The comparison operator ID, i.e., idTemplate, would result in two new testing targets, 
i.e., true_branch and false_branch for the method call. Note that besides true_branch, we 
are also considering false_branch as testing target, to provide better guidance to the search. 
In this replacement method, it first ensures that caller is not null; otherwise, it throws 
a NullReferenceException. Then, at line 4, it performs the same semantic as the 
original string Equals method. Regarding the distance, we employed Truthness which 
is a utility class to store the two heuristic values (i.e., ofTrue and ofFalse) between 0 
and 1, representing possible outcomes, i.e., true or false respectively. One indicates 
that the outcome (e.g., false) is covered. As seen from line 6, if anotherString is null, 
we would set ofTrue with a constant value (H_REACHED_BUT_NULL) representing 
Null case (e.g., 0.05) and set ofFalse with 1. Note that here instead of assigning 0 to 

Fig. 1   An implementation of a replacement method for System.String.Equals 
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ofTrue, we employ a small positive value for indicating to the search that the branch is 
reached but far from being covered. Lines 11–17 are to handle situations whereby result 
is true or false. Regarding true, the distance is assigned as 1 for ofTrue and a 
constant value (H_NOT_NULL) representing NotNull case (e.g., 0.1 which is greater than 
Null case) for ofFalse. If the result is false, lines 13–15 are to calculate a distance h 
to represent how close it is to be true. For string comparison, we employed the same left-
alignment distance (Fraser & Arcuri, 2011) as EvoSuite (see line 14) and further scale the 
value with H_NOT_NULL. Thus, with the above handling, we could calculate heuristic val-
ues of true_branch and false_branch, then update them at line 18. Those heuristics would 
be further utilized by the search to evaluate a test.

In addition, to further handling strings, we also employ a taint analysis, by tracking how 
input strings are compared at runtime, in the same way as done in EvoMaster for programs 
running on the JVM (Arcuri & Galeotti, 2021). For instance, for a.Equals(“foo”), 
with the line 3, we would track that a was compared with “foo.” If the value of a is present 
in the chromosome of the test, then such value “foo” can be directly set as the input (e.g., 
a=“foo”) during a mutation operation. This kind of technique can have drastic speed ups 
to the search process (Arcuri & Galeotti, 2021).

Due to their length, we do not provide full algorithms for all these string method replace-
ments in this paper. However, note that our implementation is open-source on GitHub, 
with long term storage on Zenodo at each new release (e.g., 1.5.0 (Arcuri et al., 2022)).  
More details on the other replacement methods can be found there.

4.4 � Integration with EvoMaster for .NET testing

EvoMaster is an open-source tool (Arcuri et al., 2021) aimed at automatically generating 
system tests with SBST. It supports both white-box and black-box testing. EvoMaster uses 
Many Independent Objective (MIO) which is a population-based evolutionary algorithm 
designed to deal with white-box system testing problem for automating test suite genera-
tion (Arcuri, 2018).

To apply our technique for testing .NET programs, we integrated it into EvoMaster as 
shown in Fig. 2. As shown in the figure, to enable our technique, we developed a .NET EM 
driver which contains .NET Bytecode Instrumentation and SBST Heuristics and extended 
core with a Test Writer which generates test suites written in C# (using xUnit). Note that 
the Test Writer can also be used by EvoMaster when applying black-box testing.

Fig. 2   Integrating our novel techniques into EvoMaster for enabling white-box system test generation for 
.NET applications
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EvoMaster is mainly composed of two parts, i.e., driver and core. At the driver side, 
users will need to manually specify how to handle the SUT, e.g., start/stop/reset the SUT, 
and provide a URL where to access its API schema (see Step 0). Then, with .NET Byte-
code Instrumentation, we automatically generate an instrumented SUT, where a set of  
probes is injected, as discussed in Sect. 4 (see Step 1). From the core side, at the begin-
ning of the search, API Parsing (see Step 2) would parse the API schema in order to iden-
tify what endpoints are available (referred to as Action) and what data could be manipulated  
(referred to as Genes). Then, with such Actions and Genes, the search will produce a test 
(i.e., a sequence of requests with manipulated inputs) with an applicable search operator 
(e.g., the mutator in MIO). Next, the Fitness Function would execute the test on the SUT  
(see Step 4) and collect information on the targets achieved by this execution. The 
achieved targets  information (such as class coverage, line coverage, statement coverage 
(Sect. 4.2), and branch coverage (Sect. 4.3)) are collected at runtime on the driver side, 
based on SBST Heuristics with probes injected into the SUT (see Step 5). Such runtime 
coverage information allows Fitness Function to evaluate a test, e.g., with our white-box 
heuristics, we could know that x=50 is heuristically better than x=100 for covering the 
branch if(x==42). A test with x=50 would have a higher chance to be evolved by the 
search for optimizing that branch target. During the search, Steps 3, 4, and 5 would be 
performed iteratively within the specified search budget, and, at the end, the best tests will 
be outputted with a specified format, i.e., C# in our case (see Step 6).

