L))

Check for
updates

Random Testing and Evolutionary Testing for Fuzzing
GraphQL APIs

ASMA BELHADI and MAN ZHANG, Kristiania University College, Norway
ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Norway

The Graph Query Language (GraphQL) is a powerful language for application programming interface (API)
manipulation in web services. It has been recently introduced as an alternative solution for addressing the
limitations of RESTful APIs. This article introduces an automated solution for GraphQL API testing. We
present a full framework for automated API testing, from the schema extraction to test case generation.
In addition, we consider two kinds of testing: white-box and black-box testing. The white-box testing is
performed when the source code of the GraphQL API is available. Our approach is based on evolutionary
search. Test cases are evolved to intelligently explore the solution space while maximizing code coverage
and fault-finding criteria. The black-box testing does not require access to the source code of the GraphQL
APL It is therefore of more general applicability, albeit it has worse performance. In this context, we use
a random search to generate GraphQL data. The proposed framework is implemented and integrated into
the open source EVOMASTER tool. With enabled white-box heuristics (i.e., white-box mode), experiments
on 7 open source GraphQL APIs and three search algorithms show statistically significant improvement of
the evolutionary approach compared to the baseline random search. In addition, experiments on 31 online
GraphQL APIs reveal the ability of the black-box mode to detect real faults.

CCS Concepts: « Software and its engineering — Software verification and validation; Search-based
software engineering;

Additional Key Words and Phrases: GraphQL, EvoMaster, evolutionary algorithms, automated testing, ran-
dom, SBST, SBSE, fuzzing

ACM Reference format:

Asma Belhadi, Man Zhang, and Andrea Arcuri. 2024. Random Testing and Evolutionary Testing for Fuzzing
GraphQL APIs. ACM Trans. Web 18, 1, Article 14 (January 2024), 41 pages.

https://doi.org/10.1145/3609427

1 INTRODUCTION

Web services are quite common in industry, especially in enterprise applications using microser-
vice architectures [63]. They are also becoming more common with the appearing of smart
city technologies, where microservices are largely exploited in Industrial Internet of Things set-
tings [36, 39]. The investigation of automating techniques for generating test cases for web service

This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (EAST project, grant agreement no. 864972).

Authors’ addresses: A. Belhadi and M. Zhang (corresponding author), Kristiania University College, Prinsens Gate 7-9,
0152, Oslo, Norway; emails: {asma.belhadi, man.zhang}@kristiania.no; A. Arcuri, Kristiania University College and Oslo
Metropolitan University, Prinsens Gate 7-9, 0152, Oslo, Norway; email: andrea.arcuri@kristiania.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
1559-1131/2024/01-ART14
https://doi.org/10.1145/3609427

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14

https://orcid.org/0000-0002-7103-2179
https://orcid.org/0000-0003-1204-9322
https://orcid.org/0000-0003-0799-2930
https://doi.org/10.1145/3609427
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3609427
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609427&domain=pdf&date_stamp=2024-01-05

14:2 A. Belhadi et al.

Application Programming Interfaces (APIs) has become a research topic of importance for
practitioners [17].

Due to the high number of possible configurations for the test cases, evolutionary techniques
have been successfully used to address different software testing problems [13, 52]. Common ex-
amples are EvoSuite for unit test generation for Java programs [46], Sapienz for mobile testing [60],
and EvoMAsTER for REST API testing [16].

The Graph Query Language (GraphQL) is a powerful language of web-based data access,
created in 2012 and open sourced by Meta/Facebook in 2015 [8]. It addresses some of the RESTful
API limitations, like the possibility of specifying what to fetch on a graph of interconnected data
with a single query [53, 71]. Different companies have started to provide web APIs using GraphQL,!
such as Facebook, GitHub, Atlassian, and Coursera.

To the best of our knowledge, only three recent approaches in the scientific literature exist that
explore the automated testing for GraphQL APIs, dealing with “deviation testing” [72], “property-
based testing” [55], and “harvesting production queries” [78]. To deal with this gap in the scientific
literature [66], this article presents the first white-box and black-box test generation approach for
automating GraphQL API testing. We developed a full framework for automate GraphQL API
testing, from the schema extraction to the generation of the test cases in executable test suite files
(e.g., using JUnit and Jest). The proposed framework has been implemented as an extension to the
open source EVOMASTER tool [16, 27], and it is freely available online.

The main contributions of this research work are as follows:

(1) We investigate two kinds of testing: white-box and black-box testing. The white-box testing
is performed when the source code of the GraphQL API is provided, whereas the black-box
testing is employed when the source code of the GraphQL APIs is either missing or when
users do not have access to it (e.g., remote services).

(2) We develop an evolutionary-based search for white-box testing. It intelligently explores the
test case space in GraphQL APIs. Different types of genes are created that allow the complete
data representation of the GraphQL schema. The genetic operators are used to explore the
test case space while maximizing metrics such as code coverage and the number of detected
faults. We also adopt Random Search (RS) for black-box testing, where test cases are gen-
erated randomly from GraphQL schema without considering information from the source
code of the GraphQL APIs.

(3) To validate the applicability of our presented framework, an empirical study has been carried
out on 7 GraphQL APIs with source code and 31 online GraphQL APIs. For white-box testing,
we adapted and compared three existing search algorithms for test suite generation: Many
Independent Objective (MIO) [18], Many-Objective Sorting Algorithm (MOSA) [64],
and Whole Test Suite (WTS) [47]. The results show a clear improvement of using the
evolutionary algorithms compared with the RS baseline. Line coverage is improved by 7% on
average (up to 30.8% in one API), and more errors were automatically found in the analyzed
APIs (+71 new errors in total). For black-box testing, the results also reveal the detection of
up to 641 endpoints with errors over 825 endpoints.

This article is an extension of a short poster [35]. In that work [35], we provided an initial
implementation to support a subset of GraphQL, with an empirical study of white-box testing
on two artificial APIs. In this article, we significantly extended such support (e.g., how to deal
with nested function calls) and provided a much larger empirical study, including experiments on
black-box testing as well as comparisons with different search algorithms.

!https://graphql.org/users/

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

https://graphql.org/users/

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:3

1
2 pets {
3 id
4 name
P N) 5 owner {
PETS OWNER 6 id
e Id o Id 7 firstName
* Name « FirstName 8 lastName
* Owner * LastName 9 pets {
* Visits ERNPEES 10 id
b g) i 11 name
12 }
VISITS 13 3}
‘ « TotalCount | 14 visits {
‘ 15 totalCount
16 }
(a) Data graph 17 3
18}
19
(b) GraphQL query

Fig. 1. Example of GraphQL data graph and a query on it.

The article is structured as follows. Section 2 provides background information on GraphQL
APIs, EVOMASTER, and the employed search algorithms. Section 3 discusses related work. Section 4
gives a detailed explanation of the main components of the proposed framework. The details of
our empirical study are presented in Section 5, followed by a discussion of the main findings of our
research work in Section 6. Section 7 discusses the possible threats to validity. Finally, Section 8
concludes the article.

2 BACKGROUND

This section provides important background information to better understand the rest of the
article, particularly regarding GraphQL APIs (Section 2.1), the EVOMASTER tool (Section 2.2), and
the compared search algorithms RS (Section 2.3), WTS (Section 2.4), MOSA (Section 2.5), and MIO
(Section 2.6).

2.1 GraphQlL

GraphQL is a query language and server-side runtime for APIs [8]. Given a set of data represented
with a graph of connected nodes, GraphQL enables to query such graph, specifying for each node
which fields and connections to retrieve (and so recursively on each retrieved connected node).
Figure 1(a) shows a simplified/reduced example of a graph for a pet clinic, whereas Figure 1(b)
shows a GraphQL query on it to retrieve the list of all pets that have been registered in the clinic
with their owners and their total number of visits to the pet clinic.

A GraphQL web service would be typically listening on a TCP socket, expecting GraphQL
queries as part of HTTP requests, on a given HTTP endpoint (typically /graphqgl). However,
GraphQL is not tight to HTTP, and queries could be technically sent via other communication
mechanisms. One advantage here is that a user can fetch all the data they need (and only that) in
a single HTTP call.

A core concept in GraphQL is the schema, which is a collection of types and relationships be-
tween those types. It describes which kind of types and fields on those types a client can request.
GraphQL is a strongly typed language and has its own language to write the schema.

Commonly used types definition in a GraphQL schema are as follows:

(1) Object types: The most frequent elements of a GraphQL schema are object types. They indi-
cate which kind of object (e.g., a node in the graph) you can fetch and what fields it has.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:4 A. Belhadi et al.

(2) Query type: A Query type is a special type in GraphQL that defines entry points (equivalent
to remote procedure calls) for fetching data from the graph. It is the same as an object
type, but its name is always Query. Each field of the Query type describes the name and
return type of a different entry point. Note that a GraphQL server has to define a query
type.

(3) Mutation type: A GraphQL operation can either be a read or a write operation. A Query
type is used to read data, whereas the Mutation type is used to modify data. The Mutation
type follows the same syntactical structure as queries; however, it defines entry points for
writing operations. Note that a GraphQL server may or may not have a mutation type.

(4) Scalar types: Scalar types are primitive types that resolve to concrete data. GraphQL has five
default scalar types: Int, Float, String, Boolean, and ID. Note that GraphQL allows creating
custom scalar types for more specific usage.

(5) Input types: Input types are object types that allow passing complex objects as arguments
to queries and mutations. An input type’s definition is alike to that of an object type, but
it starts with the keyword input instead of type. Note that input types can only have basic
field types (input types or scalar types) and cannot have field arguments.

(6) Enum types: An Enum type is a special scalar type with a restricted set of allowed values
specified in the schema.

(7) Interface types: An Interface type is an abstract type. An interface is composed of a set of
fields held by multiple object types. When an object type implements an interface, it has
to include all of that interface’s fields. Thereby, interfaces enable returning any object type
that implements that interface. Note that we can query an interface schema type for any
fields defined in the interface itself, and we can also query it for fields that are not in the
interface but in the object types implementing the interface.

(8) Union types: Like interface types, the union type belongs to the GraphQL abstract types. It
allows to define a schema type that belongs to multiple types. In its definition, a union type
will determine which object types are included. In this case, the schema field can return any
object type that is described by the union. Note that all the union’s included types should
be object types (e.g., not Input types).

(9) Non-nullable type: All types in GraphQL are nullable by default—that is, the server can
return a null value for all the previous types. To override this default and specify that null
is not a valid response, an exclamation mark (!) following the type is added indicating
that this field is required. The Non-Null type can also be used in arguments. Note that
in queries, a field is always optional—that is, one can skip a non-nullable field and the
query would be still valid. However, if a field is required (declared as non-nullable), the
server must never return the null value if the query fetches such field. With regard to input
arguments, by default they are optional. However, if a type is declared as non-null, besides
not taking the value null, it also does not accept omission (i.e., the input argument must
be present).

The following is a fragment of a GraphQL schema extracted from one of the SUTs used in our
empirical study in Section 5 (i.e., petclinic [10]). The schema describes the entry point pets that
returns a list of all pets that have been registered in the pet clinic. It is defined as a non-nullable
object array type named Pet. The object type Pet has as a field a non-nullable integer scalar type
that represents the id of the pet. It also defines a non-nullable object type Owner that implements
an interface named Person. The field VisitConnection is an object type specifying all the visits
to the pet clinic of this pet. It has an non-nullable integer field totalCount that reports the total
number of visits for this pet.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:5

type Query {
pets: [Pet!]!
3

id: Int!
name: String!

1
2
3
4
5 type Pet {
6
7
8 owner: Owner!

9 visits: VisitConnection!
10 3}

11

12 type Owner implements Person {
13 id: Int!

14 firstName: String!

15 lastName: String!

16 pets: [Pet!]!

17 3}

18

19 type VisitConnection {

20 totalCount: Int!

21 %}

22

23 interface Person {

24 id: Int!

25 firstName: String!

26 lastName: String!

27 %}

As a response to a query, a GraphQL API will return a JSON object with two fields: data that
contains the result of the query, and errors if there was any error with the query (and in this case,
the data field would not be present). Notice that GraphQL makes no distinction between user
errors (e.g., a wrongly formatted query or an input does not satisfy a business logic constraint)
and server errors (e.g., internal crash in the business logic of the API, like a null-pointer exception).
However, it might support it in the future.” Furthermore, as GraphQL is independent from HTTP,
a query with errors could still have an HTTP response 200 (i.e., OK), and this is a common behavior
among GraphQL framework implementations.

Another limitation of GraphQL is that currently it has no standardized way to express con-
straints on the fields of the graph (e.g., an integer within a specific numeric range, or a string that
should satisfy a given regular expression). Constraints could be added with “directives,” which are
decorators used to extend the semantics of the schema. But those would be custom and unique for
each different implemented API.

GraphQL has received an increase interest in the research community in the past few years [66].
This includes, for example, performance comparisons with REST [73, 75], tradeoft studies in archi-
tectural design [56, 70], code/schema generation [45, 67], and formal analyses [38, 41].

2.2 EvoMaster

EVOMASTER [16, 27] is an open source tool that aims at system test generation, currently targeting
REST web services [19]. EVOMASTER is a search-based approach that has been integrated with a
set of search algorithms (i.e., MIO [15], MOSA [64], WTS [47], and an RS algorithm) to evolve test
cases. Internally, by default it uses the MIO [15] evolutionary algorithm enhanced with Adaptive
Hypermutation [79], and can handle both black-box [20] and white-box testing [25]. For white-box
testing, it uses established heuristics like the branch distance [15, 19, 59], it employs testability
transformations to smooth the search landscape [25], and can also analyze all interactions with

Zhttps://github.com/graphql/graphql-spec/issues/698

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

https://github.com/graphql/graphql-spec/issues/698

14:6 A. Belhadi et al.

SQL databases to improve the fitness function [24]. For black-box testing, EVOMASTER employs
a random test generation. The tool produces random inputs but still is syntactically valid with
respect to the OpenAPI/Swagger schema of the SUT.

Two different studies [57, 80] compared EvOMASTER with other fuzzers for RESTful APIs, show-
ing that EVOMASTER gives the best results. EVOMASTER is open source, hosted on GitHub [5], with
each release automatically published on Zenodo for long-term storage. The extension presented
in this article is available to practitioners from EVOMASTER version 1.5.0 [31].

EvoMASTER currently targets REST APIs running on the JVM and Node]S [84] (albeit for black-
box testing, it can be applied on any kind of REST web service), and it outputs test suite files in
the JUnit and Jest format. Each generated test case is composed by one or more HTTP calls, and
SQL data to initialize the database (if any).

When targeting RESTful APIs, EVOMASTER analyzes their schema and creates a chromosome
representation with a rich gene system to represent all possible needed types (from integers and
strings to full JSON objects). The resulting phenotype will represent complete HTTP requests,
where each gene would represent the different decisions that need to be made in these HTTP re-
quests (e.g., query/path parameters in the URLs and body payloads in POST/PUT/PATCH requests).
EvOMASTER evolves test cases based on different metrics, like statement and branch coverage, as
well as coverage of the HTTP status codes for each endpoint in the APL To detect potential faults,
it considers the 500 HTTP status code (i.e., server error) and possible mismatches between the
schema and the concrete responses [61].

2.3 Random Search

RS is a method to generate solution(s) of an optimization problem at random. It is easy to imple-
ment, as it does not need gradient to guide the search or any special heuristics. It simply keeps
sampling new random solutions from the search space, checking if they give better fitness than
the best solutions sampled so far.

EvoMasTER implements RS to produce the tests in the context of test case generation—that is,
randomly sample a sequence of test actions with test data generated randomly according to the
schema of the SUT. Each time a newly sampled test covers a new target, it is stored in an archive. At
the end of the search, RS generates the best set of test cases based on the defined fitness function.

In the context of REST API testing, RS is the default algorithm for the black-box mode of Evo-
MasTER. Regarding the white-box mode of EVOMASTER, the RS can be considered as a gray-box
testing approach as it still employs white-box heuristics to produce the best test cases at the end
of the search (i.e., tests that cover more code are saved in the archive).

