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ABSTRACT The Lifelog Search Challenge (LSC) is an interactive benchmarking evaluation workshop
for lifelog retrieval systems. The challenge was first organised in 2018 aiming to find the system that can
quickly retrieve relevant lifelog images for a given semantic query. This paper provides an analysis of
the performance of all 17 systems participating in the 4th LSC workshop held at the 2021 Annual ACM
International Conference on Multimedia Retrieval (ICMR). LSC’21 was the largest effort at comparing
different approaches to interactive lifelog retrieval systems seen thus far. Findings from the challenge suggest
that many different interactive factors contribute to the success (or otherwise) of participating teams. In this
paper, we provide an overview of the LSC’21 challenge, introduce each team’s approach and explore these
factors in depth and offer clues on how to develop a high-performing interactive lifelog search engine.

INDEX TERMS Lifelog, information retrieval, multimodal, analytics.

I. INTRODUCTION TO THE LIFELOG SEARCH CHALLENGE
In recent years, the increase in volume of personalmultimedia
data from wearable computing devices has created a need for
reimagining how large volumes of personal data can be organ-
ised. Specifically, we note the ubiquity of self-quantification
devices [1] and the increasing prevalence of point-of-view
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(PoV) cameras. Consequently, the annual Lifelog Search
Challenge (LSC) was started in 2018 to provide a collabora-
tive and open forum for researchers to compare approaches
to interactive retrieval from large personal data archives,
with a specific focus on lifelog data from wearable sensors,
such as chest-mounted cameras, biometric wearables, and
location trackers. The LSC challenge has been instantiated
as a workshop at the ACM ICMR conference, and the 4th
Lifelog Search Challenge (LSC’21) took place during ACM
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ICMR’21, in November 2021. It has been the largest LSC
workshop to date with 17 participating teams. Due to the pan-
demic, the search challenge was organised as a virtual work-
shop, where participants and organisers were connected in a
video conferencing session. Each participating system took
part in a synchronised competition which required the inter-
active processing of a wide range of information needs and
the performance of each system was calculated in real-time
and displayed on a shared scoreboard. The best performing
system was identified at the end of the search challenge,
which lasted about two hours.

At LSC’21, each of the participating teams brought a
unique and customised search engine to the challenge. In this
paper, we introduce the LSC challenge, describe all com-
peting systems, and highlight the techniques and compo-
nents that are employed in state-of-the-art interactive lifelog
retrieval systems. We conclude by suggesting how future
interactive lifelog retrieval challenges can be improved.
To the best of our knowledge, LSC’21 is the largest iteration
of the challenge at the time of writing. Since the compar-
ative analysis of LSC’18 [2], many approaches have been
proposed and refined for the task of lifelog retrieval. A thor-
ough investigation is important to define the future of this
research area. The contributions of this work are, firstly,
the introduction to a novel collaborative retrieval challenge,
the review of the state-of-the-art approaches, and a detailed
analysis of system performance leading to clues as to how
to develop a next-generation of interactive lifelog retrieval
system.

II. THE LIFELOG SEARCH CHALLENGE
The Lifelog Search Challenge is a participation workshop
in which teams compete with each other to develop the
leading interactive lifelog retrieval tool. The aim of the
challenge is to provide an open and collaborative environ-
ment for participants to benchmark the performance of their
interactive retrieval systems and learn from the performance
of their systems and competitor systems. It is anticipated
that the open, shared, metrics-driven evaluation will lead to
an increase in the performance of all retrieval systems for
lifelogs.

The challenge is organised as a synchronous, live compe-
tition in which a large number of tasks (information needs)
are presented in sequence to the participants who must solve
each task and submit the correct answer to a host server,
which calculates scores and displays system performance
on a shared scoreboard. Each task is represented as a form
of known-item search with a unique relevant lifelog event.
Given a time-limit of five minutes, tasks are presented to
all participants in a synchronous manner, meaning that all
participants see the same task at the same time and see their
position on the scoreboard in real-time.