5 � Empirical study

5.1 � Research questions

To assess our technique, we carried out an empirical study to answer the following research 
questions: 

RQ1:	� Does our approach enable effective white-box SBST heuristics to guide the search 
for fuzzing .NET/C# RESTful APIs?

RQ2:	� What type of constraints can be solved? And which ones cannot?
RQ3:	� What is the impact of applying time as stopping criterion on the performance of 

the approach?

5.2 � Experiment setup

Our novel technique enables the use of white-box SBST heuristics for testing.NET 
programs. To evaluate it, we integrated our technique into EvoMaster (denoted as 
EvoMaster.NET  discussed in Sect.  4.4) and conducted our experiments with three 
.NET REST APIs, i.e., C# REST Numerical Case Study (cs-rest-ncs), C# REST String 
Case Study (cs-rest-scs) and Menu API (menu-api). The first two case studies were 
initially designed for studying unit testing approaches on solving numerical (Arcuri  
& Briand,  2011) and string (Alshraideh & Bottaci,  2006) problems. These two have 
been re-implemented as RESTful APIs in various programming languages (e.g., Java 
and JavaScript) to evaluate white-box test generation problems (Arcuri,  2019; Arcuri &  
Galeotti, 2021; Zhang & Arcuri, 2021). Here, we re-implemented them with C# and made 
them accessible via a REST API. The latter case study, i.e., menu-api, is one of the backend 
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services of the popular Restaurant-App, which is an existing open-source project on 
GitHub2 (with currently more than 500 stars). Unlike the two other case studies, menu-api 
deals with a PostgreSQL database. Table 3 shows the statistics on these APIs. To ease the 
replication of this study, all these APIs are included in the EMB repository (EvoMaster 
Benchmark (EMB), 2022).

The APIs cs-rest-ncs and cs-rest-scs were chosen in this study to make sure that our 
SBST heuristics for .NET do work properly for numeric and string constraints. As previous 
results for the JVM show good results for SBST techniques on these APIs (e.g., Arcuri & 
Galeotti, 2021), we should expect the same good results for .NET if our techniques work as 
intended. To show the application of our techniques on actual RESTful APIs, we searched 
GitHub for .NET RESTful APIs, prioritizing based on popularity (represented with num-
ber of stars). Unfortunately, although C#/.NET is widely popular in industry, for historical 
reasons (e.g., due to close-source tooling and tights to the Windows platform), it is less so 
among open-source projects (although in the recent years, things have started to change). 
Finding suitable APIs among open-source projects turned out to be rather challenging. The 
API menu-api was the first one that we found that met our criteria.

As discussed in Sect. 3, to the best of our knowledge, there is no existing SBST tech-
nique for white-box testing of .NET programs. Thus, to evaluate the effectiveness of our 
approach, we performed a comparison between two algorithms developed in EvoMaster, 
i.e., MIO and random, regarding their performances achieved by generated tests. MIO is 
the default algorithm employed with SBST heuristics in EvoMaster for test generations, 
while random is just a naive random search, used as baseline. Note that the random algo-
rithm could be regarded as gray-box testing since it still tracks tests based on what tar-
gets are covered (e.g., line coverage) and outputs the best of them at the end. We do not 
compare with other black-box fuzzers in this paper, as black-box EvoMaster (which just 
does a random search) already gives the best results in existing tool comparisons (Kim 
et al., 2022; Zhang & Arcuri, 2022).