Such an approach can be used as a baseline [28] to assess the effectiveness of white-box ap-
proaches [15, 82, 84]—for example, in terms of effectiveness of evolving tests with the white-box
heuristics (e.g., branch distance). In the literature, RS is often used as baseline to evaluate novel
techniques [13]. A novel technique might have a non-trivial computational cost, which could make
it slower and provide worse results than a naive RS (an example is unconstrained combinatorial
testing [22]).

2.4 WTS

WTS was introduced by Fraser and Arcuri [47] for unit test generation of Java classes. The
approach reformulates the test suite generation as a search problem, and employs a Genetic
Algorithm (GA) to solve it, with the main focus originally on maximizing branch coverage in
the context of white-box testing.

With the GA, an individual in a population is a test suite that is composed of a set of test cases.
The search starts with a random population. At each iteration, a new generation (i.e., Z) is evolved,

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:7

with a subset (e.g., 10%) composed of the best individuals from the current population (known as
elitism). Then, two individuals are selected based on the rank selection from the population as par-
ents for the next evolution (i.e., parents P; and P;). The two parents will be modified by crossover
with a given probability and mutation to generate two offspring (i.e., offspring Q; and Q). The
modification performed by crossover is at the test suite level, whereas the mutation can modify
the test cases (like changing test data) or test suite (like removing or inserting new tests). The four
individuals (i.e., P, P2, Q1, and O,) will be evaluated by the fitness function, which calculates the
sum of all the heuristics/optimization targets by the test suite as a single objective [68]. Based on
the calculated fitness and constraints (e.g., maximum number of test cases), the best individuals
from these four will be added into the new generation (i.e., Z). Like in a GA, this process is repeated
until the new population Z is full (i.e., it reaches its maximum size). Then, a new generation is cre-
ated following the same process, and so on. The search will terminate once the specified coverage
criterion is satisfied or the specified search budget is used up, then produces the best test suite
evolved so far in the final generation. WTS is further extended by using an archive to store the
best tests [69]. More details on WTS can be found in other works [47, 68, 69].

2.5 MOSA

MOSA was introduced by Panichella et al. [64]. Unlike the single objective handled by WTS, MOSA
reformulates the test generation as many objectives. MOSA is also a white-box testing approach—
that is, each coverage target (e.g., branch and line) is defined as an objective to optimize. An in-
dividual in MOSA is a test and not a test suite as in WTS. In MOSA, the population is composed
of tests for an objective. Once the objective is achieved by a test, the test will be added into an
archive that tracks the best tests during the search, and the objective will also not be involved in
the fitness function in the following optimization steps.

MOSA is inspired by Non-Dominated Sorting Genetic Algorithm IT (NSGA-II) [40], which
is a widely applied algorithm in the scientific literature. To better tackle the test case generation
problem and make the search focus on uncovered targets, MOSA defines a preference criterion
and a new rank algorithm based on such a criterion (i.e., preference sorting). Similar to NSGA-
II, MOSA starts with a random population. At each iteration, crossover and mutation are used to
generate new tests, and selection is used for the next generation based on ranks. In MOSA, the main
difference from NSGA-II is that its selection employs preference sorting, which calculates ranks
with a further consideration of the preference criterion (e.g., test cases for uncovered targets will
be assigned with the best rank to have them survive in the next generation with a higher chance).
The search will terminate based on a specified search budget, and the best tests in the archive will
be outputted at the end.

2.6 MIO

MIO is the default algorithm in EVOMASTER, introduced by Arcuri [15]. It is a genetic-based evolu-
tionary algorithm inspired by the (1+1) evolutionary algorithm [44], designed specifically for han-
dling system test case generation. Here, we briefly discuss how it works, but for the full details of
MIO we refer to the work of Arcuri [15]. MIO is a multi-population algorithm with one population
for each testing target. Similarly to MOSA, MIO evolves individuals that are test cases and outputs
test suites. MIO has been employed for testing REST APIs [19, 84, 86] and RPC-based APIs [82].
At the beginning of the search, one single population is randomly initialized, based on the chro-
mosome templates constructed from the schema. For testing RESTful APIs, several kinds of testing
targets are taken into account, such as statements coverage in the SUT, branch coverage, and re-
turned HTTP status codes. Next, at each step, MIO either samples a new test at random or selects
one existing test from one population that includes yet to be covered targets, and mutates such

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:8 A. Belhadi et al.

a test. Different strategies are used to select which population to sample from. Individuals are
manipulated through only one operator, which is the mutation operator (i.e., no crossover). Two
types of mutation are applied: either a structure mutation or an internal mutation. A test case is
composed by one or more “actions” (i.e., an HTTP call in the case of testing of web services). In
contrast to the internal mutation, which affects only the values of the genes in the actions, such
as flipping the value of a Boolean gene from True to False, the structure mutation acts on the
structure itself, such as adding and removing actions (e.g., HTTP calls). Each time a new test is
sampled/mutated, its fitness is calculated. If it achieves any improvement on any target (regardless
of the population it was sampled from), it will be saved in the corresponding populations (and the
worst individuals in such populations are deleted). In this context, if a target is covered by a test, it
is saved in an archive, the corresponding population is shrunk to one single individual, and it will
never expand again nor be used for sampling. If new targets are reached (but not fully covered)
during the evaluation of a test, a new population is created for each such newly discovered target.
At the end of the search, MIO does output a test suite (i.e., a set of test cases) based on the best
tests in the archive for each testing target.

3 RELATED WORK
3.1 Testing of GraphQL APIs

Automated testing of GraphQL APIs is a topic that has been practically neglected in the research
literature [66]. To the best of our knowledge, so far only three approaches have been investigated
regarding the automated testing of GraphQL APIs [55, 72, 78] (besides the poster version of this
extended work [35]).

Vargas et al. [72] proposed a technique called deviation testing. It consists of three steps. In the
first step, an already existing test case is taken as input. This test constitutes a base to seed and
compares the newly generated tests. The second step is the test case variation, where variations
of the initial seeded test case are generated using deviation rules (where a deviation consists of a
small modification). Four types of deviation rules are defined: (1) field deviation consists of adding
and deleting the selection of fields in the original query, (2) not null deviation consists of replacing
a declared non-null argument with null, (3) type deviation consists of changing an argument type
by another type, and (4) empty fields deviation consists of deleting all fields and sub-fields of the
original query. The third step is the test case execution, where the input test and its variations are
executed. The last step consists of comparing the results between the input test and its variation
(e.g., wrong inputs should lead to a response containing an error message).

Karlsson et al. [55] proposed a black-box property based testing method. The method consists of
the following steps. First, all specifications of the types and their relations are extracted from the
schema. Data is generated at random according to the schema, with customized “data generators”
provided by the user. In addition, the authors suggest two strategies to use as automated oracles:
the first one aims to check the returned HTTP status codes, and the second one verifies that the
resulting data returned conforms to the given schema.

Zetterlund et al. [78] presented a technique to capture the HTTP calls done by users in produc-
tion (e.g., when interacting with web frontend) and generate test cases for the GraphQL API in the
backend. These generated tests can then be used for regression testing.

Our novel solution does not require any pre-existing test case (like in the work of Vargas
et al. [72]), nor does it require the user to write customized input generators (like in the work
of Karlsson et al. [55]), nor does it require users to interact with a frontend [78]. Due to those lim-
itations, no empirical comparisons with those techniques could be performed on our case study.
Our framework benefits from the EVOMASTER tool, which is able to do advance white-box testing

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:9

(e.g., using testability transformations [25] and SQL interaction analysis [24]), and also is able to
perform black-box testing when source code of the SUT is not available. In this work, we provide
a complete testing pipeline and an intelligent genetic-based exploration for the possible test case
configurations.

3.2 Testing of REST APlIs

In recent years, there has been an increasing interest in the research community about the automa-
tion of testing web services, where RESTful APIs are the currently the most common type [50].

For example, Godefroid et al. [49] introduced differential regression testing for avoiding break-
ing changes in REST APIs. They analyzed both types of regressions in APIs: regression in the
contract rules between the client and the server, and regression in the server itself, the different
changes in the server versions. The differential testing is performed to automatically identify ab-
normal behavior in both kinds of regressions. It consists of comparing different versions of the
server and also the different versions of the contracts with the client.

Viglianisi et al. [74] proposed an approach for automatically generating black-box test cases for
REST APIs. It takes as input the Swagger/OpenAPI specification of the API and consists of three
modules. It first analyzes the schema and computes its corresponding operation dependency graph,
which is a graph that represents the data dependencies. It then automatically generates test cases
of the REST API by reading both the graph created in the previous step and the schema to test the
nominal scenarios. It finally applies mutation operators to the nominal tests which violate data
constraints for testing error scenarios. To decide whether a test is successful or not, two oracles
are established based on the returned status codes and on the compliance with the schema.

Martin-Lopez et al. [62] presented a new formulation of the automated test API problem using
the CSP (Constraint Satisfaction Problem). The IDL (Inter-parameter Dependency Language) is
first introduced to formally describe the different relations among input parameters of the REST
API. Then, the CSP is used to automatically analyze the IDL specification. Finally, a catalogue of
analysis is constructed to extract helpful information such as checking whether an API call is valid
or not

So far, all approaches presented in the literature for testing RESTful APIs are black-box [50]. Evo-
MASTER (Section 2.2) is currently the only tool that can do both white-box and black-box testing.
It uses evolutionary techniques for white-box testing and RS for black-box testing. Furthermore,
recent comparisons of tools [58, 80, 81] show that EVOMASTER gives the best results on the selected
APIs used in those tool comparisons.

Note that empirical comparisons with existing fuzzers targeting RESTful APIs would not be
particularly useful, as they would fail to generate any test case for GraphQL APIs (e.g., as the API
schema definitions are different). Likewise, comparing with other testing tools targeting different
domains such as mobile apps (e.g., Sapienz [60]) or data parsers (e.g., AFL [1]) would provide no
useful information either.

4 GRAPHQL TEST GENERATION

This section presents our novel proposed framework for automated test case generation of
GraphQL APIs, built on top of the EVOMASTER tool. As sketched in Figure 2, the proposed frame-
work targets both white-box and black-box testing. The white-box testing is performed when the
information related to the schema is provided and has access to source code of the GraphQL APL
In the case of only having the schema, black-box testing is used instead.

Algorithm 1 presents the pseudo-code of the GraphQL test generation algorithm. The input data
is the entry point to the GraphQL API (e.g., a URL). In the case of white-box testing, we also provide
the source code as input. The results will be a set of generated tests (e.g., in JUnit or Jest format).

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:10 A. Belhadi et al.

Statement & Branches Coverage,
Returned HTTP Status Code

Execute Self-Contained Test Suite
Case File

Extract

COde Souree m}
No

Code Source

Autatio

Final
Solution @ © O Oo
o

Optimum

Solution Space

Fig. 2. Framework for GraphQL test generation.

ALGORITHM 1: GraphQL Test Generation Algorithm

Input: G = {N, N, ..., N, }: the set of n data in the GraphQL APL
Output: Tests: the set of generated tests.
Schema « Extraction(G)
if code source in G then
Gene « ChromosomeTemplateConstruction(Schema)
TestCase « Create(Gene)
Tests « EvolutionaryAlgorithm(TestCase)
else
Tests < Random(Schema)
end if
: return Tests

h A A R o

_
_- O

The process starts by extracting the schema from the graph data in line 3. In the case of having
the source code of the GraphQL API, the white-box solution is performed. It first determines the
corresponding genes, creates the chromosome template, and applies an evolutionary algorithm
process to generate the tests (from line 4 to line 7). In the case of missing the source code of
the GraphQL API, the black-box solution is established by generating random tests based on the
schema, illustrated in line 9. The algorithm returns the set of generated tests as shown in line 11.
In the following, both kinds of testing are explained in more detail.

4.1 White-Box Testing

When carrying out scientific research to apply evolutionary computation to solve a new engineer-
ing or scientific problem for the first time in the literature, many decisions need to be made and
empirically evaluated. This includes defining the problem representation for the evolving individ-
uals (Section 4.3), the search operators (Section 4.4), the fitness function (Section 4.5), and the final
output format (Section 4.6). All these decisions based on scientific research can have major impact
on the final results. Therefore, proper empirical evaluations with a large case study are needed.
Our process for automated search-based testing for GraphQL APIs starts by extracting the
schema from the tested API (Section 4.2). The chromosome template is then constructed from
the schema. Test cases are represented by a sequence of HTTP requests, instantiated from the
chromosome template (Section 4.3). The test cases are evolved using a search algorithm, where
each test case will contain genes representing how to build the GraphQL queries based on the

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:11

given schema. The evolutionary search is performed by applying mutation operators to evolve

the test cases—for example, one to change the queries/mutations in each HTTP calls and the

other to add/remove HTTP calls in a test case (Section 4.4). Test cases are rewarded based on

their achieved code coverage and found faults (Section 4.5). From the final evolved solution, a

self-contained test suite file (e.g., in JUnit format) is generated as output of the search (Section 4.6).
In the following, we describe the main components of the white-box testing in more detail.

4.2 API Schema

At a high level, a GraphQL API can be seen a server opening a TCP socket, processing HTTP
requests, with body payloads written in a specific format (i.e., using the GraphQL language) for
the different functionalities provided by the API. Sending random bytes on such TCP connection
would unlikely lead to any meaningful message that would be immediately discarded by the APL
Likewise, sending properly formatted GraphQL messages would result only in errors if those mes-
sages are not based on the actual entry points and expected input types of the APL

To send meaningful GraphQL messages that would execute the business logic of the API, such
messages must be based on the schema of the API (recall Section 2.1). Each GraphQL API must
have a schema definition, which can be retrieved online from the API itself (unless such option is
disabled due to security reasons).

To fetch the whole schema from a GraphQL API, an introspective query is used. Given an entry
point to the GraphQL API (e.g., typically a /graphql HTTP endpoint), GraphQL enables a standard
way to fetch a schema description of the API itself. The schema specifies all the information about
the available operation types, such as queries, mutations, and all available data types on each of
them. As a result, the GraphQL schema is returned in JSON format.

Let us consider the following example of the introspective query in which we query one of the
SUTs used in our empirical study in Section 5 (i.e., petclinic [10]) to obtain the resources that are
available.

1 query IntrospectionQuery {

2 __schema {

3 queryType {

4 name

5 3

6 mutationType {
7 name

8 3

9 types {

10 kind

1 name

12 fields {

13 name

14 args {

15 name

16 type {
17 kind
18 name
19 of Type {
20 kind
21 name
22 3}

23 3}

24 3}

25 type {

26 kind

27 name

28 of Type {
29 kind

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:12 A. Belhadi et al.

30 name
31 }

32 3

33 b

34 3}

35 3

36 3}

In this introspective query, we query the field __schema, which provides all information about
the schema of a GraphQL service. It is considered as a meta-field used by GraphQL for the intro-
spection system. Such field is accessible from the root type of a query operation, and its type is
defined next.

1 type __Schema {

2 queryType: __Type!

3 mutationType: __Type

4 types: [__Type!]!
51}

By querying the fields queryType and mutationType, the GraphQL petclinic server will return
all queries and mutations available from the schema. In this case, both query and mutation opera-
tions are available.

The field named types (of kind __Type) is at the core of the introspection system. It represents
all types in the system: both named types (e.g., OBJECT kind) and type modifiers (e.g., NON_NULL
kind). A reduced subset (due to its length) of the returned result of the introspective query for this
example is shown next.

1
2 "data": {

3 "__schema": {

4 "queryType": {

5 "name": "Query"

6 3,

7 "mutationType": {

8 "name": "Mutation"

9 },

10 "types": [

1 {

12 "kind": "OBJECT",

13 "name": "Query",

14 "fields": [

15 {

16 "name": "owner",

17 "args": [

18 {

19 "name": "id",

20 "type": {

21 "kind": "NON_NULL",
22 "name": null,

23 "ofType": {

24 "kind": "SCALAR",
25 "name": "Int"
26 b

27 3}

28 3}

29 15

30 "type": {

31 "kind": "NON_NULL",

32 "name": null,

33 "ofType": {

34 "kind": "OBJECT",
35 "name": "Owner"

36 3}

37 3,

38 "isDeprecated": false,

39 "deprecationReason": null

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:13

40 3
41 1

42)

43]

44 }

45 }

46 3

Here, the Query type is an object that has a field called owner. The owner field takes as argument
a non-nullable integer named id and returns an object named Owner.