We will now describe the dataset and tasks used for the
challenge. At the LSCworkshop, datasets are usually used for
two sequential years before being replaced by a larger dataset.

A. LSC DATASET
To support the comparative challenge, a four-month lifelog
dataset from one individual lifelogger was distributed to all
participants a number of months before the challenge took
place. This dataset had also been previously employed in the
LSC’20 workshop, though the version used in LSC’21 was
slightly smaller in size, having had 8,126 images removed for
data governance reasons. The dataset had been constructed
by merging parts of the three NTCIR Lifelog datasets from
2016 [3], 2017 [4], and 2019 [5], with images from 2015,
2016 and 2018, respectively. It consisted of an image dataset
of 183,299 wearable camera images at a resolution of 1024×

768 (37.35GB). These images were captured using either
an OMG Autographer or Narrative Clip wearable camera,
typically at a rate of around one every 30 seconds during
waking hours. These devices are worn clipped onto clothing
or on a lanyard around the neck, facilitating the capture of
a first-person view of the life experiences and activities of
the lifelogger. Prior to release, all images were anonymised,
which means that faces and most readable text on screens
were redacted in a manual or semi-manual process. Addi-
tionally, there was an associated metadata file consisting of
timestamps (on a minute-by-minute basis, physical activities,
detailed minute-by-minute biometrics (for all years except
2015), locations of the individual, and for each image, a list
of visual concepts extracted from the non-redacted version
of the image dataset, which includes bounding boxes for
objects. Example images from the collection are shown in
Figure 1 (below). It is worth noting that a unique aspect of
the LSC challenge is that the lifelog dataset includesmetadata
captured 24 × 7 and point-of-view wearable camera images
captured all day, during waking hours.

B. TASKS & RELEVANCE JUDGEMENTS
For the LSC’21 benchmarking workshop, 24 tasks were pre-
pared with a textual query and a manually generated ground
truth. Each task represented an information need and most
were generated by the lifelogger who created the collection.
The tasks were selected to represent important life activities
that only occurred once (or very few times) within the dataset,
and as such represented a form of known-item search. Tasks
were formed with a single information need in mind, but were
constructed in a temporally advancing manner, with each task
being composed of six increasingly detailed task descriptors,
which were revealed at six points (0, 30, 60, 90, 120, and
150 seconds). The final (detailed) subtask remained on screen
for 150 seconds, meaning that each task had an allocated time
of five minutes. An example of LSC’21 tasks is detailed in
Table 1 and some images from the ground truth are shown in
Figure 1.

The participating teams were required, for each task,
to find any relevant image and submit it to a host
server [6]. The host server maintained a countdown clock
and actively evaluated submissions against the ground
truth.
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FIGURE 1. Some lifelog images as ground truth from task I in Table1.

TABLE 1. Task 1 with its temporally advancing descriptors, which were
revealed at 30-second intervals. After 150 seconds, the full description is
shown for another 150 seconds until the end of the task.

C. SCORING
For each task, its score depends on the time of the first
correct submission and the number of previous incorrect
attempts by the team. The score ranged from 0 to 100, with
an overall normalised score continuously displayed for each
team, aggregating the scores for the tasks up until that point.
For a given task, the score is calculated as follows, and is
identical to the KIS scoring function at the VBS challenge [7].
Given a linearly decreasing function fTS based on search time,
the time of correct submission t and the number of wrong
submissions ws, the score (TS) for a given task for a single
team is as shown in equation (1) below:

fTS (t,ws) = max(0, 50 + 50 · fTS (t) − 10 · ws) (1)

fTS therefore results in at least 50 points for a correct sub-
mission if no incorrect submission was previously made, and
penalises each wrong submission by 10 points. For more
details, see [7].