In the context of software testing, we used four criteria to assess the performance of 
the techniques, i.e., target coverage (#Targets), line coverage (%Lines), branch coverage 
(%Branches), and detected faults (#Faults). #Targets is the aggregated criterion which 
considers all coverage metrics that EvoMaster optimizes for (e.g., including coverage of 
HTTP status codes per endpoint). With our instrumentation, we enable class coverage, 
line coverage, statement coverage, and branch coverage as parts of the #Targets to be opti-
mized. Regarding %Lines and %Branches, they are widely applied metrics to assess test-
ing approaches in practice. Faults are detected based on returned 500 HTTP status code 
and on mismatches in the responses based on the API schemas. Regarding parameter set-
tings, in the first set of experiments, the search budget for the two algorithms is assigned 
as 100,000 HTTP calls, which is a commonly used setting by existing research work with 

Table 3   Statistics on the used 
APIs, including the number 
of lines of code (#LOCs) and 
number of REST endpoints 
(#Endpoints)

Name #LOCs #Endpoints

cs-rest-ncs 809 6
cs-rest-scs 759 11
menu-api 2706 12

2  https://​github.​com/​chayx​ana/​Resta​urant-​App

https://github.com/chayxana/Restaurant-App
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EvoMaster (Arcuri, 2019; Arcuri & Galeotti, 2021; Zhang & Arcuri, 2021). In the second 
set of experiments, we used 1 h as stopping criterion. For the other parameters (e.g., F and 
P
r
 ), we apply their default values as EvoMaster. Considering randomness inherited from 

search algorithms, we repeated our experiments 10 times for MIO and random algorithms 
on the three case studies, by following common guidelines in the literature (Arcuri &  
Briand, 2014). The experiment was executed on a DELL laptop with the following speci-
fications: Processor 11th Gen Intel(R) Core(TM) i9-11950 H @2.60GHz 2.61 GHz; RAM 
32 GB; Operating System 64-bit Windows 10.

5.3 � Experiment results

5.3.1 � Results for RQ1

To answer RQ1, Table 4 presents average coverage results achieved by MIO and random 
with #Targets, %Lines, %Branches, and #Faults. Based on the average results, MIO con-
sistently achieves the best for both numeric and string problems on all the four metrics. In 
the table, we also performed a statistical analysis to compare MIO and random with four 
metrics using Mann–Whitney-Wilcoxon U-tests (p-value) and Vargha-Delaney effect sizes 
( Â12 ). In the table, the value in bold indicates that MIO is significantly better, i.e., p-value 
< 0.05 (significance level) and Â12 > 0.5 . Considering the results shown in the Table 4 for 
cs-rest-ncs and cs-rest-scs, MIO significantly outperforms random for all metrics, with 
high effect sizes and low p-values on the case studies. For menu-api, there is no significant 
difference between two algorithms.

Figure 3 reports plot-lines displaying changes on the number of covered targets achieved 
by MIO and random throughout the search, collected at different time intervals.

For cs-rest-ncs and cs-rest-scs, MIO shows a clear advantage over random throughout 
the whole search. This further demonstrates the effectiveness of white-box SBST heuristics 
to solve numeric and string problems.

Regarding the number of found faults (i.e.,#Faults), MIO has managed to find one more 
compared to random for cs-rest-ncs. However, no improvement is achieved for cs-rest-scs 
and menu-api. This is understandable for menu-api as MIO did not have any higher cover-
age which reduces the likelihood of detecting more faults. The higher coverage could result 

Table 4   Average and pairwise 
comparison results for MIO and 
random with four metrics, i.e., 
#Targets, %Lines, %Branches, 
and #Faults