Like the software of the API itself, the GraphQL schemas can also have faults. This, for example,
is a common issue among RESTful APIs [61]. As the schema is the main source of information on
how to prepare syntactically valid requests, issues in the schema can have negative impacts on the
performance of the fuzzing sessions [80].

Most GraphQL frameworks (e.g., Apollo [3]) do validate the syntax of the API endpoints based
on the defined schema—for example, to check the presence and format of each endpoint (i.e., query
and mutation methods). In case of errors and mismatches, they would return a response with an
error message at each incoming request or simply crash the server at start-up time. This kind
of issue can be quickly identified and corrected. However, a schema could be underspecified. For
example, the API could have implementations of endpoints that are not declared in the schema.
But it would not be possible to call any of these endpoints, as the GraphQL frameworks running
the API would not be aware of those endpoints. Therefore, even in these cases, such issues would
be easily detected by users without the need of using any fuzzer.

This means that for GraphQL APIs, in contrast to RESTful APIs (where typically the framework
servers do not validate the schemas), problems in the schemas do not seem to be as serious for test-
ing purposes. However, more research will be needed to evaluate this potential issue in more detail.

4.3 Problem Representation

Once the schema of the tested API is fetched, this latter is then parsed in our EVOMASTER ex-
tension and used to create a set of action templates, one for each query and mutation operation.
Each action will contain information on the fields related to input arguments (if any is present)
and return values. A chromosome template is defined for each action, which is composed of non-
mutable information (e.g., the field’s names) and a set of mutable genes. In this context, each gene
characterizes either an argument or a return value in the GraphQL query/mutation.

For objects as return values, a query/mutation must specify which fields should be returned (at
least one must be selected), and so on recursively if any of the selected fields are objects as well.
To represent the fact that a field is always optional for queries, a return gene is modeled by an
object gene where all its fields are optional. However, we had to extend the mutation operator
in EVOMASTER with a post-processing phase, to guarantee that at least one field gene is selected
during the search. In other words, if after a mutation of a gene, which represents a returned object
value in the GraphQL query/mutation, all fields are deselected, then the post-processing will force
the selection of one of them (and so on recursively if the selected field is an object itself). However,
if a return value is a primitive type, then there is no need to create any gene for it, as there is no
selection to make. Furthermore, similar to functions calls, fields in the returned value can have
input arguments themselves. When a returned value for a parent field is executed, both input
arguments and the returned value are recursively selected to generate a child field value until it
produces a scalar value whether in input arguments or in returned values. To model those function
calls, we introduced a new special type of gene called Tuple, discussed next.

To fully represent what is available from the GraphQL specification, the following kinds of gene
types from EvOMASTER have been reused and adapted:

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:14 A. Belhadi et al.

(1) String: This gene contains string variables that are defined by an array of characters. A
minimum length of the string is zero, which represents the empty string. Each string gene
cannot exceed a pre-defined maximum number of characters (e.g., 100).

(2) Enum: This gene represents the enumeration type, where a set of possible values is defined,
and only one value is activated at a given time. The elements in the set can be in different
formats (e.g., enumerations of numbers or enumerations of strings).

(3) Float/Integer/Boolean: These are genes representing variables with simple data types.
Boolean genes represent variables with true or false values. Integer and float genes represent
integer and real-value variables, respectively.

(4) Array: This gene represents a sequence of genes with the same type. This gene has variable
length, where elements can be added and removed throughout the search. To mitigate cre-
ating too large test cases (e.g., with millions of genes), the size of an array gene should not
exceed a given threshold.

(5) Object: This gene defines an object with a specific set of internal fields. Differently from the
array gene, where the elements should be with the same type, an object gene may contain
elements with different types. To do so, this gene is represented by a map, where each key
in the map is determined by the field name in each element in the object.

(6) Optional: This is a gene containing another gene, whose presence in the phenotype is con-
trolled by a Boolean value. This is needed, for example, to represent nullable types in argu-
ments and selection of fields in returned objects.

(7) CycleObject: This special gene is used as a placeholder to avoid infinite cycles, when se-
lecting object fields that are objects themselves, which could be references back to the start-
ing queried object. Once a test case is sampled, its gene tree structure is scanned, and all
CycleObject genes are forced to be excluded from the phenotype (e.g., if inside an Optional
gene, that gets marked as non-selected, and the mutation is prevented to select it; if the
CycleObject is the type for an array gene, such array gets a fixed size of 0, and the muta-
tion operator is prevented from adding new elements in it).

(8) LimitObject: GraphQL schemas are often very large and complex, and the levels of nesting

fields can be potentially huge. We use this special gene as a placeholder when a customized

depth limit is reached. The depth is the number of nesting levels of the object fields.

Tuple: This gene is needed, for example, when representing the inputs of function calls. It

is composed of a list of elements of possible different types, where the last element can be

treated specially. For example, this is the case of function calls when the return type is an
object, on which we need to select what to retrieve (and these selected elements could be
function calls as well, and therefore this is handled recursively).

©

~

To make this discussion more clear, let us consider a small, simplified portion of the schema of

GitLab (one of the SUTs used in our empirical study in Section 5).

1
2
3
4
5
6
7
8

9
10
11
12
13

type Query {
currentUser: UserCore
}
type UserCore{
groups (permissionScope: GroupPermission): GroupConnection
}
type GroupConnection{
nodes: [Group]
}
type Group({
fullName: String!
}

enum GroupPermission{

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:15

Action template:
currentUser

17 Return

| Object gene: UserCore |

Fields

| Optional gene: Tuple gene |

Contain

| Tuple gene: groups |

ArgumWn

’ Optional gene: Enum gene ‘ ‘ Object gene: GroupConnection ‘
Contain —— 17 Fields

Optional gene: Object gene ‘

l— Contain

‘ Object gene: Group

’ Enum gene: permissionScope ‘

—— Fields

‘ Boolean gene: ful 1Name ‘

Fig. 3. A gene representation of a user query.

14 CREATE_PROJECTS
15 TRANSFER_PROJECTS
16 3}

To send the query to the server, the user must follow the preceding representation of the schema.
For instance, to query the field fullName, the user might send the following query.

-~

currentUser {
groups (permissionScope: CREATE_PROJECTS) {
nodes {
fullName
3

[}

© oo N o U A WN =
e

-

This query is syntactically valid, conforming the schema represented previously. But it is not
the only possible query conforming such schema. A user could rather send a permissionScope
with value TRANSFER_PROJECTS, or simply such optional input could be avoided altogether. So, a
genotype representation needs to be able to express all possible queries that are valid for the given
schema. The tree in Figure 3 shows a genotype structure (seen as a tree of genes) for such schema,
using the previously discussed gene system used in our framework. For example, the action rep-
resenting the GraphQL query currentUser has the object gene UserCore, which contains an
optional tuple field groups. When calling currentUser, one needs to specify which fields of
the returned object UserCore to include in the response. In this particular example, there is only
one field called groups. Considering that which field to return is optional, to represent this, each
of these fields is inside an optional gene. If an optional gene is deactivated, none of its internal
genes is used in the phenotype of the test case. The field groups is itself a remote function call. It
is represented with a tuple gene, having an input argument permissionScope and return value
GroupConnection. The argument is represented as an optional gene containing an enum gene
(for the two possible values defined in the schema). The return value GroupConnection is repre-
sented with an object gene. For each field of an object, we need a gene to represent it. A field can

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:16 A. Belhadi et al.

be yet another object, or an array of them, like the case of nodes. So, this process is applied recur-
sively. The non-method/non-object fields are represented with a Boolean gene (to check whether
it will be part of the returned object or not), like the case of fullName. In this simplified example,
the choices that need to be made are, for example, whether the optional genes should be active
or not, the Boolean values of the Boolean genes, and values for the enum genes. The evolutionary
process will make modifications to these values throughout the search. From this genotype, then
the phenotype will represent syntactically valid queries.

For this subset of the schema, the search space of all possible queries is small. However, it would
increase exponentially when dealing with more inputs, particularly for strings.

To fully support the whole specification of GraphQL, there are several special cases that need to
be handled, like the use of interfaces. To deal with GraphQL interfaces, we use an optional object
gene for each type that implements the interface, together with an extra optional object gene
(labeled with BASE) to specify the interface fields themselves. Consider the following portion of
the schema from digitransit (one of the SUTs used in our empirical study in Section 5).

type Query {

.
2 node (id: ID!): Node

3}

4 interface Node{

5 id: ID!

6 3

7 type Trip implements Node({

8 id: ID!

9 tripHeadsign: String

10 3}

11 type TicketType implements Node{
12 id: ID!

13 price: Float

14 3}

Here, the interface Node has two possible implementations: Trip and TicketType. A user can
query different fields based on the concrete types of the returned objects. For example, assume
querying the fields id, tripHeadsign, and price, as described next.

-~

node (id: 3) {
id
. on Trip {
tripHeadsign
3
. on TicketType {
price
3
}

- ® © o N U A WwN =

-

The tree in Figure 4 shows the genotype for this user query containing interfaces, based on
the gene system used in our framework. Here, whether to query the different concrete types of
the interfaces, and their fields, is optional. Indeed, a genotype representation needs to be able to
express all these possible kinds of valid phenotypes.

After defining the possible type of genes supported by the proposed framework, we consider the
solution space, where each solution is a set of test cases. A test case is composed of one or more
HTTP request. To represent an HTTP request, we typically need to deal with its components:
HTTP verb, path and query parameters, body payloads (if any), and headers.

A GraphQL request can be sent via HTTP GET (used only for queries) or HTTP POST methods
with a JSON body (used for queries and mutations). For simplicity, we only use the verb POST for

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:17

Action template:
node

Arguments 7/\ Return

‘ String gene: id ‘ Object gene: Node ‘

/%ﬁ Fields

‘ Optional gene: Object gene ‘ ‘ Optional gene: Object gene ‘ Optional gene: Object gene ‘

Contain Contain | - Contain

‘ Object gene: NodeBase ‘ ‘ Object gene: Trip ‘ Object gene: TicketType ‘

l Field l Field 17 Field

‘ Boolean gene: id ‘ Boolean gene: tripHeadsign ‘ Boolean gene: price ‘

Fig. 4. A gene representation of a user query using GraphQL interfaces.

1 @Test(timeout = 60000)
2 public void test_16() throws Exception {
3

4 given().accept("application/json")

5 .contentType("application/json")

6 .body (" { " +

7 " \"query\": \" { specialties {id,name} } A

8 "y

9 .post(baseUrlofSut + "/graphql")

10 .then()

11 .statusCode (200)

12 .assertThat ()

13 .contentType("application/json")

14 .body("'data'.'specialties'.size()", equalTo(3))

15 .body (" 'data'. 'specialties '[@]. 'name'", containsString("radiology"))

16 .body("'data'.'specialties'[1]. 'name'", containsString("surgery"))

17 .body (" 'data'. 'specialties '[2]. 'name'", containsString("dentistry"))

18

19 given().accept("application/json")

20 .contentType("application/json")

21 .body (" { " +

22 " \"query\": \" { owner (id : 8) {id,lastName, telephone,pets{birthDate, type
{id},visits{totalCount}}} 3O\ o+

23 "y

24 .post(baseUrlofSut + "/graphql")

25 .then()

26 .statusCode (200)

27 .assertThat ()

28 .contentType("application/json")

29 .body("'data'.'owner'.'lastName'", containsString("Escobito"))

30 .body (" 'data'. 'owner'.'telephone'", containsString("6085557683"))

31 .body("'data'.'owner'. ' 'pets'.size()", equalTo(1))

32 .body (" 'data'.'owner'.'pets'[@]. 'birthDate'", containsString("1997/02/24"))

33 .body("'data'.'owner'.'pets'[0]."'visits'. 'totalCount'", numberMatches(0.0))

34}

Fig. 5. Example of generated JUnit test for petclinic.

both queries and mutations. A GraphQL server uses a single URL endpoint (typically /graphql),
where the HTTP requests with the GraphQL queries/mutations will be sent. In the context of
test generation for a GraphQL API, the main decisions to make are on how to create JSON body
payloads to send. The genotype will contain genes (from the set defined previously) to represent
and evolve such JSON objects.

In Figure 5, there is an example of a test case generated automatically by EvOMASTER for the
petclinic AP, outputted in JUnit format. It is composed of two HTTP POST requests. The first call

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:18 A. Belhadi et al.

with a body payload querying for the entry point specialities and the second requesting for
the entry point owner. When a test case is generated and evaluated, we also provide assertions on
the returned responses.

The test cases are generated in a random way, but they are still syntactically valid. For instance,
if we consider the example illustrated in Figure 1(a), the test cases are generated by exploring the
fields of the pets node. For instance, we consider the field “id” an integer represented in 32 bits.
The possible test cases for the field “id” is 2%2. We also explore different combinations of two or
more fields in each node. For instance, considering the same example illustrated in Figure 1(a), the
test cases might be generated from both fields “id” and “name” of the node pets. If we consider the
length of the string is limited to 10, the possible tests cases for the field “name” is 2!%° (assuming
each character is 2 bytes). Therefore, the number of possible test cases by only exploring the fields
“id” and “name” is 232 x 2'%° which results in an immense search space. Therefore, in our imple-
mentation, and to mitigate the combinatorial explosion, we use a threshold to limit the number
of generated test cases that can be evaluated (i.e., we limit the number of test cases we sample
during RS).

4.4 Search Operators

Once a chromosome representation is defined based on the GraphQL schema, test cases are
evolved and evaluated in the same way as done for RESTful APIs in EVOMASTER (recall Sec-
tion 2.2), including testability transformations [25] and SQL database handling [24]. Internally,
the search algorithms in EVOMASTER are implemented in a generic way, independently of
the addressed problem (e.g., REST and GraphQL APIs), and it is only a matter of defining an
appropriate phenotype mapping function (e.g., how to create a valid HT TP request for a GraphQL
API based on the evolved chromosome genotype).

As stated previously, an evolving individual will be a set of actions (i.e., calls to query and
mutation endpoints) on the tested API. Each action is represented with a gene tree template
(e.g., recall examples in Figures 3 and 4), which needs to be instantiated (i.e., set the values of
the genes). As part of the search, there are three main search operators: (1) random sampling,
(2) mutation on the structure of the tests, and (3) mutation on the content of an action. Note
that the term mutation in the context of GraphQL APIs (used to represent an endpoint in the
API that can modify its state) has nothing to do with the term mutation used in the evolutionary
computation literature (used to represent search operators that do small changes in the evolving
individuals).

When sampling a new individual at random (e.g., needed for RS, as well as for evolutionary
algorithms when they need to initialize their first population of individuals to evolve), first there
is the need to choose how many actions K it contains. For example, it can be randomly chosen
between 1 and N (e.g., where N = 10). Given A, the set of possible action templates (one for each
query/mutation endpoint in the API), each of these K actions in the sampled test will be chosen
randomly from A. Then, the content of each gene in such trees is set at random (considering their
types and constraints).

Mutation operators are used to do small changes to an evolving individual. The structure of the
test can be modified by removing an action from the current K (if K > 1) or by adding a new
random action from A (if K < N). This can be applied with a given probability P.

The content of an action a can be modified by selecting any from K, then selecting randomly any
gene from its tree. Given G,, the set of genes in the selected action a, each gene could be mutated
with probability 1/|G,|. The type of mutation depends on the type of the genes. For example,
a numeric gene could have its phenotype value increased or decreased by a certain small delta.
A Boolean gene could be flipped from true to false and vice versa. A string gene could have

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:19

some of its chars modified randomly. And so on (full details can be found in the source code of
EVOMASTER [31]).
Consider the last example in Figure 5, where the mutation operators are applied as shown next.