III. PARTICIPANT TEAM OVERVIEWS
In LSC’21, 17 teams took part in the benchmarking chal-
lenge. Each team had had access to the full dataset to process

and index the data a number of months prior to the challenge.
In this section, we briefly introduce each system. Readers are
encouraged to read the individual participant papers describ-
ing each system from the LSC’21 proceedings [8].

TheMyScéal system [9] was a second generation retrieval
system which first participated at LSC’20 [10]. This system
was designed to support novice users who would not be
familiar with interactive lifelog retrieval systems. Therefore,
the tool was designed with a straightforward user interface
based on textual queries. Additionally, it integrated a novel
scoring function measuring the similarity between semantic
textual inputs and the annotations of images, which were
visual concepts such as objects or OCR detected in images,
to find relevant images. Furthermore, the interface of the
system contained amap visualising the GPS data which could
be used as a filtering mechanism according to geographic
bounds.

The SomHunter+ [11] team participatedwith an extended
version of the SOMHunter tool from previous VBS/LSC
events, which relied on a new text search model based on
CLIP [12] (developed by Open AI) that proved to be effective
on a large variety of different datasets. The system utilized
alsoW2VV++model [13] for similarity search and localized
queries. For results of a query, the tool supported a grid based
visualization as a ranked list or as a relevance-aware self-
organizing map. In addition, the tool supported temporal and
localized queries, allowing users to express both temporal
dependencies and location of searched items. However, the
users found that the structure of the tasks at the competition
led mostly to pure query-and-scroll search strategy, which
was sufficient for most of the solved tasks. Especially for
tasks with known displayed text in the searched image, the
CLIP model demonstrated notable effectiveness in OCR.

LifeSeeker [14] is the third version of the concept-based
retrieval system firstly introduced in LSC’19 [15]. The key
idea behind the search mechanism is to leverage the image’s
annotations, including visual concepts, text and additional
metadata, in order to retrieve the desire moments by means
of two different models, elastic search and weighted bag-of-
words. By extracting more visual objects using the Microsoft
vision API, refining GPS data information and defining
semantic location names, indexed concept based knowledge
is enriched leading to an increase in searching speed and
accuracy.
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Voxento [16] is an interactive voice-based retrieval system
for lifelogs which has participated since LSC’20 [17] and
provides a spoken interface to the lifelog dataset, which facil-
itates users to interact with a personal lifelog using a range
of vocal commands and interactions. The system relies on
Google web speech API for speech recognition and synthesis.
The user has the choice to use a mouse and keyboard or voice
interaction at any stage during the interaction with the inter-
face. Voxento at LSC’21 employed the backend API provided
by [18], which uses the CLIP model for text-to-image search
based, with minor modifications to support some interaction
requirements of Voxento.

The CVHunter [19] system was tested as a ‘‘rapid-
development’’ based application (in WPF .NET) created in
a short time period before the competition. The application
used the same metadata as SomHunter+ and provided basic
browsing functions like ranked set scrolling, day summary
browsing, and query by example image search. According to
the results of CVHunter, this experiment demonstrated that
with already available state-of-the-art content-based features,
it is possible to relatively quickly design/implement a simple
yet competitive system for the evaluation benchmark.

Memento [18] is a prototype lifelog search engine which
participated for the first time in LSC’21. The system imple-
mented image-text embeddings derived using the CLIP [12]
model. The system also accepts queries in natural language
allowing the user to specify visually complex scenarios quite
easily. Memento further supports searching for events with a
temporal context allowing users to search for a target event in
the context of a past or future event. The user interface of the
system includes a primary search interface to initiate search
and view results, a starring feature to tag probable images
during an ongoing search, and a data filtering component to
support faceted filtering while supporting data visualization
of the ranked results to aid better decision-making during the
challenge.