SUT Metrics MIO Random Â12
p-value Relative

cs-rest-ncs #Targets 992.1 656.4 1.00 ≤0.001 +51.14%
%Lines 85.5% 55.4% 1.00 ≤0.001 +54.36%
%Branches 76.4% 51.6% 1.00 ≤0.001 +47.93%
#Faults 6.0 5.0 1.00 ≤0.001 +20.00%

cs-rest-scs #Targets 967.8 617.6 1.00 ≤0.001 +56.71%
%Lines 73.6% 57.4% 1.00 ≤0.001 +28.03%
%Branches 32.5% 25.9% 1.00 ≤0.001 +25.33%
#Faults 1.0 1.0 0.50 NaN +0.00%

menu-api #Targets 333.5 333.7 0.43 0.588 –0.06%
%Lines 29.1% 29.1% 0.50 NaN +0.00%
%Branches 1.8% 1.7% 0.55 0.651 +2.70%
#Faults 22.7 23.0 0.35 0.077 –1.30%
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in more detected errors. Regarding cs-rest-scs, since it is an artificial SUT with less com-
plexity compared to menu-api, the one detected fault could be the only existing potential 
fault in the code. Figure 4 shows a generated test case for menu-api that detects an internal 
server error. The error occurs when the client tries to access a specific food item but the 
resulted HTTP status code is 500 which denotes an error on the server side.

Conclusion for RQ1: With results on two of the case studies, our white-box tech-
nique achieved significant higher code coverage over the gray-box random testing in 
the two out of three case studies. This demonstrates the effectiveness of SBST heu-
ristics in guiding white-box testing of numerical and string programs in .NET.

5.3.2 � Results for RQ2

Based on the results in Table 4, MIO achieved 85.5% line coverage on cs-rest-ncs, 73.6% 
line coverage on cs-rest-scs, and 29.1% line coverage on menu-api on average with 10 rep-
etitions. To analyze the performance in detail, we further investigated code coverage by 
executing the best and worst tests on the SUTs using Jetbrains Rider (JetBrains Rider). 
Note that the line coverage reported by EvoMaster instrumentation excludes the coverage 
achieved at boot-time. Therefore, the coverage reported by Rider would be higher than the 
coverage in Table 4.
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Fig. 3   Average covered targets (y-axis) achieved by MIO (blue) and random (red) throughout the search 
(RQ1) at every 5% intervals of the budget spent by the search (x-axis)

Fig. 4   An example of a generated test case which detects a potential fault based on 500 HTTP status code
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Figure 5 shows the code of one test generated for cs-rest-ncs. Here, an asynchronous 
HTTP call is made toward the endpoint /api/triangle/653/653/653. Then, the 
test verifies that the status code of the HTTP request is 200, the body payload is of type 
JSON, and finally the JSON response has a field called result with value equal to 
3. Note that, when a test suite is generated containing several tests, scaffolding code is 
generated as well, like, for example, the one presented in Fig. 6. Here, the API is started, 
reset at each test execution, and shut down once all tests are completed (using the driver 
classes directly, like NcsDriver.EmbeddedEvoMasterController() in this 
case). This is essential to be able to use these kinds of tests for regression testing.

Fig. 5   Example of generated test for cs-rest-ncs 

Fig. 6   Example of generated test suite scaffolding
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Regarding cs-rest-ncs, we found that most of the numerical branches could be solved, 
i.e., the line coverage on NCS.Imp namespace is between 93 (the worst test suite of 10 
repetitions) and 98% (the best test suite of 10 repetitions) on Fisher, Remainder, 
Triangle, Bessj, Expint, and Gammq. By checking the uncovered code, they are 
due to dead-code, e.g., if(n==2) branch of Bessj.BessjFunction(n,x) cannot 
be covered since there is precheck before invoking the method. Then, cs-rest-ncs could be 
regarded as a solved problem.

Regarding cs-rest-scs, the code coverage on SCS.Imp namespace is between 72 (the 
worst) and 86% (the best). In most of cases, MIO is capable of achieving over 73% cov-
erage on Costfuns, DateParse, NotyPevear, Ordered4, Title, Text2Txt, 
Calc, Cookie, Regex, and Pat. By comparing the worst and the best, Ordered4 
shows a large difference on Ordered4 (i.e., 33% by the worst vs. 100% by the best). The 
uncovered code by the worst run is related to int string.Compare(x,y) (e.g., 
string.Compare(z, y, StringComparison.Ordinal)> 0). Since we do 
not have heuristic for this method which returns int, covering such branches would be by 
chance. Further heuristic with replacement method would be needed to better cover such 
branches. Another large difference between the worst and the best is on Pat related to 
length of a string (55% vs. 95%), which does not have any direct string input. Then, in 
order to solve such branches, there might need a larger search budget. This is an experi-
ment that would be conducted in the future. Moreover, both of the worst and the best run 
achieved 73% line coverage on Regex and limited coverage (i.e., 16%) on FileSuf-
fix. For Regex, it is related to predicates using a method System.Text.Regu-
larExpressions.Regex.IsMatch(txt, pattern). The pattern could be 
url or date in this case study. To cover such branch, testability transformations (Arcuri & 
Galeotti,  2021) are required to be implemented in our approach for.NET programs. For 
FileSuffix, there is no code which could be covered after line 3 as below:

The branch target could be solved if there exists at least one “.” in the string file. 
However, we now only enable replacing methods of String which are related to boolean 
predicates (as discussed in Sect.  4.3.2). To effectively have such string separa-
tor, taint analysis and replacement methods are needed to support for the methods, e.g.,  
Split, which have not been handled yet. Thus, without any further handling on these meth-
ods with white-box heuristics, related branches might be not easy to solve by the search 
within the given budget (i.e., 100k HTTP calls). However, those methods could be further  
supported, e.g., by involving string separator of Split as parts of our taint analysis.

Regarding menu-api, there is no difference between the worst and the best. Both achieve 
67% line coverage on Menu.API namespace. In addition, as it is shown in Table 4, no sig-
nificant better results are yielded in any of the metrics by MIO. As we checked in the uncov-
ered code, this is mainly due to lack of supporting databases in our instrumentation heuris-
tics. For JVM white-box testing, EvoMaster supports SQL handling (Arcuri & Galeotti, 
2020) which can calculate heuristics for SQL queries and insert data directly into database. 
However, currently, for this replication study, we did not implement yet such technique in 
our bytecode instrumentation, as it is a complex engineering effort. This is also an area for 
further improvement in the future. Based on above analysis, we can conclude the following:
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Conclusion for RQ2: With a further analysis on code coverage in detail, we found 
that our white-box SBST heuristics are capable of fuzzing .NET/C# REST API, 
i.e., the line coverage achieved by generated tests is between 67 and 98%. However, 
we also identify some limitations due to lack of handling on database which can be 
addressed in future work.

5.3.3 � Results for RQ3

The evaluation conducted to answer the first two research questions used stopping criterion 
100,000 as the maximum number of evaluated actions (i.e., HTTP calls), as each test case 
could have a different number of actions in them (and so the number of fitness evaluations 
would not be a fair metric for comparisons). With the maximum 100,000 HTTP calls as 
stopping criterion, the average execution time per run was 23min. But, the time spent for 
different case studies or configurations could be different.

To investigate impacts of different stopping criterion (i.e., the maximum number of 
HTTP calls vs. time budget), we conducted a further experiment with 1 h time budget as 
stopping criterion. Table  5 contains the results of these new experiments. The obtained 
results do not show any meaningful difference with that of Table 4. It shows that applying 
time as stopping criterion has not made any significant difference.

Table 5   Average and pairwise 
comparison results of run with 
1-h time budget for MIO and 
random with four metrics, i.e., 
#Targets, %Lines, %Branches 
and #Faults

SUT Metrics MIO Random Â12
p-value Relative

cs-rest-ncs #Targets 991.8 656.6 1.00 ≤0.001 +51.05%
%Lines 85.8% 55.5% 1.00 ≤0.001 +54.63%
%Branches 76.1% 51.5% 1.00 ≤0.001 +47.69%
#Faults 6.0 5.0 1.00 ≤0.001 +20.00%

cs-rest-scs #Targets 916.2 661.0 1.00 ≤0.001 +38.61%
%Lines 70.8% 60.7% 1.00 ≤0.001 +16.72%
%Branches 32.0% 27.7% 0.95 ≤0.001 +15.81%
#Faults 1.0 1.0 0.50 NaN +0.00%

menu-api #Targets 333.7 333.6 0.55 0.681 +0.03%
%Lines 29.1% 29.1% 0.50 NaN +0.00%
%Branches 1.7% 1.7% 0.55 0.681 +2.78%
#Faults 23.0 23.0 0.50 NaN +0.00%
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Fig. 7   Average covered targets (y-axis) achieved by MIO (blue) and random (red) throughout the search 
(RQ3) at every 5% intervals of the 1-h time budget spent by the search (x-axis)
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In addition, Fig. 7 shows changes on the number of covered targets achieved by MIO 
and random throughout the experiment with 1-h time budget. Similar to Fig. 3, MIO has 
yielded better results compared to random when applied to cs-rest-ncs and cs-rest-scs. 
However, there is no significant improvement by applying MIO to menu-api as it deals 
with databases which we currently lack supporting them in our instrumentation heuristics.