@Test(timeout = 60000)

1

2 public void test_16() throws Exception {

3 given().accept("application/json")

4 .contentType("application/json")

5 .body (" { " +

6 " \"query\": \" { owner (id : 1) ({id,lastName,pets{birthDate,type{name}}}
FAT T4

7 3y

8 .post(baseUrlofSut + "/graphql")

9 .then()

10 .statusCode (200)

1 .assertThat ()

12 .contentType("application/json")

13 .body (" 'data'. 'owner'.'lastName'", containsString("Franklin"))

14 .body (" 'data'. 'owner'.'pets'.size()", equalTo(1))

15 .body (" 'data'.'owner'. 'pets'[0].'birthDate'", containsString("2010/09/07"))

16 .body (" 'data'. 'owner'.'pets'[0]." 'type'.'name'", containsString("cat"))

17 3}

Here, the test case is shrunk to only one action owner (from the original two). The owner’s
input argument id is mutated to 1 (from the original 8). The action is mutated by dropping the
phenotype of the genes telephone, id, and visits (i.e., their Boolean genes were mutated from
true to false), and it is extended by adding to the phenotype the field name (i.e., its Boolean gene
is mutated from false to true).

4.5 Fitness Function

The fitness function plays a critical role in an evolutionary algorithm, as it specifies which individ-
uals will survive and reproduce. The main goal of our testing is to find faults in the tested API. A
fault cannot manifest if the code in which it lies is not executed. Therefore, an indirect approach to
try to find more faults is to maximize the code coverage achieved by the generated tests. However,
generating high code coverage tests is a complex task, as the execution flow in the API might de-
pend on complex constraints (e.g., complex predicates in if statements), which could be satisfied
only with very specific inputs.

There is a large body of research literature on the topic of maximizing code coverage for software
testing. In the case of search-based software testing [13], there are common techniques like branch
distance [59] and testability transformations [51]. For the work in this article, we do not define any
new white-box heuristics. We rather rely on the state-of-the-art white-box heuristics for system
test generation provided by EvoMasTER. This includes advanced testability transformations [26],
as well as different types of branch distance heuristics. All evolutionary algorithms compared in
this work use the same fitness function.

Besides testing targets based on the source code (e.g., line, statements, and branches), there
are other metrics of interest for practitioners. For example, for Web APIs using HTTP, covering
different returned HTTP status codes can provide a better coverage of the API For example, you
can make a correct query and receive a 200 status code in an HT TP response. For the same endpoint,
you could send an invalid input (e.g., a number outside a specified range), which could lead the
server to return a 400 status code (user error), although this depends on the server implementation
(some GraphQL servers return 200 even in the case of errors). A request with no authentication
information could return a 401. A request with authentication but no authorization (i.e., no right
permissions) could return a 403. An input that leads to a crash (e.g., an exception thrown in the
business logic of the API) could result in a 500 status code. And so on.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:20 A. Belhadi et al.

For each GraphQL endpoint, we create a different testing target for each returned HTTP sta-
tus code. This enables EVOMASTER to do not discard newly generated tests that cover endpoints
returning different status codes (and thus showing different behaviors of the API).

When evaluating the fitness of an evolved test, besides considering testing targets related to code
coverage and HT TP status coverage (for each different query/mutation operation), we also create
new testing targets based on the returned responses. As discussed in Section 2.1, each response
could contain either a data field or an errors field. For each query and mutation in the GraphQL
schema, we consider two additional testing targets for those two possible outcomes. Note that a
trivial way to get a response with errors is to send a syntactically invalid query. As such evolved
test cases would be of little use, we explicitly avoid generating such test cases (unless there are
faults in EVOMASTER).

As automated oracles to detect faults once a test is executed, we consider two properties: re-
turned HTTP status code 500 and responses with errors fields. The former is a common oracle
used in fuzzing HTTP-based APIs (e.g., [58, 61]). However, it is important to keep in mind that not
all 500 responses are necessarily related to software faults. For example, an API could return a 500
when unable to communicate with its database because it is down—not reachable for some techni-
cal reasons. As errors fields might be due to user errors besides server errors, the users would still
need to check those generated tests to see if actual faults are detected.

As a given query/mutation might fail for different reasons, we keep track of the last executed
line in the business logic of the SUT. We further create a separated testing target for each combi-
nation of errored query/mutation and last executed line. Having explicit testing targets for those
cases enables the search algorithms to keep those test cases, albeit the fitness function would have
(currently) no gradient to lead to generate such test cases in the first place.

4.6 Output Test Suite

Depending on how long the search is left running, millions of test cases could be evolved and
evaluated. Huge test suites would be of little use for practitioners, as they are not manageable. For
this reason, at the end of the search, only a minimized test suite is given as output to the user. Each
single test case contributes to the overall fitness of the output test suite (e.g., code and HTTP status
coverage, detected faults). In particular, in EVOMASTER, for each search algorithm we employ an
archive, which is updated each time a new test case covers a new testing targets. The output test
suites is based on what is stored in such archive during the search.

As the final output, we generate executable test cases in common formats such as JUnit (for
Java/Kotlin) and Jest (for JavaScript), as shown in Figure 5. Each test case will have assertions on the
obtained responses—that is, they capture the current behavior of the APIL. If, for example, a JSON
object is returned, assertions will be recursively created for each of its fields. These assertions do
not directly detect faults, as without a formal specification we cannot know what are the expected
outputs for the used inputs. However, these assertions can be used for regression testing (i.e., to
check if the behavior of the API changes with new updates). Furthermore, as the output test suites
are minimized, these assertions could be useful as well to point out possible faults if the users
manually review the generated tests.

4.7 Black-Box Testing

We use black-box testing when we do not have any knowledge about the source code of the
GraphQL API or it is not available for instrumentation (e.g., to calculate the search-based heuristics
like the branch distance). It is not straightforward to get a high coverage value for such tests [20],
as little information from the SUT can be exploited. However, in some cases (e.g., when testing
remote services), a black-box approach might be the only option available for automated testing.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:21

In addition, as no code analysis is performed, black-box testing can be applied regardless of the
programming language the API is written in, such as Python and Ruby. However, currently, for
white-box testing with EVOMASTER we are limited to languages running on the JVM (e.g., Java and
Kotlin) and Node]JS (e.g., JavaScript and TypeScript).

We use the RS algorithm developed in EvOMASTER. The main idea behind RS is performing
a randomized process in generating the test cases, where no code-based fitness function is em-
ployed. The reason for not using search-based heuristics is due to the lack of the source code of
the GraphQL APIs.

From a practical standpoint, our black-box testing is the same as RS but without code-based
heuristics. Like for white-box testing, we start by fetching the schema (Section 4.2) and create a
problem representation (Section 4.3) from which new test cases are randomly sampled (Section 4.4).
No evolutionary mutation operator is applied here. We use the same fitness function to reward
found faults (Section 4.5) but without any code metrics. At the end of the search, the final test
suite is minimized, to contain only the test cases that contribute to the fitness (Section 4.6). In other
words, for each query/mutation, we retain test cases that lead to different HT TP status codes, and
at least one with a correct data response and at least one with an errors response.

Both black-box and white-box testing share the same goal of detecting faults in the tested APIs.
They use the same automated oracles to detect faults. Both testing approaches are important, as
they have their own strengths and weaknesses. For example, black-box testing is easier to use
(e.g., it requires no setup to specify how to start the application with automated instrumentation),
and it is of wider applicability (e.g., it is not restricted to any specific programming language).
However, white-box testing can achieve better results (i.e., code coverage and fault finding),
as it can exploit information about the source code of the APIL Furthermore, its generated
tests can be used for regression testing (as the generated tests can start, stop, and reset the
API).

In this article, we provide and empirically evaluate both approaches, as both of them are useful
for practitioners in the industry. Considering that, to the best of our knowledge, this is the first
work in the literature addressing this problem, more can be done in future research. For example,
our black-box approach is very basic, simply an RS on syntactically valid queries based on the
schema.

4.8 Tool Support

All the novel techniques presented in this work have been implemented as part of our existing tool
EvoMASTER. EVOMASTER is open source on GitHub, with each new release automatically uploaded
to Zenodo for long-term storage (e.g., [31]).

When a practitioner uses EVOMASTER, they need to specify with command-line options whether
they are testing a REST or GraphQL APIL For example, black-box testing of an online API such as
GitLab can be done on the command line as shown next.

1 evomaster.exe --problemType GRAPHQL --bbTargetUrl https://gitlab.com/api/graphql --blackBox
true --outputFormat JAVA_JUNIT_4 --maxTime 30s --ratePerMinute 60

Here, one needs to specify that we are fuzzing a GraphQL API (using --problemType) and
not, for example, a RESTful one, where the API is located (--bbTargetUrl), the type of testing
(--blackBox), the format of the output tests (-—outputFormat), for how long to run the fuzzing
session (--maxTime), and a rate-limiter (--ratePerMinute) to do not overload the tested API of
requests (needed when testing APIs on the Internet to avoid denial of service). For doing white-box
testing, some manual effort is needed, as there is the need to implement a driver class to specify
how to start and stop the APL

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:22 A. Belhadi et al.

Extending an existing fuzzer for a new problem domain not only requires scientific research but
also significant engineering effort. What is presented in this article took 2 years of work. Consid-
ering the complexity of EVOMASTER (which is currently more than 200,000 LOCs, not including
tests), providing precise code metrics is not viable. Although modules specific for GraphQL can
be identified (e.g., org.evomaster.core.problem.graphgl with more than 4,000 lines of Kotlin
code), changes were needed throughout the whole code base of EVOMASTER to be able to support
GraphQL. For example, the gene system of the evolutionary engine of EVOMASTER needed to be
extended with new genes like TupleGene. We can estimate around 10,000 to 15,000 LOCs needed
to support GraphQL API testing.

To reduce the risk of publishing wrong results based of faulty software, this work has been
carefully tested. For example, in unit tests (e.g., GraphQLUtilsTest), we parse 75 GraphQL
schemas (having more than 860,000 lines), to make sure that our schema analysis algorithms
do not crash and give the correct results (at least for those 75 schemas). Furthermore, EvoMas-
TER has a sophisticated system of end-to-end tests [30]. We create several artificial APIs, run
EvoMASTER on them, compile the generated tests, run them, and verify properties on those
tests. This is all done automatically from JUnit tests (including the compilation and dynamic
loading and execution of the new generated tests on the fly), and run in a Continuous Integration
system (i.e., GitHub Actions) at each new Git commit (more details can be found in the work
of Arcuri et al. [30]). Due to all these end-to-end tests, the current EVOMASTER build takes
more than 2 hours. For GraphQL, we currently have end-to-end tests for 39 artificial APIs (in
the module spring-graphqgl), covering different aspects of GraphQL, for a total of more than
6,000 LOCs.

5 EMPIRICAL STUDY
5.1 Experimental Setup

In this section, we carry out several experiments to validate the applicability of the proposed frame-
work for GraphQL test generation. This can be achieved by answering the three following research
questions:

RQ1: For white-box testing of GraphQL APIs, how effective are evolutionary algorithms at
maximizing code coverage and fault detection compared to RS?

RQ2: How does black-box testing fare on existing APIs on the Internet?

RQ3: What kinds of faults are found by our novel technique?

5.1.1 White-Box. GitHub [7], arguably the main repository for open source projects, was used
to find SUTs for experimentation. JVM and Node]JS projects were scanned and filtered while exclud-
ing trivial projects. For example, we excluded APIs with less than 500 LOCs and student projects.
For this study, seven GraphQL web services were selected, which we could compile and run with
no problems:

e The Spring petclinic [10] API (4,567 LOCs) is an animal clinic where a pet owner can register
his pet for an examination. The examination is carried out by a veterinarian who has one or
more specialist areas.

e patio-api [9] (12,552 LOCs) is a web application that attempts to estimate the happiness of a
given team periodically by asking for a level of happiness.

e graphql-ncs (548 LOCs) and graphql-scs (577 LOCs) are based on artificial RESTfulAPIs from
an existing benchmark [6]. For this study, we adapted these two APIs into GraphQL APIs.
graphql-ncs and graphql-scs are based on a code that was designed for studying unit testing
approaches on solving numerical [21] and string [14] problems.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:23

e react-finland [11] (16,206 LOCs) is an API for a week-long developer conference focused on
React.js and related technologies.

e timbuctoo[12] (85,365 LOCs) is an API that allows scientists to decide how data from different
databases is shared.

e e-commerce [4] (1,791 LOCs) is an e-commerce API built on Phoenix and Elixir that can be
utilized to create interactive e-commerce web applications.

To the best of our knowledge, there is no other existing white-box fuzzer that can be used to
test GraphQL APIs. Therefore, in this article, we cannot compare with any existing technique, as
none is available. White-box fuzzing GraphQL APIs is a novel contribution of this work. Still, it is
important to verify whether a novel sophisticated technique is really warranted, and no simpler
technique would be already as effective [13]. When nothing else is available, a common baseline
in software testing research is random testing [28], in which an application is tested with random
inputs. Still, sending random bytes on the TCP connection the SUT is listening on would be of little
to no value, as the chances of generating a valid GraphQL query (or even simply a valid HTTP
request) would be virtually non-existent. Therefore, for doing random testing, we still sample and
send syntactically valid GraphQL queries based the schema of the SUT.

Once a software engineering problem is modeled as an optimization/search problem (e.g., by
specifying the problem representation and the fitness function), different search algorithms can
be applied and evaluated. But no search algorithm is best on all problems [76]. To improve perfor-
mance on a specific problem, research is needed to customize the algorithms to exploit as much
domain knowledge of this problem as possible. In the specific case of white-box test suite genera-
tion, the most used algorithms are WTS (Section 2.4), MOSA (Section 2.5), and MIO (Section 2.6).
MOSA [64] replaced WTS [47] as the default search algorithm in EvoSuite [46] (which is the most
famous search-based tool for unit test generation), based on large empirical studies comparing
many different search algorithms [37, 65]. However, for the system test generation of RESTful
APIs, MIO [18] provided the best results in search algorithm comparisons [18]. As the testing of
GraphQL APIs with search algorithms is a novel contribution of this work that has not been done
before in the research literature, in this work we apply and compare the three most common search
algorithms for test suite generation (i.e., WTS, MOSA, and MIO).

For the experiments, we set 1 hour as the search budget for our white-box testing approach. To
take into account the randomness of the algorithms, each experiment was repeated 30 times [23].
In total, these experiments took 7 X 4 X 30 = 840 hours (i.e., 35 days). Experiments were run in
parallel (15 at a time) on the same hardware: an HP Z6 G4 Workstation with an Intel Xeon Gold
6240R, 24 cores, CPU @2.40GHz 2.39-GHz processor, 192 G of RAM, and 64-bit Windows 10.

To evaluate and compare the effectiveness of the employed algorithms, we selected covered
testing targets (#Targets), line coverage (%Lines), and the number of detected faults (#Errors) as
metrics for comparisons. The testing target (#Targets) is the default coverage criterion in Evo-
MASTER. It comprises and aggregates different metrics, such as code coverage (including branch
coverage), HTTP status code coverage, and fault findings. The line coverage (%Lines) is collected as
part of our code instrumentation. Furthermore, we also reported (#Errors) by identifying potential
faults—that is, 500 HTTP status codes and responses with errors entries (recall Section 4.5).

5.1.2 Black-Box. To evaluate the black-box testing, 31 online APIs with different domain ap-
plications and different numbers of endpoints were selected from apis.guru [2], a curated public
listing of available web services on Internet. These APIs are written with different programming
languages, such as JavaScript and Python. Some APIs provide their implementation (e.g., open
source), whereas others do not (e.g., commercial services). When an API required authentication,
we created an account on these APIs and added the right authentication information to the HTTP

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:24 A. Belhadi et al.