FIRST [20] is an interactive retrieval system that supports
multiple modalities for interaction and query processing,
including textual querying, query by meta-data (including
date, time, and location) Additionally FIRST also utilises
extract scene text, entities, activities, places to enrich the pro-
vided meta-data for each image. Text and visual information
matching is based on joint embedding model. Scene cluster-
ing is based on visual and location information, facilitating
two types of content clustering. The system also integrates
a flexible timeline to shrink or expand the time interval of
interest and query expansion with visual examples for visual
similarity-based ranking.

NTU-ILRS (LifeConcept) [21] is an interactive visual
lifelog retrieval system that also utilises word embeddings
to reduce the semantic gap between textual queries and the
images. Additionally, the relation graphs within images are
extracted by employing the Multi-Level Scene Description
Network [22] since the queries may describe relationships
among objects. As a result, word-level and sentence-level
embeddings are encoded into the framework. To further

confirm the information need of the user, the system provides
a list of relevant concepts of the query terms by consulting
the recommendation from ConceptNet1 for user selection.
Finally, a ranking mechanism is employed that is based on
the BM25 scoring function to search the relevant images and
display them to the user.

lifeXplore [23] is a visual lifelog retrieval system built for
temporal structuring and filtering of lifelog data. The system
consists of a MongoDB2 database and a Node.js3 back-end
that interacts with an Angular front-end that provides rich
search and filtering features. The interface allows to filter
data by time-related groups, such as years, months, days,
weekdays, day-times, etc., and to combine such filters with
content-based search for contained objects, full-frame con-
cepts, and recognized text. Results can be grouped by coher-
ent days, further inspected by ameta-data viewers, or they can
be used for content-based similarity search to explore other
similar data items.

LifeMon [24] is a new prototype system aimed at explor-
ing the suitability of MongoDB for lifelog storage and
retrieval. The system maps the LSC metadata into two doc-
ument schemas and provides a browser-based filtering inter-
face based on the commonly used metadata, such as date and
time, concepts, attributes and categories. Users can examine
result images in detail and traverse their temporal context.
With suitable indexing, the performance was sub-second for
most tasks on amoderate laptop, indicating a potential for this
architecture.

vitrivr [25] is an open-source4 multimedia retrieval sys-
tem [26] which has previously participated at the LSC work-
shop [27], [28]. It utilizes a dedicated database for multime-
dia features [29], [30] and a retrieval engine [31] support-
ing different query modalities and media types. Query-by-
sketch, query-by-example, semantic concepts, and query-by-
motion are some examples of supported retrieval models. For
LSC’21, the system introduces an image stabilisation module
to address the lifelogger’s movements, as well as support for
map-based queries.

vitrivr-VR [32] is a multimedia retrieval system in Virtual
Reality which builds upon the vitrivr stack, utilizing the same
retrieval engine and database. It has shown competitive per-
formance at interactive competitions [33], [34]. It offers novel
VR-based ways to present and interact with results, such as a
cylindrical result presentation view and a multimedia drawer
with which results of a single day can be quickly explored
in VR.

Exquisitor [35] is a research prototype aimed at study-
ing the role of interactive learning in large-scale multimedia
analytics applications. The overall goal of Exquisitor is to
evolve a semantic classifier, in cooperation with the user
using relevance feedback, to capture the user’s information

1http://conceptnet.io
2https://www.mongodb.com/
3https://nodejs.org/en/
4https://vitrivr.org
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need [36]. To support rapid semantic model construction and
collection exploration, Exquisitor provides a search capacity
to identify positive examples, filtering to focus the scope
of exploration, and timeline-bases exploration. Furthermore,
to support tasks with a temporal component, Exquisitor
allows building multiple classifiers and retrieving segments
that satisfy both, optionally with a constraint on the temporal
relationship. Due to a late issuewith indexing semantic labels,
which in turn led to incorrect mappings between images and
their labels, the system performed worse than in previous
competitions.