Conclusion for RQ3: We applied 1-h time budget as stopping criterion for the search 
algorithms, but the outcome did not indicate any significant difference.

6 � Threats to validity

Conclusion validity  This study is in the context of SBST. To consider randomness of the 
search algorithm, our experiment was repeated 10 times for avoiding results obtained by 
chance. With the results, we employed statistical analysis methods, i.e., Mann–Whitney-Wil-
coxon U-tests (p-value) and Vargha-Delaney effect sizes ( Â12 ), for drawing the conclusion.
Internal validity  It is hard to guarantee that there is no bug in our implementation. How-
ever, we have made our implementation and case studies available online (i.e., on GitHub 
and Zenodo) that allows anyone to review and replicate this study.

External validity  This study was conducted with two artificial .NET REST APIs and one 
open-source .NET API. To better generalize our results, there is a need to involve more 
case studies. However, in the context of REST API testing, there is only few open-source 
projects that are available. This makes difficult to find more case studies when conduct-
ing this kind of experiments. At any rate, our results clearly show the need to handle SQL 
databases before expanding such case study, but it is a major engineering and research 
endeavor. Our techniques could be used also in other contexts, like, for example, unit test 
generation (e.g., EvoSuite for Java (Fraser & Arcuri, 2011)). But, without empirical valida-
tion, we cannot be sure they would be effective in those contexts as well.

7 � Conclusions

.NET/C# is one of the most popular programming languages, widely used in industry for 
building cloud-based and internet-connected applications. However, to the best of our 
knowledge, there does not exist any SBST technique in the literature for automating white-
box testing of .NET/C# programs.

In this paper, we developed a .NET bytecode instrumentation to apply existing white-
box SBST heuristics based on branch distance. With such techniques, we could enable 
runtime coverage collection and provide effective guidance to search for testing of C# 
applications, replicating existing SBST success stories for Java and JavaScript program-
ming languages.

We integrated our novel techniques as an extension to the open-source tool EvoMas-
ter. We conducted experiments with three .NET RESTful APIs. The results yielded by 
two of these experiments show that our approach achieves significantly better performance 
than a gray-box random testing technique. However, based on the results by one of the 
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case studies which handles a database, our approach does not perform better than random 
testing. In addition, with a further analysis on code coverage achieved by the generated 
tests, we found that our approach is quite effective at solving numerical and string related 
branches. It achieves line coverage between 67 (at least) and 98% (at most), among the 10 
repetitions on two of the case studies.

In theory, any application that is being converted into CIL code can use the instrumen-
tation component. As it is based on EvoMaster, which is dependent on OpenAPI schema, 
our proposed approach has only been empirically tested for REST APIs. It is difficult to 
determine right now without adequate empirical information how it could perform on other 
types of applications. Our solution does not directly advance black-box testing; instead, it 
only concentrates on white-box testing. The ability to produce test cases in C#, if neces-
sary, for black-box testing is still of potential value. However, rather than being a scientific 
novelty, that would be more of a technical/usability improvement.

As this is the first work in the literature on the application of white-box SBST for 
.NET/C# applications, more needs to be done (e.g., effective support for databases) to be 
able to scale these techniques to large industrial systems. Another possible future work can 
be to try to improve effectiveness of generating test inputs by the aid of machine learn-
ing techniques for inferring potential relationships among actions and parameters of REST 
APIs. Still, this work provides the important first initial scientific steps toward such direc-
tion. Furthermore, all our code implementation is available on GitHub and Zenodo, which 
can be used as bootstrap for other applications of SBST techniques for .NET applications 
besides web services like RESTful APIs.
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