Table 1. GraphQL APIs Used for Black-Box Experiments

Name Description Source Code
aniList provides access to anime and manage entries, including character, staff, and Yes
live airing data
deutsche-bahn infrastructure data, like real-time facility status and stations Yes
barcelona-urban-mobility combines information about the different urban mobility services of Barcelona city Yes
buildkite a platform for continuous integration and deployments No
camara-dos-deputados an API to obtain the data from the Brazilian deputies chamber Yes
catalysis-hub chemical surface reaction energies and structures Yes
contentful provides a content infrastructure for digital teams to power content in websites, Yes
apps, and devices
countries information about countries, continents, and languages Yes
demotivational-quotes get random demotivational quote Yes
digitransit journey planning solution combining several open source components into available No
route planning service
ehri Holocaust-related archival materials held in institutions across Europe and beyond No
fauna serverless GraphQL database No
fake-graphQL-api mock user and to do data No
Sfruits provides information of fruit trees of the world Yes
ghibli catalogs the people, places, and things found in the worlds of Ghibli Yes
gitLab host-your-own Git repository hosting service No
google-directions GraphQL wrapper over the Google directions API Yes
music-brainz an open music encyclopedia that collects music metadata Yes
pokémon query for all the pokémon data including their abilities, moves, items, learnsets, Yes
and type matchups
hivdb a curated database to represent, store, and analyze HIV drug resistance data No
Jjobs GraphQL jobs directory No
melody fast and reliable dependency manager for Go programming language No
react-finland GraphQL API for conferences and meetings Yes
rickandmortyapi based on the television show Rick and Morty; provides the Rick and Morty Yes
information (characters, episodes, locations)
spacex a non-official platform for SpaceX’s data No
spotify provides instant access to millions of songs, from old favorites to the latest hits Yes
swapi provides all the Star Wars data Yes
swop GraphQL foreign exchange rate API No
travelgateX a global marketplace for the travel trade No
universe check what your friends are doing and find unique events near you using our filter No
weather retrieve the current weather for any given city Yes

headers of EVOMASTER (e.g., the authentication header can be set with the command-line argument
--header). For our experiments, we considered all the GraphQL APIs listed on apis.guru, but we
excluded APIs that are no longer available (but still listed on apis.guru) or that required payment
to create an account. Table 1 gives a short description of the 31 APIs used in our experiments.

We ran our extension of EVOMASTER on all those APIs with black-box mode. The stopping
criterion was set to 1,000 HTTP calls per run. Each experiment was run only three times, since
sending thousands and thousands of HTTP calls to live services could be interpreted as a denial-of-
service attack. For the same reason, we put a rate limiter of at most 10 HTTP requests per minute
(i.e., EvoMAsTER would make HTTP calls only every 6 seconds). In total, these experiments took
3 X 31 X (1,000/10) = 9,300 minutes (i.e., 6.4 days). They were run in parallel in the same way as
for the white-box experiments.

As we do not have any control on these remote APIs, repeating the experiments more times
would not add much more information, as such runs would not be fully independent.

5.2 Experiment Results

5.2.1 Results for RQ1. To compare MIO, MOSA, WTS, and RS, Table 2 reports their average
#Targets, %Lines, and #Errors for each employed search algorithm on each of the case studies.
Overall, on average, MIO provides the best results. However, there are two out of seven APIs in
which it provides worse results (i.e., ecommerce-server and petclinic).

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:25

Table 2. Results for 1-Hour Budget for White-Box Testing

SUT Targets (#) Line Coverage (%) Errors (#)

RS WTS MOSA MIO RS WTS MOSA MIO RS WTS MOSA MIO
e-commerce-server 340.5 340.4 330.4 331.6 8.2 8.1 79 79 279 277 26.7 264

graphgql-ncs 456.3 6354 6357 657.6 595 88.2 874 90.3 6.0 6.0 6.7 8.1
graphql-scs 640.4 667.7 679.7 775.3 67.3 68.2 694 78.6 11.0 11.0 11.0 11.0
patio-api 3,427.3 3,452.1 3,426.2 3,710.0 32.7 32.7 32.7 39.8 588 63.1 429 744
petclinic-graphql 664.6 666.6 648.9 658.9 60.6 60.6 59.2 60.2 17.7 188 19.0 17.2
react-finland 486.9 0.0 501.2 6788 1.7 0.0 1.7 2.4 28.0 0.0 28.9 43.0
timbuctoo 7,441.9 74439 7,459.9 7,501.3 29.8 29.8 29.8 29.8 495 443 39.4 89.7
Average 1,922.5 1,886.6 1954.6 2,044.8 37.1 41.1 41.2 44.1 284 244 249 38.6

Best results for each metric on each API are highlighted in bold.

Table 3. Detailed Comparisons between MIO and RS

SUT Targets (#) Line Coverage (%) Errors (#)

RS MIO Ay, pValue RS MIO Aj; p-Value RS MIO Ay, p-Value
e-commerce-server 340.5 331.6 0.04 < 0.001 82 79 0.01 <0.001 279 264 0.03 < 0.001

graphql-ncs 4563 657.6 1.00 < 0.001 595 903 1.00 <0.001 60 81 1.00 < 0.001
graphql-scs 640.4 7753 1.00 <0.001 673 786 1.00 <0.001 110 110 050 1.000
patio-api 3,427.3 3,7100 1.00 <0.001 327 39.8 1.00 < 0.001 58.8 74.4 0.99 < 0.001
petclinic-graphql 6646 658.9 0.18 < 0.001 60.6 60.2 0.32 < 0.001 177 17.2 0.23 < 0.001
react-finland 4869 6788 1.00 <0001 17 24 1.00 <0.001 280 43.0 1.00 < 0.001
timbuctoo 74419 7,5013 1.00 <0.001 298 298 037 0.066 49.5 89.7 0.96 < 0.001
Average 19225 2,0448 0.75 371 441 067 284 386 067

Statistically significant effect-sizes (at @ < 0.05 level) are marked in bold.

Table 4. Detailed Comparisons between MIO and WTS

SUT Targets (#) Line Coverage (%) Errors (¥)

WTS MIO Aj; pValue WIS MIO A;, p-Value WIS MIO A, p-Value
e-commerce-server 3404 331.6 0.13 <0.001 81 7.9 0.14 <0.001 277 264 0.11 < 0.001

graphgl-ncs 6354 657.6 1.00 <0.001 882 90.3 1.00 < 0.001 6.0 81 1.00 < 0.001
graphql-scs 667.7 7753 1.00 <0.001 682 78.6 1.00 <0.001 11.0 11.0 0.50 1.000
patio-api 3,452.1 3,710.0 1.00 < 0.001 32.7 39.8 1.00 < 0.001 63.1 744 0.92 < 0.001
petclinic-graphql 666.6 6589 0.11 < 0.001 60.6 60.2 0.32 <0.001 18.8 17.2 0.14 < 0.001
react-finland 0.0 678.8 1.00 < 0.001 0.0 24 1.00 <0.001 0.0 43.0 1.00 < 0.001
timbuctoo 7,443.9 7,501.3 1.00 < 0.001 29.8 29.83 0.34 0.041 443 89.7 0.98 < 0.001
Average 1,886.6 2,044.8 0.75 41.1 441 0.69 244 38.6 0.66

Statistically significant effect sizes (at @ < 0.05 level) are marked in bold.

A detailed analysis of MIO is provided with pairwise comparisons using Mann-Whitney-
Wilcoxon U-tests (p-value) and Vargha-Delaney effect sizes (Aj;), when compared with RS
(Table 3), WTS (Table 4), and MOSA (Table 5).

Note that there is no data collected for WTS on react-finland. On this kind of API, WTS crashed
due to being out of memory in every single experiment.

When looking at the achieved target coverage, there is a clear improvement of white-box evo-
lutionary search (e.g., MIO) compared to RS (see Table 3). On five out of seven APIs, the effect size
is maximum, (i.e., AA12 = 1). This means that in each of the 30 runs of MIO, the results were better
than the best run of RS.

When looking at only line coverage, we can see that MIO enables covering 90.3% of lines in
graphqgl-ncs. This is a large improvement compared to the 59.5% of RS (i.e., +30.8%). On average,
among the SUTs, the improvement is +7% (i.e., from 37.1% to 44.1%). When looking at the absolute

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:26 A. Belhadi et al.

Table 5. Detailed Comparisons between MIO and MOSA

SUT Targets (#) Line Coverage (%) Errors (#)

MOSA MIO A;; p-Value MOSA MIO A;; p-Value MOSA MIO Aj; p-Value
e-commerce-server 330.4 331.6 0.58 0.300 79 7.9 050 0.948 26.7 264 0.39 0.102

graphql-ncs 635.7 657.6 1.00 < 0.001 87.4 90.3 0.94 < 0.001 6.7 81 0.99 <0.001
graphql-scs 679.7 7753 1.00 < 0.001 69.4 786 0.99 < 0.001 11.0 11.0 0.50 1.000
patio-api 3,426.2 3,710.0 1.00 < 0.001 32.7 39.8 1.00 < 0.001 429 744 1.00 < 0.001
petclinic-graphql 648.9 658.9 0.66 0.042 59.2 60.2 0.78 < 0.001 19.0 17.2 0.12 < 0.001
react-finland 501.2 678.8 1.00 < 0.001 1.7 2.4 1.00 <0.001 28.9 43.0 1.00 < 0.001
timbuctoo 7,459.9 7,501.3 0.95 < 0.001 29.8 29.8 0.38 0.113 39.4 89.7 1.00 < 0.001
Average 1,954.6 2,044.8 0.88 41.2 44.1 0.80 249 38.6 0.71

Statistically significant effect sizes (at @ < 0.05 level) are marked in bold.

values for line coverage, we need to point out an issue with collecting coverage for NodeJS
applications (i.e., ecommerce-server and react-finland), as coverage computation is not considering
what was achieved during boot time of the API.

When looking at line coverage along, there are statistically worse results for petclinic and
e-commerce. However, the differences are minimal (i.e., at most —0.4%). For instance, petclinic is a
simple API used for demonstration, where large parts of its code is not executed (e.g., it has three
different implementations of its data layer, where only one can be active at a time, and this has
to be specified in a configuration file when the API is started). On simple problems, RS can be
already very good, whereas evolutionary search can have some small side effects (which would
likely disappear when using a longer search budget). This is particularly the case if the fitness
function does not provide a gradient to the search and the algorithm gets stuck on local optima.
The better the fitness function is (e.g., more advance white-box heuristics), the better the results
can be achieved with evolutionary search.

In Table 2, we also report the number of potential faults identified by the different search al-
gorithms. The table shows clearly better results for MIO compared to RS, with an average high
effect size of Alz = 0.67 (see Table 3). On timbuctoo, MIO achieves the most, finding 89.7 errors
on average compared to 49.5 for RS. This result is achieved thanks to the evolutionary operators
adopted in the proposed framework to handle GraphQL APIs.

Considering a 1-hour search budget, an automatically achieved coverage of 39.8% for a complex
API like patio-api could be considered a good, practical result, although more still need to be done
(e.g., better search heuristics). For example, there was practically no difference in code coverage
between random and evolutionary search on timbuctoo. An in-depth analysis of this API would
be needed to point out which branches were not covered, potentially pin-pointing which kinds
of constraints were not be able to be solved with current search-based heuristics. This would be
needed to design new heuristics to solve those kinds of constraints [80].

At any rate, in these experiments, not only are many potential faults found, but the generated
tests can also be used for regression testing (i.e., they can be added to the test suites of the SUTs and
run as part of continuous integration to check if any change is breaking any current functionality).

The choice of using 1 hour as the stopping criterion is technically arbitrary. It could had been
more or less. Such choice was based on what practitioners could use in practice [83]. Nevertheless,
the chosen search budget can impact the conclusions taken from the comparisons of search algo-
rithms. For this reason, in Figure 6, we report plot lines for demonstrating the performance of the
compared techniques for the number of covered targets throughout the search, collected at each
5% interval (i.e., at each 3-minute interval).

According to the reported results, MIO outperforms RS for all cases except for petclinic and
ecommerce-server, where we observed better results for RS. On the other APIs, the improvements

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:27

oo 093 -8 B B89 5 8-0 00 F aeog

335
L

£
L

overed Targets

Covered Targets
3400 3450 3500 3550 3600 3650 3700
L

—— MIO —e- MO

-=-- RAND RAND 8 &+

4 WTS, WTS “
MOSA o MOSA

] oo 0000 ° 8§

T T T T T T T T T T T T T T T T T T TT LN N e S S S B B B B B B B ¥ m’\\\\\\\\\\\\\\\\\\\\
- s pocanage JEP—
(a) patio-api (b) petclinic (c) e-commerce-server

7500
L

600
L

7450

4 4 3 o o-o-8-ga-esd
& N B R
[& 00
3 89 i o°
H —— MO 4 —— MO H —=— Mo
3 @ RAND -5 RAND 8 o = RAND
WTS WTS g+ WTS
o MOSA g4 MOSA = MOSA

450
L

7350
L

S 2 % w0 % @ 0w W S m % w0 s e . % @ o Shm % w0 s e W s @ w0
P P gt P
(d) graphql-ncs (e) react-finland (f) timbuctoo
g = Mo
8 -5~ RAND
B =N
e

LA s s s s L
51 20 30 40 5 6 70 8 9 100

(g) graphql-scs

Fig. 6. Covered targets throughout the search.

of MIO are visible throughout the entire search. In a few cases, already with small budgets (e.g.,
3 minutes), MIO gets better results than all the other algorithms running for 1 hour.

In these experiments, MOSA shows some interesting behavior. For example, it has a “slow start
on timbuctoo and graphql-scs, but then with the passing of time it gets better results than RS and
WTS. Depending on the chosen search budget, different conclusions could be drawn from these
empirical comparisons.

»

RQ1: In terms of covered targets, MIO demonstrates consistent and significant improvements (+7%
line coverage and +10.2 more faults found on average) compared with random testing. In these
experiments, MIO provides better results than other evolutionary algorithms such as WTS and
MOSA. This shows the effectiveness of MIO adapted for GraphQL testing for maximizing code

coverage and fault detection.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:28 A. Belhadi et al.

Table 6. Results for Black-Box Testing

SUT #Endpoints %NoErrors %WithErrors
Anilist 56 1.8 98.2
Bahngql 7 100.0 100.0
barcelona-urban-mobility 10 50.0 100.0
Buildkite 70 7.6 99.0
Camara-deputados 33 23.2 100.0
Catalysis-hub 11 100.0 100.0
Contentful 23 11.6 100.0
Countries 8 87.5 12.5
Demotivation-quotes 2 100.0 0.0
Digitransit 33 26.3 93.9
Directions 6 33.3 83.3
Ehri 19 73.7 100.0
Fauna 13 10.3 100.0
Fruits 7 85.7 28.6
Ghibligl 10 100.0 30.0
Gitlab 270 1.9 95.2
Graphbrainz 6 0.0 100.0
Graphqglpokemon 13 53.8 76.9
Hivdb 9 444 77.8
FJobs 15 13.3 86.7
Melody 2 16.7 100.0
Mocki 4 100.0 0.0
React-finland 13 35.9 100.0
RickAndMortyapi 9 63.0 66.7
Spacex 43 93.8 68.2
Spotify 11 0.0 100.0
Swapi 13 46.2 100.0
Swop 6 16.7 100.0
Travelgatex 11 100.0 0.0
Universe 90 10.4 94.4
Weather 2 100.0 100.0
Total 825 48.6 77.8

5.2.2 Results for RQ2. Table 6 presents the results of the black-box testing on the 31 APIs de-
scribed in Table 1. The results include the number of endpoints (#Endpoints) representing the
number of queries and mutations present in the schema, the percentage of endpoints with gener-
ated tests without errors (%NoErrors), and the percentage of endpoints with generated tests with
errors (%WithErrors). Tests with errors and others without errors could be generated for the same
endpoint. However, the following formula would be satisfied:

%NoErrors %WithErrors
+ <2

1
100 100 9
with
#NoErrors
%NoErrors = —— (2)
#Endpoints

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:29

and

) #WithErrors
%WithErrors = ———. (3)
#Endpoints

In other words, for each endpoint, we want to see if we can generate at least one test case in
which the endpoint returns data correctly (i.e., data field), and at least one test case in which
there are issues (i.e., errors field). The former type of test could be useful for regression testing,
and to manually check if the API behaves correctly and gives the expected outputs. The latter
type of test could potentially detect faults and thus would be a first step for debugging the
API. As an example, if an API has 10 endpoints (i.e., #Endpoints = 10), then we want to see
how many tests with data (0 < #NoErrors < 10) and with errors (0 < #WithErrors < 10)
responses are generated. Generating a test with correct data responses is not necessarily trivial,
as the inputs might have constraints that are not specified in the schema (e.g., a string input
must match a specific regular expression). Likewise, if the API has no faults, or the testing tool
is not able to create inputs that find any existing fault, or the API has no input validation, no
test with a response containing errors would be generated. Ideally, a fuzzer should aim at
being able to generate valid inputs for all endpoints (i.e., %ZNoErrors = 100%), whereas whether
it is possible to find any fault strongly depends on whether there is any fault in the tested
APL

From Table 6, we remark that all endpoints were reached, and responses with either data or
errors fields are effectively derived. From the table, we can see that we can generate tests which
lead to responses with errors fields for many endpoints (77.8%). However, there are also many
queries/mutations for which we could not get back any valid data (i.e., responses with data field
and no errors were less than 50%). This is likely due to input constraints which are unlikely to be
satisfied with random data. Without code analysis (or constraints expressed directly on schema),
likely there is not much a black-box tool can do here (besides having the user provide some sets
of valid inputs to fuzz).