XQC [37] relies on the interactive learning engine of the
Exquisitor system, but provides a cross-platform interface for
collection exploration. TheXQC system hasmost of the func-
tionality of the Exquisitor system, aside from temporal oper-
ators, and therefore suffered the same index mapping issue
as its parent system. The main goal of the XQC team was to
investigate the feasibility of a mobile interface, however, and
they took part using one Android-based mobile phone. The
fact that XQC performed comparably with Exquisitor indi-
cates that mobile interfaces have perhaps surprising potential.

PhotoCube [38] is a prototype for a multimedia analyt-
ics system, based on the Multidimensional Media Model
(M3, pronounced ‘‘emm-cube’’). The M3 model proposes
to map a media collection to a multi-dimensional metadata
space [39], supporting faceted exploration of these dimen-
sions and mapping the result of the faceted filters to an
exploration cube in 1–3 dimensions. The PhotoCube proto-
type consists of a media server, implemented in PostgreSQL,
and a browser-based exploration client. The M3 model is
intended for collection exploration, rather than item-based
media retrieval, and the current prototype does not support
efficient query construction, so PhotoCube was expected to
poorly match the tasks of the LSC competition.

ViRMA [40] is a virtual reality multimedia exploration
prototype which shares the same back-end server as Pho-
toCube [38], with both systems utilising the Multidimen-
sional Multimedia Model (M3) [39], which supports the
browsing of multimedia data objects by translating them from
multidimensional media space to 3D space. This can then be
easily mapped to 3D virtual space in ViRMA so that the user
can navigate and browse the output from their filter queries
in a direct and intuitive way. However, as was the case with
PhotoCube, the prototype’s features did not translate very
effectively to the LSC competition as the system is tuned
toward exploration, rather than search, and the LSC tasks are
currently very search-focused. Due to this, the researchers
intend on supporting more explicit exploration and browsing
tasks in the future, such as assisting in the generation of search
tasks for future LSC challenges.

LifeGraph [41] is an experimental Knowledge Graph-
based lifelog retrieval system that participated to LSC for
the second time in 2021. The underlying graph is built from
instances of everyday objects that have been automatically
detected in the lifelog images. The detected concepts are

then linked to an external knowledge base5 in order to enrich
them with additional context, enabling the indirect retrieval
of higher-level semantic concepts which cannot easily be
detected directly. Querying is done by selecting an arbitrary
number of graph nodes as start points. The graph is then
traversed until a sufficiently large number of log entries
is reached. The score of a result is inversely proportional
to its graph distance from the start points. An embedding
method originally developed for link prediction [42] is used
to query for similar log entries based on previously retrieved
ones. LifeGraph re-uses several components from the vitrivr
stack. It shares the underlying database system [29] and uses
modified versions of the retrieval engine as well as the user
interface.

IV. A REVIEW OF APPLIED TECHNIQUES
The 17 systems just introduced utilise a wide variety of under-
lying technologies. We will highlight the main approaches
taken by the participating systems in the following section
and in table 2. These approaches can be seen as an indication
of the state of the art components of a modern interactive
lifelog search engine. Please note that the below summaries
are not-exhaustive. Given space limitations, we have limited
the number of systems that we highlight for each technical
approach. The interested reader should review table 2 and find
more details in the associated participant papers.

A. CONCEPT-BASED RETRIEVAL
Concept-based search is a conventional approach to retrieval
from visual media archives that employs object detection
techniques to associate visual concepts with an image. Each
image is assigned a list of visual concepts which are then
used in various techniques to match with the query. For the
LSC’21 challenge, the concepts generated by Microsoft’s
Vision API,6 utilised by MyScéal at LSC’20, were provided
to every participating team before the live challenge. In addi-
tion, the teams may choose more computer vision models to
attain the concepts.