Similarly to the fuzzing of RESTful APIs, black-box testing can find faults in GraphQL APIs
by just sending random (but syntactically valid) inputs, as often APIs are not particularly robust
when dealing with such kinds of random data [61]. However, without being able to analyze the
source code, it can be hard to bypass their first layer of input validation and generate successful
API requests [20].

RQ2: The black-box testing implemented in our novel approach enables the automated test
generation that can detect on average up to 641 endpoints with errors out of 825 endpoints
(i.e., 77.8%).

5.2.3 Results for RQ3. As discussed in Section 2.1, currently GraphQL makes no distinction
between user and server errors. So, without an in-depth manual analysis of the generated tests,
it is hard to tell which responses with errors messages are due to actual software faults and
not a simple misuses of the APIL. Furthermore, without knowing the full details of the expected
business logic of the specific API under analysis, it might be hard for researchers (who are not
the developers of the API) to determine if a returned error is indeed due to a software fault. This
problem is further exacerbated for the external APIs used for black-box testing experiments,
where the source code is not available and cannot be used to validate if an error is indeed likely
due to a fault. Still, when evaluating a novel fuzzing technique like we do in this article, it is
important to check if it can find any actual faults. For this reason, we did a manual analysis of
hundreds of generated tests from our experiments. Here, we discuss some of the most interesting
cases.

Let us start from the following generated test case for petclinic.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:30 A. Belhadi et al.

1 @Test(timeout = 60000)

2 public void test_4() throws Exception {

3

4 given().accept("application/json")

5 .contentType("application/json")

6 .body (" { " +

7 " \"query\": \"mutation{removeSpecialty (input:{specialtyId:643}){
specialties{id}}}\" " +

8 "y

9 .post(baseUrl0ofSut + "/graphql")

10 .then()

11 .statusCode (200) // org/springframework/samples/petclinic/repository/springdatajpa/
SpringDataSpecialtyRepositoryImpl_38_delete

12 .assertThat ()

13 .contentType("application/json")

14 .body("'data'", nullvalue())

15 .body("'errors'.size()", equalTo(1))

16 .body("'errors '[0]. 'message'", containsString("Internal Server Error(s) while
executing query"))

17 .body("'errors'[@]. 'path'", nullValue())

18 .body (" 'errors'[@].'extensions'", nullValue());

19 3}

Here, the message “Internal Server Error(s) while executing query” is a clear example of a fault,
even if the returned HTTP status code is 200. By debugging this test case, we found that the
problem is due to a null pointer exception: trying to remove a specialty with an id equal to 643
that does not exist. Ideally, the API should return an error message stating the requested resource
does not exist. However, it looks like the implementation of such API is ignoring the cases when
a user asks for something not in the database, which leads to an internal crash.

A similar case can be seen in the following test generated for react-finland.

@Test(timeout = 60000)

1

2 public void test_0_with500() throws Exception {

3

4 given().accept("application/json")

5 .contentType("application/json")

6 .body (" { " +

7 " \"query\": \"{theme(conferenceId:\\\"coM_FEt@ANyU87\\\"){id, fonts{primary}}}
AN

8 "y

9 .post(baseUrlofSut)

10 .then()

1M .statusCode (500)

12 .assertThat ()

13 .contentType("application/json")

14 .body("'errors'.size()", equalTo(1))

15 .body("'errors '[0]. 'message'", containsString("Conference id did not match series"))

16 .body (" 'errors'[@]. 'locations'.size()", equalTo(1))

17 .body (" 'errors'[0].'locations '[@]."'line'", numberMatches(1.0))

18 .body (" 'errors '[0]. 'locations'[@]. 'column'", numberMatches(5.0))

19 .body (" 'errors'[0]. 'path'.size()", equalTo(1))

20 .body (" 'errors'[@]. 'path'", hasItems("theme"))

21 .body("'data'", nullValue());

22 3}

Here, the API returns a meaningful error message stating “Conference id did not match series.”
This means that the requested id “coM_FEt0ANyU87” is not matching any registered conference
in the API. However, the API is returning the HTTP status code 500, which in HTTP represents
a server error and not a user error (where the most suited code for this case would likely be 404).
Technically, this is a fault, although likely not a serious one. Not properly handling the requests
for missing data seems common as well in RESTful APIs [61].

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:31

However, there are a few cases of more serious faults, like when the returned responses are not
matching the constraints of the GraphQL schema of the API. For example, consider the following
case of a HTTP call in a generated test for Bahnql.

1 given().accept("application/json")

2 .contentType("application/json")

3 .body (" { " +

4 " \"query\": \"{parkingSpace(id : 842) {name,label,responsibility, spaceType,
location{latitude},url,operator,distance, facilityType,openingHoursEn, isSpecialProductDb,
isOQutOfService,occupancy{validData, timestamp, timeSegment},clearanceHeight ,6 outOfService,
isMonthSeason, tariffDiscount, tariffPaymentCustomerCards, tariffFreeParkingTimeEn,

tariffPaymentOptionsEn, slogan} FoAT T o
5 Y
6 .post(baseUrlofSut)
7 .then ()
8 .statusCode (200)
9 .assertThat ()
10 .contentType("application/json")
1 .body (" 'errors'.size()", equalTo(2))
12 .body("'errors'[0@]. 'message'", containsString("Cannot return null for non-nullable field
Location.latitude."))
13 .body (" 'errors'[@]. 'locations'.size()", equalTo(1))
14 .body (" 'errors'[0]. 'locations '[@].'line'", numberMatches(1.0))
15 .body (" '"errors '[0]. 'locations '[@]. 'column'", numberMatches(77.0))
16 .body (" 'errors'[0]. 'path'.size()", equalTo(3))
17 .body (" 'errors'[0]. 'path'", hasItems("parkingSpace", "location", "latitude"))
18 .body (" 'data'. 'parkingSpace'", nullValue());

Here a 200 status code is returned, which would imply a success from the point of view of
HTTP. However, the error message is “Cannot return null for non-nullable field Location.latitude.”
This looks like a case of an internal server error, where a test case is asking for a non-nullable field
named latitude, but the server tried to return a null value. All types in GraphQL are nullable by
default, and the null value is a valid response. However, when looking into its schema definition,
the field latitude is defined as a non-null scalar. This is a clear example showing an actual fault in
the SUT, where the API tries to return a response that violates the schema:

1 "kind": "OBJECT",

2 "name": "Location",

3 "fields":[

4 {

5 "name": "latitude",

6 "args": [],

7 "type": {

8 "kind": "NON_NULL",
9 "name": null,

10 "ofType": {

11 "kind": "SCALAR",
12 "name": "Float",
13 "ofType": null

14 3}

15 o

16 "isDeprecated": false,
17 "deprecationReason": null
18 Vs

Another interesting example of schema violation is the following test generated for the
Catalysis-hub APL

@Test(timeout = 60000)
public void test_11() throws Exception {

.contentType("application/json")

1
2
3
4 given().accept("application/json")
5
6 cbody (" { " +

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

A. Belhadi et al.

A

\\\"Uk4WPkx7y\\\", jsonkey
\\\"CU1SdJQYVHfnce\\\", first

"oy

14:32

7 " \"query\": \"{information(name:\\\"fyS8008Upt9ceukK\\\",6 value
Cb1JF7FCM_KT_\\\",distinct false,op \M\"4iyt\\\", search
\\\"dWws4\\\", order \\\"pc\\\", before \\A"\\\", after
298, last 303) {edges{node{value,id},cursor}, totalCount} 3O\

8 "y

9 .post(baseUrlofSut)

10 .then()

1M .statusCode (200)

12 .assertThat ()

13 .contentType("application/json")

14 .body("'errors'.size()", equalTo(1))

15 .body (" 'errors'[@]. 'message'", containsString("Can't find property named \"cursor\"
on mapped class Information->information in this Query."))

16 .body (" 'errors'[0].'locations'.size()", equalTo(1))

17 .body("'errors '[0]."'locations'[@]. 'line'", numberMatches(1.0))

18 .body("'errors'[0]."'locations '[@]. 'column'", numberMatches(5.0))

19 .body (" 'errors'[@]. 'path'.size()", equalTo(1))

20 .body (" 'errors'[0]. 'path'", hasItems("information"))

21 .body("'data'.'information'", nullValue());

Here a 200 status code is returned, which would imply a success from the point of view of HTTP.
However, in the body of the response, the following error message appears: “Can’t find property
named “cursor” on mapped class Information->information in this Query.” It states that there is no
field named cursor belonging to the root query information. We have extracted and analyzed the
whole schema of the Catalysis-hub API by sending an introspective query to its endpoint. The
schema reveals that the field information is of type InformationCountableConnection. The type In-
formationCountableConnection has the field named edges (that we have asked for) of type Informa-
tionCountableEdge. The latter, as shown in the following, has two fields, namely node and cursor,
showing a clear fault in the SUT. The internal implementation of the server does not respect the

defined GraphQL schema.

1 "kind": "OBJECT",

2 "name": "InformationCountableEdge",
3 "fields": [

4 {

5 "name": "node",

6 "args": [1],

7 "type": {

8 "kind": "OBJECT",

9 "name": "Information",
10 "ofType": null

n Vs

12 "isDeprecated": false,
13 "deprecationReason": null
14 e

15 {

16 "name": "cursor",

17 "args": [1],

18 "type": {

19 "kind": "NON_NULL",

20 "name": null,

21 "ofType": {

22 "kind": "SCALAR",

23 "name": "String",

24 "ofType": null

25 }

26 3,

27 "isDeprecated": false,
28 "deprecationReason": null
29 3}

30 1,

31 "inputFields": null,

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:33

32 "interfaces": [],

33 "enumValues": null,
34 "possibleTypes": null
35 3

Although schema violations might not be always easy to identify, there are other cases in which
faults are very clear. For instance, consider the following test generated for the Buildkite API.

1 given().accept("application/json")

2 .header ("Authorization", "Bearer 992ae7ae4998a8a8faa7c762d74e3c20f2abel54")

3 .contentType("application/json")

4 .body (" { " +

5 " \"query\": \"mutation{jobTypeBlockUnblock (input:{clientMutationId:\\\"hVHw\\\",
id:\\\"R2qgRAwWGNnOo\\\", fields:\\\"6nj19G\\\"}){clientMutationId}}\" " +

6 "y

7 .post(baseUrlofSut)

8 .then ()

9 .statusCode (200)

10 .assertThat ()

11 .contentType("application/json")

12 .body (" "'type'", containsString("unknown_error"))

13 .body("'errors'.size()", equalTo(1))

14 .body("'errors '[0]. 'message'", containsString("An error occurred while executing your
GraphQL query. Please contact hello@buildkite.com for help and provide this query in the
email."));

15

Here, the server returned the status code 200. However, an internal server error is detected by
showing this message in the body: “An error occurred while executing your GraphQL query. Please
contact hello@buildkite.com for help and provide this query in the email.” Unfortunately, faults found
by these black-box experiments from the requested APIs cannot be further analyzed, as we do not
have access to the source code of this remote service. It seems like a case of crash due to requesting
a resource that does not exist, but we cannot be sure.

Another clear example of a major problem can be seen in the following test generated for the
Catalysis-hub APIL. The test requests the resource called hasPreviousPage, but the actual call (done
with the library RestAssured) throws an exception.

1 try{
2 given().accept("application/json")
3 .contentType("application/json")
. “body (" { " +
5 " \"query\": \"{information(name:\\\"8qpQyCBnwDOgP2\\\", value :\\\"fU5gDkH6

\\\",distinct: false,op : \\\"JOZA3ahBYJTLgMp\\\",search : \\\"59W\\\", 6 jsonkey : \\\"

TMJ0z\\\",order : \\\"aHdTeItZ\\\",6 before : \\\"g7_U2sanJ_10\\\",after : \\\"bEUm\\\",

first : 141,last : 847){pagelnfo{hasPreviousPage}}} \" " +

"y
.post(baseUrlofSut);
catch(Exception e){

© ® N o

3

3
After a manual investigation, we found that the SUT is returning a failure in an HTML page
instead of a JSON object, meaning a significant crush in the SUT.

1 "<IDOCTYPE html>\n\t<html>\n\t <head>\n\t\t<meta name=\"viewport\" content=\"width=device-
width, initial-scale=1\">\n\t\t<meta charset=\"utf-8\">\n\t\t<title>Application Error</
title>\n\t\t<style media=\"screen\">\n\t\t html,body,iframe {\n\t\t\tmargin: 0;\n\t\t\
tpadding: @;\n\t\t J\n\t\t html,body {\n\t\t\theight: 100%;\n\t\t\toverflow: hidden;\n\
t\t JF\n\t\t iframe {\n\t\t\twidth: 100%;\n\t\t\theight: 100%;\n\t\t\tborder: 0;\n\t\t

I\n\t\t</style>\n\t </head>\n\t <body>\n\t\t<iframe src=\"//www.herokucdn.com/error-
pages/application-error.html\"></iframe>\n\t </body>\n\t</html>"

However, this might had been due to hardware issues and not a software fault in the business
logic of the APL For example, it could had well been that although we did successfully generate

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:34 A. Belhadi et al.

an introspective query on this API, after a few hundred HTTP calls the cloud provider Heroku
(mentioned in that error page) temporarily disabled the API due to bandwidth usage constraints.

The last error we are going to discuss is for the following test case for the ecommerce-server
Node]JS API Note that in contrast to the previous examples, the generated test here is in Jest (used
for JavaScript/TypeScript APIs) format instead of JUnit.

1 test("test_6", async () => {

2

3 let token_foo = "Bearer ";

4 await superagent

5 .post(baseUrlofSut + "/graphql")

6 .set('Content-Type', 'application/json')

7 .send(" { " +

8 " \"query\": \"mutation{login(data:{email:\\\"foo@foo.com\\\", password:\\\"
bar123\\\"}){token}}\" " +

9 M

10 .then(res => {token_foo += res.body.data.login.token;},

11 error => {console.log(error.response.body); throw Error("Auth failed.")});;

12

13

14 const res_@Q = await superagent

15 .post(baseUrlofSut + "/graphql").set('Accept', "application/json")

16 .set("Authorization", token_foo) // foo-auth

17 .set('Content-Type', 'application/json')

18 .send(" { " +

19 " \"query\": \" { findStoreById (id : \\\"Z\\\") {id,products{categories{
name},brand, images}, employees{createdAt ,username,email ,bio,image},createdAt,h bio,rate,city,
state,number,sales} B S

20 M

21 .ok(res => res.status);

22

23 expect(res_0.status).toBe(200); // build/src/store/store.service.js_39_40

24 expect(res_0.header["content-type"].startsWith("application/json")).toBe(true);

25 expect(res_0.body.errors.length).toBe(1);

26 expect(res_0.body.errors[0].message).toBe("invalid input syntax for integer: \"Z\"");

27 expect(res_0.body.errors[0].locations.length).toBe(1);

28 expect(res_0.body.errors[0].locations[@].1line).toBe(1.0);

29 expect(res_0.body.errors[0].locations[@].column).toBe(5.0);

30 expect(res_0.body.errors[0].path.length).toBe(1);

31 expect(res_0.body.errors[0].path[0]).toBe("findStoreById");

32 expect(res_0.body.errors[@].extensions.code).toBe("INTERNAL_SERVER_ERROR");

33 expect(res_0.body.errors[@].extensions.exception.query).toBe("SELECT \"Store\".\"id\" AS \"

Store_id\", \"Store\".\"created_at\" AS \"Store_created_at\", \"Store\".\"updated_at\" AS
\"Store_updated_at\", \"Store\".\"name\" AS \"Store_name\", \"Store\".\"bio\" AS \"
Store_bio\", \"Store\".\"rate\" AS \"Store_rate\", \"Store\".\"slug\" AS \"Store_slug\",
\"Store\".\"street\" AS \"Store_street\", \"Store\".\"city\" AS \"Store_city\", \"Store
\".\"state\" AS \"Store_state\", \"Store\".\"country\" AS \"Store_country\", \"Store\".\"
neighborhood\" AS \"Store_neighborhood\", \"Store\".\"number\" AS \"Store_number\", \"
Store\".\"zipCode\" AS \"Store_zipCode\", \"Store\".\"sales\" AS \"Store_sales\", \"
Store__employees\".\"id\" AS \"Store__employees_id\", \"Store__employees\".\"created_at\"
AS \"Store__employees_created_at\", \"Store__employees\".\"updated_at\" AS \"
Store__employees_updated_at\", \"Store__employees\".\"name\" AS \"Store__employees_name\",
\"Store__employees\".\"username\" AS \"Store__employees_username\", \"Store__employees
\".\"email\" AS \"Store__employees_email\", \"Store__employees\".\"bio\" AS \"
Store__employees_bio\", \"Store__employees\".\"image\" AS \"Store__employees_image\", \"
Store__employees\".\"role\" AS \"Store__employees_role\", \"Store__employees\".\"status\"
AS \"Store__employees_status\", \"Store__employees\".\"password\" AS \"
Store__employees_password\", \"Store__products\".\"id\" AS \"Store__products_id\", \"
Store__products\".\"created_at\" AS \"Store__products_created_at\", \"Store__products\".\"
updated_at\" AS \"Store__products_updated_at\", \"Store__products\".\"title\" AS \"
Store__products_title\", \"Store__products\".\"description\" AS \"
Store__products_description\", \"Store__products\".\"brand\" AS \"Store__products_brand\",
\"Store__products\".\"sku\" AS \"Store__products_sku\", \"Store__products\".\"price\" AS
\"Store__products_price\", \"Store__products\".\"thumbnail\" AS \"
Store__products_thumbnail\", \"Store__products\".\"images\" AS \"Store__products_images\",
\"Store__products\".\"reviews\" AS \"Store__products_reviews\", \"Store__products\".\"

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:35

quantity\" AS \"Store__products_quantity\", \"Store__products\".\"dimension\" AS \"
Store__products_dimension\", \"Store__products\".\"storeId\" AS \"Store__products_storeld
\" FROM \"store\" \"Store\" LEFT JOIN \"store_employees_users\" \"Store_Store__employees\"
ON \"Store_Store__employees\".\"storeId\"=\"Store\".\"id\" LEFT JOIN \"users\" \"
Store__employees\" ON \"Store__employees\".\"id\"=\"Store_Store__employees\".\"usersId\"
LEFT JOIN \"product\" \"Store__products\" ON \"Store__products\".\"storeId\"=\"Store\".\"
id\" WHERE \"Store\".\"id\" IN ($1)");

34 expect(res_0.body.errors[0].extensions.exception.parameters.length).toBe(1);

35 expect(res_0.body.errors[0].extensions.exception.parameters[0]).toBe("Z");

36 expect(res_0.body.errors[0].extensions.exception.driverError.length).toBe(90.0);

37 expect(res_0.body.errors[@].extensions.exception.driverError.name).toBe("error");

38 expect(res_0.body.errors[0].extensions.exception.driverError.severity).toBe("ERROR");

39 expect(res_0.body.errors[@].extensions.exception.driverError.code).toBe("22P02");

40 expect(res_0.body.errors[0].extensions.exception.driverError.file).toBe("numutils.c");

41 expect(res_0.body.errors[@].extensions.exception.driverError.line).toBe("62");

42 expect(res_0.body.errors[@].extensions.exception.driverError.routine).toBe("pg_atoi");

43 expect(res_0.body.errors[0].extensions.exception.length).toBe(90.0);

44 expect(res_0.body.errors[@].extensions.exception.severity).toBe("ERROR");

45 expect(res_0.body.errors[0].extensions.exception.code).toBe("22P02");

46 expect(res_0.body.errors[@].extensions.exception.file).toBe("numutils.c");

47 expect(res_0.body.errors[@].extensions.exception.line).toBe("62");

48 expect(res_0.body.errors[@].extensions.exception.routine).toBe("pg_atoi");

49 expect(res_0.body.errors[0].extensions.exception.stacktrace.length).toBe(9);

50 expect(res_0.body.errors[0].extensions.exception.stacktrace[0]).toBe("QueryFailedError:
invalid input syntax for integer: \"Z\"");

51 expect(res_0.body.errors[0].extensions.exception.stacktrace[1]).toBe(" at

QueryFailedError.TypeORMError [as constructor] (D:\\WORK\\EXPERIMENTS\\graphqgl-journal\\
y100k_0_9\\ecommerce -server\\node_modules\\typeorm\\error\\TypeORMError.js:9:28)");

52 expect(res_0.body.errors[@].extensions.exception.stacktrace[2]).toBe(" at new
QueryFailedError (D:\\WORK\\EXPERIMENTS\\graphql-journal\\y100k_0_9\\ecommerce-server\\
node_modules\\typeorm\\error\\QueryFailedError.js:13:28)");

53 // Skipping assertions on the remaining 6 elements. This limit of 3 elements can be
increased in the configurations

54 expect(res_0.body.data.findStoreById).toBe(null);

55 1);

The API here returns the error message invalid input syntax for integer: “Z.” In the schema, the
id input for the query findStoreById is of type string (and so EvoMASTER did send an input
string like “Z”), but the API is expecting an integer. Technically, this could be considered as a
schema-related fault. However, there might be good reasons for sending a numeric value as a
string in JSON, as JSON numbers are considered as 64-bit double-float values. This is an issue if
one rather needs to deal with 64-bit integers (e.g., for numeric ids in SQL databases). The major
issue here though is “where” the check is done. The GraphQL specification allows to provide extra
information in the errors objects, under an optional field called extensions. What can be present
in this field depends on the different GraphQL framework implementations. In this particular case,
the full stack trace of an internal thrown exception is added to the response.

First, this could be technically a security issue if the API was in production and not just run
locally for testing. Full stack-trace details are useful for debugging, but they expose internal details
of the API that could be exploited by external attackers. Second, the exception seems to happen in
an SQL SELECT query, which is malformed. The point here is that the id in the SQL database is of
type numeric, and so a value like “Z” is invalid. However, the API does not check for such integer
constraints as a first layer of input validation when a GraphQL query is executed, and rather fails
afterward. This can be a serious problem if there are modifications to the internal state of the API
before the thrown exception, as the API might be left in a inconsistent state.

RQ3: Different kinds of faults were automatically detected with our novel techniques, including
wrong handling of requests for missing data, and generated responses that do not match the API
schemas.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:36 A. Belhadi et al.

6 DISCUSSION AND FUTURE DIRECTIONS

This section discusses the main findings of the article, followed by possible future work. The main
findings of using EvOMASTER for automated GraphQL APIs testing can be summarized as follows:

(1) The first finding of this study consists on the difficulty of automatically identifying test cases
of GraphQL APIs compared to the RESTful APIs. Indeed, the graph representation of the
actions is more complex than the traditional representation of the RESTful APIs. This rep-
resentation is rich and might be used in different domain applications; however, this needs
careful care of the automated test generation process. Furthermore, whereas a RESTful API
can have clear relations between resources based on hierarchical URIs, and that information
can be successfully exploited by test generation tools [85], this does not seem to be the case
for GraphQL APIs (e.g., no easy heuristics to determine which resources on the graph each
mutation operation might manipulate).

(2) The second finding of this study is that the EVOMASTER tool proved its applicability in han-
dling other kinds of web service APIs, represented by GraphQL APIs. EVOMASTER was im-
plemented and architectured from the start to be able to be extended and adapted to other
system test generation domains besides REST APIs [16]. The results obtained in this work
show that EVOMASTER is a generic enough framework for evolutionary-based system test
generation, at least for applications where the entry point is a TCP connection. Being re-
leased as open source [27], EVOMASTER can be further extended and used in other domains
as well.

(3) To obtain better code coverage, white-box heuristics based on search-based techniques can
help significantly. However, existing APIs can have many faults that can be easily detected
by simply sending random inputs. This makes even simple approaches like black-box testing
potentially useful for practitioners.

To improve the effectiveness of the automated GraphQL API testing, several directions may be
investigated in the future:

(1) Test oracle problem: Given a test case, whether the result of its execution is correct or not
can be determined with an automated oracle [34]. Without an automated oracle, the devel-
oper has to determine manually whether the observed test results are as expected or not.
But having to manually check hundreds/thousands of generated test cases might not viable.
As discussed in the article, query responses with errors fields might not be representing
actual faults in the SUT but rather just the user sending wrong data. To mitigate the test
oracle problem, an intelligent automated strategy is needed to differentiate between the ac-
tual faults from the user errors for a given GraphQL API response. One approach is to use
machine learning, particularly supervised classification, to automatically label whether a re-
sponse with an errors field should be treated as a potential fault that the developer should
investigate. When test suites are generated at the end of the search, the test cases could be
ordered based on their probability of representing actual faults.

(2) Evolutionary computation: Evolutionary computation is an intelligent mechanism of explor-
ing large and big solution spaces, inspired by the evolutionary process from nature. In this
research work, we only used the evolutionary algorithms MIO, MOSA, and WTS, but oth-
ers might be more fitting for the case of GraphQL API testing. To further improve the code
coverage of the automated testing in this domain, further investigation should be carried
out in this area. For example, other techniques such as Particle Swarm Optimization [54]
and Ant Colony Optimization [77] could be considered. Combining other testing techniques
(e.g., Symbolic Execution [33]) with evolutionary computation can also be considered a good
direction to further address this problem [48].

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:37

(3) Knowledge discovery: Data mining and knowledge discovery is the process of extracting hid-
den patterns from a large data collection. Decomposition is a widely used technique in solv-
ing complex problems [42, 43]. The aim is to create highly correlated clusters, where each
cluster contains similar data. In our context, the idea is to apply the decomposition method to
the GraphQL schema to derive sub-graphs of schema. Each sub-graph might contain highly
connected actions. Good decomposition methods allow to find independent sub-graphs as
much as possible, to enable the same test case generation while dealing with the sub-graphs
as when dealing with the entire GraphQL schema.

(4) Industrial settings: Further investigations with more case studies will be essential to gen-
eralize the effectiveness of our novel technique. Of particular importance will be to apply
our technique in industrial settings, to see and evaluate how engineers would use tools like
EVOMASTER in practice on their APIs.

7 THREATS TO VALIDITY

Threats to internal validity come from the fact that our experiments are derived from a software
tool. Errors in such a tool could negatively affect the validity of our empirical results. Although
our EVOMASTER extension was carefully tested, we cannot provide any guarantee of not having
software faults. However, as it is open source, anyone can review its source code. Another potential
issue is that the implemented solution in this research work is based on random algorithms. This
happens in particular for population initialization of the evolutionary algorithm, where different
test cases may be generated. To deal with this issue, each experiment for white-box testing was
repeated 30 times [23], with different random seeds, and the appropriate statistical tests were used
to analyze the results. All the APIs used for the white-box experiments are collected in a GitHub
repository called EMB [6], which is stored on Zenodo as well [32]. Furthermore, all of our scripts
used to carry out our experiments are stored as part of the repository of EvOMASTER. This is done
to enable third parties to replicate and validate our experiments. However, experiments for black-
box testing cannot be reliably replicated, as they rely on live services on which we do not have
any control (e.g., they can be modified at any time by their owners).

Threats to external validity are due to the fact that only 7 GraphQL APIs for white-box testing
and 31 GraphQL APIs for black-box testing were used in our empirical analysis. The generalization
of such results to other APIs might not be possible at this stage. More APIs should be investigated
in the future. However, as this is the first work on white-box testing of GraphQL APIs, already
achieving good coverage and finding real faults on a complex GraphQL API provide a promising
first step.

8 CONCLUSION

This article introduced a new approach for automated testing for GraphQL APIs. It is a full com-
plete solution, starting from the schema extraction and ending by automatically generating test
cases outputted in JUnit and Jest format. Two testing modes are implemented and evaluated: white-
box and black box testing.

To intelligently explore the test case space, evolutionary computation techniques are used in the
white-box testing. Two mutation operators (internal and structure mutation) are defined, where
the goal is to maximize code coverage and fault finding. In addition, random testing is used for the
black-box mode.

To validate the applicability of the proposed framework, it is integrated into the EVOMASTER
open source tool. Our empirical analysis was carried out on 7 GraphQL APIs for white-box testing,
empirically comparing three different evolutionary algorithms, and 31 GraphQL APIs for black-
box testing. The results show the clear improvement of using evolutionary computation compared

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

14:38 A. Belhadi et al.

with the RS baseline for white-box testing. Regarding black-box testing, several real faults were
found by random testing in the analyzed APIs.

The work presented in this article is currently integrated in our EVOMASTER tool. It is open
source on GitHub [5], with each new release automatically uploaded and stored on Zenodo
(e.g., [29]). To learn more about EVOMASTER, visit www.evomaster.org.

REFERENCES

]

S

7]
8]

(]
(10]
(1]
(12]
(13]

[1
[2
[3
[4
[5
[6
[

[

[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]
[27]

[28]

GitHub. 20203. AFL. Retrieved August 15, 2023 from https://github.com/google/AFL

GraphQL. n.d. apis.guru. Retrieved August 15, 2023 from https://apis.guru/graphql-apis/

GitHub. 2023. Apollo GraphQL. Retrieved August 15, 2023 from https://github.com/apollographql

GitHub. 2023. e-commerce. Retrieved August 15, 2023 from https://github.com/react-shop/react-ecommerce

GitHub. 2023. EvoMaster. Retrieved August 15, 2023 from https://github.com/EMResearch/EvoMaster

GitHub. 2023. EvoMaster Benchmark (EMB). Retrieved May 20, 2022 from https://github.com/EMResearch/EMB
GitHub. 2023. Home Page. https://github.com

GraphQL Foundation. 2023. Home Page. Retrieved August 15, 2023 from https://graphgl.org/foundation/

GitHub. 2023. patio-api. Retrieved August 15, 2023 from https://github.com/patio-team/patio-api

GitHub. 2023. petclinic. Retrieved August 15, 2023 from https://github.com/spring-petclinic/spring-petclinic-graphql
GitHub. 2023. react-finland. Retrieved August 15, 2023 from https://github.com/ReactFinland/graphql-api

GitHub. 2023. timbuctoo. Retrieved August 15, 2023 from https://github.com/HuygensING/timbuctoo

Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-Walawege. 2009. A systematic review
of the application and empirical investigation of search-based test case generation. IEEE Transactions on Software
Engineering 36, 6 (2009), 742-762.

Mohammad Alshraideh and Leonardo Bottaci. 2006. Search-based software test data generation for string data using
program-specific search operators. Software Testing, Verification, and Reliability 16, 3 (2006), 175-203. https://doi.org/
10.1002/stvr.v16:3

Andrea Arcuri. 2017. Many Independent Objective (MIO) algorithm for test suite generation. In Proceedings of the
International Symposium on Search Based Software Engineering (SSBSE’17). 3-17.