All participating teams implemented some form of
concept-based retrieval, whether as a source for semantic
matching with textual queries, or as a form of faceted filter-
ing. Some groups took a more novel approach to employing
visual concepts. For example, MyScéal [10] uses aTF-IDF,
a modified version of TF-IDF, which exploits the provided
object annotations by incorporating the object’s area into
scoring. Considering that retrieving the images may require
understanding the relative position of objects, NTU-ILRS
incorporates the relation graph of objects with the visual
concepts of images. Moreover, NTU-ILRS expands the query
terms from the given queries by utilising ConceptNet to
produce additional suggested terms to assist the user to gener-
ate suitable query terms. Other participants, such as FIRST,

5https://www.wikidata.org/
6https://azure.microsoft.com/en-us/services/cognitive-services/

computer-vision/
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extract objects using Faster RCNN [43], EfficientDet [44],
and their own object detectors for items that appear in daily
life activities.

B. MULTIMODAL EMBEDDINGS
Embedding-based search has shown great promise to support
effective content retrieval between modalities. In embedding-
based search, both natural language queries and the images
from the dataset are mapped into a common space, where
their similarity is evaluated. Cosine similarity is a popular
choice for comparison and is defined as:

cos(q, c) =
qc

∥q∥∥c∥
=

∑n
i=1 qici√∑n

i=1 (qi)2
√∑n

i=1 (ci)2
(2)

where q is the encoded search query, and c is the encoded
image.

Multimodal embedding models have gained significant
attention in recent years. They are also frequently used in
state-of-the-art video retrieval systems [7]. As for LSC’21,
more than half of the teams apply this approach to their
system. For instances, both vitrivr and vitrivr-VR utilise
an approach similar to W2VV++ [13] originally devel-
oped and used in video retrieval [33], [34], [45]. In NTU-
ILRS, the visual concepts provided by the object detection
model from Microsoft Vision API are encoded with Fast-
Text [46] while the generated image captions and the user’s
queries are encoded with Sentence BERT [47]. The images
are then retrieved using cosine similarity scores between
query embeddings and image embeddings constructed by
the image-to-text and image-to-caption models [48]. FIRST
used their own Self-Attention-based Joint Embedding Model
(SAJEM) [20] using Faster R-CNN Bottom-Up to encode
images and RoBERTa to encode text description. Memento
[18], SomHunter+ and CVHunter used image-text embed-
dings derived from the zero-shot CLIP model [12] and ranks
the images by comparing the query vector with the image
vectors on the basis of cosine similarity scores. One notable
advantage of the CLIP model over, e.g., W2VV++ is the
usage of sub-word encoding in the text embedding branch.
This makes the model more robust against various nuances
or typos in the text query and allows users to construct
more natural descriptions of the searched image, rather than
‘‘keyword-style’’ descriptions. The impressive performance
of CLIP has led to its adoption by teams in the following
year [49].

C. OPTICAL CHARACTER RECOGNITION (OCR)
This year’s challenge introduced a new trend in formulating
search queries which relied on the presence of visible text
in the target images. This had been hinted at in the previous
year’s competition, where some queries would clearly have
benefited from the presence of OCR text extracted from the
image content. One example of such queries is Task 14,
presented in Table 1. With the first hint of ‘I remember the

TagHeuer advertisement for a watch’, a search for an image
with the word ‘TagHeuer’ recognised by an OCR model
would be sufficient to solve the task.

Various off-the-shelf OCR tools were employed by par-
ticipants to enrich the searchable data with texts extracted
from the visual content. One of such is Google’s CloudVision
API 7 that was used by MyScéal. However, it is not always
obvious whether a hint in the query is searchable using OCR
models. In such cases, embedding models, especially CLIP,
as mentioned in the previous subsection, are seemingly a bet-
ter choice as they support recognising both texts and semantic
content in images. However, the OCR performance of CLIP is
mixed [12] and might not be as optimised as the OCRmodels
that are specially designed for this task.