Andrea Arcuri. 2018. EvoMaster: Evolutionary multi-context automated system test generation. In Proceedings of the
IEEE International Conference on Software Testing, Verification, and Validation (ICST’18). IEEE, Los Alamitos, CA.
Andrea Arcuri. 2018. An experience report on applying software testing academic results in industry: We need usable
automated test generation. Empirical Software Engineering 23, 4 (2018), 1959-1981.

Andrea Arcuri. 2018. Test suite generation with the Many Independent Objective (MIO) algorithm. Information and
Software Technology 104 (2018), 195-206.

Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster. ACM Transactions on Software
Engineering and Methodology 28, 1 (2019), 3.

Andrea Arcuri. 2020. Automated black-and white-box testing of RESTful APIs with EvoMaster. IEEE Software 38,
3 (2020), 72-78.

A. Arcuri and L. Briand. 2011. Adaptive random testing: An illusion of effectiveness? In Proceedings of the ACM Inter-
national Symposium on Software Testing and Analysis (ISSTA’11). 265-275.

A. Arcuri and L. Briand. 2012. Formal analysis of the probability of interaction fault detection using random testing.
IEEE Transactions on Software Engineering 38, 5 (2012), 1088-1099.

A. Arcuri and L. Briand. 2014. A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software
engineering. Software Testing, Verification, and Reliability 24, 3 (2014), 219-250.

Andrea Arcuri and Juan P. Galeotti. 2020. Handling SQL databases in automated system test generation. ACM Trans-
actions on Software Engineering and Methodology 29, 4 (2020), 1-31.

Andrea Arcuri and Juan P. Galeotti. 2020. Testability transformations for existing APIs. In Proceedings of the 2020
IEEE 13th International Conference on Software Testing, Validation, and Verification (ICST°20). IEEE, Los Alamitos, CA,
153-163.

Andrea Arcuri and Juan P. Galeotti. 2021. Enhancing search-based testing with testability transformations for existing
APIs. ACM Transactions on Software Engineering and Methodology 31, 1 (2021), 1-34.

Andrea Arcuri, Juan Pablo Galeotti, Bogdan Marculescu, and Man Zhang. 2021. EvoMaster: A search-based system
test generation tool. Journal of Open Source Software 6, 57 (2021), 2153.

A. Arcuri, M. Z. Igbal, and L. Briand. 2012. Random testing: Theoretical results and practical implications. IEEE Trans-
actions on Software Engineering 38, 2 (2012), 258-277.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

www.evomaster.org
https://github.com/google/AFL
https://apis.guru/graphql-apis/
https://github.com/apollographql
https://github.com/react-shop/react-ecommerce
https://github.com/EMResearch/EvoMaster
https://github.com/EMResearch/EMB
https://github.com
https://graphql.org/foundation/
https://github.com/patio-team/patio-api
https://github.com/spring-petclinic/spring-petclinic-graphql
https://github.com/ReactFinland/graphql-api
https://github.com/HuygensING/timbuctoo
https://doi.org/10.1002/stvr.v16:3

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:39

[29] Andrea Arcuri, Man Zhang, Asma Belhadi, Bogdan, Juan Pablo Galeotti, Seran, Amid Gol, Alberto Martin Lopez,
Agustina Aldasoro, Annibale Panichella, and Kyle Niemeyer. 2023. EMResearch/EvoMaster: 1.6.1. Retrieved August
15, 2023 from https://doi.org/10.5281/zenodo.7821550

[30] Andrea Arcuri, Man Zhang, Asma Belhadi, Bogdan Marculescu, Amid Golmohammadi, Juan Pablo Galeotti, and

Susruthan Seran. 2023. Building an open-source system test generation tool: Lessons learned and empirical analy-

ses with EvoMaster. Software Quality Journal. Open Access. Published March 6, 2023.

Andrea Arcuri, ZhangMan, asmab89, Bogdan, Amid Golmohammadi, Juan Pablo Galeotti, Seran, Alberto Martin

Lopez, Agustina Aldasoro, Annibale Panichella, and Kyle Niemeyer. 2022. EMResearch/EvoMaster:. Retrieved August

15, 2023 from https://doi.org/10.5281/zenodo.6651631

[32] Andrea Arcuri, ZhangMan, Amid Golmohammadi, and asmabg89. 2022. EMResearch/EMB:. Retrieved August 15, 2023

from https://doi.org/10.5281/zenodo.6106830

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A survey of sym-

bolic execution techniques. ACM Computing Surveys 51, 3 (2018), 1-39.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The oracle problem in software

testing: A survey. IEEE Transactions on Software Engineering 41, 5 (2015), 507-525.

Asma Belhadi, Man Zhang, and Andrea Arcuri. 2022. Evolutionary-based automated testing for GraphQL APIs. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’22).

Edwin Cabrera, Paola Cardenas, Priscila Cedillo, and Paola Pesantez-Cabrera. 2020. Towards a methodology for cre-

ating Internet of Things (IoT) applications based on microservices. In Proceedings of the 2020 IEEE International Con-

ference on Services Computing (SCC’20). IEEE, Los Alamitos, CA, 472-474.

José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea Arcuri. 2018. An empirical evaluation

of evolutionary algorithms for unit test suite generation. Information and Software Technology 104 (2018), 207-235.

Alan Cha, Erik Wittern, Guillaume Baudart, James C. Davis, Louis Mandel, and Jim A. Laredo. 2020. A principled ap-

proach to GraphQL query cost analysis. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 257-268.

Flavio Cirillo, David Gémez, Luis Diez, Ignacio Elicegui Maestro, Thomas Barrie Juel Gilbert, and Reza Akhavan.

2020. Smart city IoT services creation through large-scale collaboration. IEEE Internet of Things Journal 7, 6 (2020),

5267-5275.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and Tamt Meyarivan. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182-197.

[41] Tomas Diaz, Federico Olmedo, and Eric Tanter. 2020. A mechanized formalization of GraphQL. In Proceedings of the

9th ACM SIGPLAN International Conference on Certified Programs and Proofs. 201-214.

Youcef Djenouri, Asma Belhadi, Philippe Fournier-Viger, and Jerry Chun-Wei Lin. 2018. Fast and effective cluster-

based information retrieval using frequent closed itemsets. Information Sciences 453 (2018), 154-167.

Youcef Djenouri, Jerry Chun-Wei Lin, Kjetil Norvag, Heri Ramampiaro, and Philip S. Yu. 2021. Exploring decomposi-

tion for solving pattern mining problems. ACM Transactions on Management Information Systems 12, 2 (2021), 1-36.

S. Droste, T. Jansen, and I. Wegener. 2002. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer

Science 276 (2002), 51-81.

Carles Farré, Jovan Varga, and Robert Almar. 2019. GraphQL schema generation for data-intensive web APIs. In Model

and Data Engineering. Lecture Notes in Computer Science, Vol. 11815. Springer, 184-194.

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation for object-oriented software. In

Proceedings of the ACM Symposium on the Foundations of Software Engineering (FSE’11). 416-419.

Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE Transactions on Software Engineering 39,

2 (2013), 276-291.

Juan Pablo Galeotti, Gordon Fraser, and Andrea Arcuri. 2014. Extending a search-based test generator with adaptive

dynamic symbolic execution. In Proceedings of the ACM International Symposium on Software Testing and Analysis

(ISSTA’14). ACM, New York, NYY, 421-424.

Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential regression testing for REST APIs. In

Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 312-323.

[50] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2022. Testing RESTful APIs: A survey. arXiv preprint
arXiv:2212.14604 (2022).

[51] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André Baresel, and Marc Roper. 2004. Testa-
bility transformation. IEEE Transactions on Software Engineering 30, 1 (2004), 3-16.

[52] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based software engineering: Trends, tech-

niques and applications. ACM Computing Surveys 45, 1 (2012), 11.

Olaf Hartig and Jorge Pérez. 2018. Semantics and complexity of GraphQL. In Proceedings of the 2018 World Wide Web

Conference. 1155-1164.

[31

—

(33

—_

(34

flan)

[35

—

(36

—

(37

—

(38

=

[39

—

[40

=

[42

—

(43

=

[44

flanr)

[45

=

[46

—

[47

—

[48

[t

[49

—

(53

—_

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

https://doi.org/10.5281/zenodo.7821550
https://doi.org/10.5281/zenodo.6651631
https://doi.org/10.5281/zenodo.6106830

14:40 A. Belhadi et al.

[54]

[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

M. Shamim Hossain, Mohd Moniruzzaman, Ghulam Muhammad, Ahmed Ghoneim, and Atif Alamri. 2016. Big data-
driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE Trans-
actions on Services Computing 9, 5 (2016), 806—-817.

Stefan Karlsson, Adnan Causevi¢, and Daniel Sundmark. 2020. Automatic property-based testing of GraphQL APIs.
arXiv preprint arXiv:2012.07380 (2020).

Raees Khan and Adnan Noor Mian. 2020. Sustainable IoT sensing applications development through GraphQL-based
abstraction layer. Electronics 9, 4 (2020), 564.

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated test generation for REST APIs: No
time to rest yet. arXiv:2204.08348 (2022). https://doi.org/10.48550/ARXIV.2204.08348

Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated test generation for REST APIs: No
time to rest yet. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’22). ACM, New York, NY, 289-301. https://doi.org/10.1145/3533767.3534401

Bogdan Korel. 1990. Automated software test data generation. IEEE Transactions on Software Engineering 16, 8 (1990),
870-879.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In
Proceedings of the ACM International Symposium on Software Testing and Analysis (ISSTA’16). ACM, New York, NY,
94-105.

Bogdan Marculescu, Man Zhang, and Andrea Arcuri. 2022. On the faults found in rest APIS by automated test gener-
ation. ACM Transactions on Software Engineering and Methodology 31, 3 (2022), 1-43.

Alberto Martin-Lopez, Sergio Segura, Carlos Muller, and Antonio Ruiz-Cortés. 2022. Specification and automated
analysis of inter-parameter dependencies in web APIs. IEEE Transactions on Services Computing 15, 4 (2022),
2342-2355.

Sam Newman. 2015. Building Microservices. O’Reilly Media Inc.

Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2018. Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets. IEEE Transactions on Software Engineering 44, 2 (2018),
122-158.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. A large scale empirical comparison of state-
of-the-art search-based test case generators. Information and Software Technology 104 (2018), 236-256.

Antonio Quifia-Mera, Pablo Fernandez, José Maria Garcia, and Antonio Ruiz-Cortés. 2023. GraphQL: A systematic
mapping study. ACM Computing Surveys 55, 10 (2023), 1-35.

Roberto Rodriguez-Echeverria, Javier Luis Canovas Izquierdo, and Jordi Cabot. 2018. Towards a UML and IFML map-
ping to GraphQL. In Current Trends in Web Engineering. Lecture Notes in Computer Science, Vol. 10544. Springer,
149-155.

José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea Arcuri. 2015. Combining multiple cov-
erage criteria in search-based unit test generation. In Proceedings of the International Symposium on Search Based
Software Engineering. 93-108.

José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017. A detailed investigation of the effectiveness
of whole test suite generation. Empirical Software Engineering 22, 2 (2017), 852-893.

Pavel Seda, Pavel Masek, Jindriska Sedova, Milos Seda, Jan Krejci, and Jiri Hosek. 2018. Efficient architecture design
for software as a service in cloud environments. In Proceedings of the 2018 10th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT’18). IEEE, Los Alamitos, CA, 1-6.

Ruben Taelman, Miel Vander Sande, and Ruben Verborgh. 2018. GraphQL-LD: Linked data querying with GraphQL.
In Proceedings of the 17th International Semantic Web Conference (ISWC’18). 1-4.

Daniela Meneses Vargas, Alison Fernandez Blanco, Andreina Cota Vidaurre, Juan Pablo Sandoval Alcocer, Milton
Mamani Torres, Alexandre Bergel, and Stéphane Ducasse. 2018. Deviation testing: A test case generation technique
for GraphQL APIs. In Proceedings of the 11th International Workshop on Smalltalk Technologies (IWST’18). 1-9.
Milena Vesi¢ and Nenad Koji¢. 2020. N. comparative analysis of web application performance in case of using REST
versus GraphQL. In Proceedings of the 4th International Scientific Conference on Recent Advances in Information Tech-
nology, Tourism, Economics, Management, and Agriculture (ITEMA’20). 17-24.

Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTESTGEN: Automated black-box testing of
RESTful APIs. In Proceedings of the IEEE International Conference on Software Testing, Verification, and Validation
(ICST’20). IEEE, Los Alamitos, CA.

Maximilian Vogel, Sebastian Weber, and Christian Zirpins. 2018. Experiences on migrating RESTful web services to
GraphQL. In Service-Oriented Computing—ICSOC 2017 Workshops. Lecture Notes in Computer Science, Vol. 10797.
Springer, 283-295.

D. H. Wolpert and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation 1, 1 (1997), 67-82.

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

https://doi.org/10.48550/ARXIV.2204.08348
https://doi.org/10.1145/3533767.3534401

Random Testing and Evolutionary Testing for Fuzzing GraphQL APIs 14:41

(7]

(78]

(79]

(80]
(81]

(82]

(85]

(86]

Quanwang Wu and Qingsheng Zhu. 2013. Transactional and QoS-aware dynamic service composition based on ant
colony optimization. Future Generation Computer Systems 29, 5 (2013), 1112-1119.

Louise Zetterlund, Deepika Tiwari, Martin Monperrus, and Benoit Baudry. 2022. Harvesting production GraphQL
queries to detect schema faults. In Proceedings of the 2022 IEEE Conference on Software Testing, Verification, and Vali-
dation (ICST’22). IEEE, Los Alamitos, CA, 365-376.

Man Zhang and Andrea Arcuri. 2021. Adaptive hypermutation for search-based system test generation: A study
on REST APIs with EvoMaster. ACM Transactions on Software Engineering and Methodology 31, 1 (2021), Article 2,
52 pages.

Man Zhang and Andrea Arcuri. 2022. Open problems in fuzzing RESTful APIs: A comparison of tools. arXiv preprint
arXiv:2205.05325 (2022).

Man Zhang and Andrea Arcuri. 2023. Open problems in fuzzing RESTful APIs: A comparison of tools. ACM Transac-
tions on Software Engineering and Methodology. Just Accepted. https://doi.org/10.1145/3597205

Man Zhang, Andrea Arcuri, Yonggang Li, Yang Liu, and Kaiming Xue. 2023. White-box fuzzing RPC-based APIs
with EvoMaster: An industrial case study. ACM Transactions on Software Engineering and Methodology. Just Accepted.
https://doi.org/10.1145/3585009

Man Zhang, Andrea Arcuri, Yonggang Li, Kaiming Xue, Zhao Wang, Jian Huo, and Weiwei Huang. 2022. Fuzzing
microservices in industry: Experience of applying EvoMaster at Meituan. arXiv:2208.03988 (2022). https://doi.org/10.
48550/ARXIV.2208.03988

Man Zhang, Asma Belhadi, and Andrea Arcuri. 2022. JavaScript instrumentation for search-based software testing:
A study with RESTful APIs. In Proceedings of the IEEE International Conference on Software Testing, Verification, and
Validation (ICST’22). IEEE, Los Alamitos, CA.

Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2019. Resource-based test case generation for RESTful web
services. In Proceedings of the Genetic and Evolutionary Computation Conference. 1426-1434.

Man Zhang, Bogdan Marculescu, and Andrea Arcuri. 2021. Resource and dependency based test case generation for
RESTful Web services. Empirical Software Engineering 26, 4 (2021), 1-61.

Received 13 September 2022; revised 19 June 2023; accepted 2 July 2023

ACM Transactions on the Web, Vol. 18, No. 1, Article 14. Publication date: January 2024.

https://doi.org/10.1145/3597205
https://doi.org/10.1145/3585009
https://doi.org/10.48550/ARXIV.2208.03988