D. TEMPORAL QUERY HANDLING
To address the temporal nature of many lifelog queries
(e.g. the lifelogger did this, then that), some systems provide
the functionality to search for multiple temporally ordered
queries. MyScéal’s supports three ordered queries, where
the supplementary queries (before and after) are performed
conditionally on the main one. That is, the main query is
searched first. Then, for each result, a time filter is created
(e.g. 2 hours later), which is used with the supplementary
search query. Vitrivr and vitrivr-vr support an arbitrary num-
ber of temporally ordered queries, whose scores are fused
together in a late fusion step [50], [51]. Exquisitor supports
temporal query handling by building multiple semantic clas-
sifiers and merging the results of two classifiers based on
temporal conditions [35]. Memento’s [18] temporal search
algorithm initially attempts to locate the target event and then
in the subsequent stage re-ranks the initial list by searching
for the past and future context provided by the user in a
predefined search space. SomHunter+ and CVHunter both
support querying via two temporally ordered queries, where
the best match for the second query is considered from a
fix-sized neighborhood of the first query’s target [52]. For
handling the temporal queries, LifeSeeker proposes Elastic
Sequencing [53] to display next and previous images with
respect to the current image in a sequence. The time distance
between them can be manually adjusted to being temporally
nearby or further apart.

E. RELEVANCE FEEDBACK
Relevance feedback is a commonly used technique to sup-
port a user’s interaction with an interactive retrieval sys-
tem. Exquisitor uses relevance feedback in which the user
is presented a set of items they need to label either pos-
itive or negative. The feedback from the user is used to
train a new or existing classifier, that is then used to
retrieve a new set of suggestions to present the user with.
SomHunter+ also supports iterative relevance feedback, but
in contrast to Exquisitor, only positive examples are labeled,

7https://cloud.google.com/vision/docs/ocr
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while negative ones are sampled from unlabeled items.
SomHunter+ relies on a Bayesian-like updates of relevance
probability governed by distances to positive and nega-
tive samples [54], [55]. Similar to the approach to video
retrieval [56], vitrivr and vitrivr-vr support simple more-like-
this queries using MobileNet V18 [57] NTU-ILRS, imple-
ments something similar in that their system asks the user to
provide more details of their desired images, such as location,
time, and so on, to filter out images not related to the queries.

F. VISUAL SIMILARITY
Image similarity can be considered to be a form of relevance
feedback for image and video data; it is commonly used as
a form of alternative search in which the user can request
images that are visually similar to a specific image that they
have already located. For image similarity, MyScéal com-
bined features from a pretrained VGG16 model [58] with
visual local features [59], [60], [61]. Likewise, FIRST and
SomHunter+ used ResNet152 and W2VV++ [13] features
respectively to calculate the similarities. Meanwhile, Life-
Seeker utilises the Bag-of-Visual-Words model to transform
visual images into numeric vector representations before
implementing theK-means algorithm to cluster those visually
similar images into groups of images.

Visual similarities can also be used in other ways. MyScéal
joined temporally adjacent images that are visually similar to
reduce visual clusters. In addition, FIRST exploited similarity
scores between images to form clusters and display search
results.

G. LOCATION VISUALISATION
Many groups facilitated map-based search on a map anno-
tated with important semantic locations. In MyScéal, the
search results are clustered in the map section along with
the location names inferred by the query parser. The user can
also draw a rectangle on the map to narrow the search space
down to only the moments that happened inside that area.
FIRST also visualises photo clusters based on geolocation
on a map. Furthermore, vitrivr offered a map-based query
interface using leaflet9 and the leaflet-geosearch package10

to query for arbitrary locations.

H. NOVEL INTERACTION
Most of the systems that participated this year utilised a
desktop-based interface. However, some systems experi-
mented on a Virtual Reality (VR) interface such as vitrivr-
VR, PhotoCube, andViRMA.Another team,XQC, employed
the functionality of the Exquisitor system on a mobile inter-
face, specifically Android-based. Moreover, both Voxento
and vitrivr-VR used speech recognition to assist a user to
formualte a query.

8https://tfhub.dev/google/imagenet/mobilenet_v1_050_192/quantops/
feature_vector/3

9https://leafletjs.com/
10https://github.com/smeijer/leaflet-geosearch

TABLE 2. Selected approaches used by participating systems. For each
system, a reference to the paper describing the method is given. Very
common techniques, such as search/filter by visual concept and filter
using the provided metadata (e.g. time, location), are not included in this
table, since most systems implement some form of both.

V. PERFORMANCE ANALYSIS OF PARTICIPANTS
The LSC benchmark provides a single numerical score that
reflects the relative performance of each system in the chal-
lenge, with the top system given a score of 100 and all other
systems being scored in relation to this.

A. OVERALL SCORE
Table 3 illustrates the number of tasks that each system found
the correct answers as well as its final normalized score.
It can be seen from the table that although MyScéal achieved
the highest score, Lifeseeker was the team that solved the
most tasks compared to other participants. This is because
the score was calculated not only based on the number of
tasks solved by a team but also its accuracy in their sub-
missions to find the answer of the tasks. Additionally, the
search time for each task also plays a critical role in the
scoring.

All lifelog retrieval systems participated managed to get
at least 3 correct answers out of 23 tasks in total, however,
there was no team able to solve all given queries. While there
was a ranking of all teams, it is worth noting that there was
actually very little difference between the top 3 teams, with a
difference of 1 in the number of solved tasks and 3 points in
the final score. MyScéal achieved the top performance and
acquired the first place although the number of tasks they
solved was the same with SomHunter+ and one task less
than Lifeseeker. Despite the first time attending the LSC,
CVHunter and Memento achieved a high performance with
15 and 16 solved tasks accordingly. Experience suggests
that in the second and subsequent years, that participating
teams achieve a high ranking as they refine and enhance an
existing system, rather than create a new one for subsequent
years.
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TABLE 3. The overall scores of 17 participating teams with the number of tasks that they successfully solved.

B. NUMBER OF CORRECT/WRONG SUBMISSIONS
For a deeper understanding in performance of participants,
Figure 2 depicts the number of correct and wrong submis-
sions of each team made across all tasks in LSC’21. The blue
bars indicate the number of correct answers (or solved tasks as
shown in Table 3), whilst the orange bars illustrate the num-
ber of incorrect answers. VIRMA and vitrivr are the teams
submitted the most with 43 and 36 submissions, respectively.
They also had the most wrong answers compared to others
which lowered their scores. The accuracy of submission is
also a key factor in evaluating the scores of systems. This is
one of the reasons why MyScéal recieved a higher final score
than SomHunter+ and LifeSeeker althoughMyScéal had less
correct answers than the latter teams. The same is true for
XQC, Exquisitor and PhotoCube which all obtained 5 solved
tasks but PhotoCube had the least score with more incorrect
submissions than the other 2 teams.

FIGURE 2. Number of correct/wrong submissions per team across all
tasks.

Figure 3 shows the precision and recall of the submissions
from each team. There is a clear gap between the top 4 ranked
teams and the rest. which are MyScéal, SomHunter+, Life-
Seeker, and Voxento. Indeed, given the subtleties of the scor-
ing mechanism, all of these four teams could be considered
the top performing teams with equivalent performance. Addi-
tionally, given the fact that a major factor in the perfor-
mance of an interactive system is the skill and expertise of
the searcher, it becomes even more difficult to differentiate
between the performance of the top ranked systems.

With the least number of incorrect submissions (see
Figure 2), Voxento managed to achieve the highest precision

among all participants with 18 correct answers out of
21 submissions. In contrast, the recall of the top performaing
systems shows a small difference. LifeSeeker obtained the
highest recall when they could solved 20/23 queries which
is slightly better than MyScéal, SomHunter+ and Voxento.
It is interesting to point out that SomHunter+ got higher final
score than LifeSeeker, inspite of having lower precision and
recall evaluation metrics.

FIGURE 3. Precision and Recall per team across all tasks.

C. SEARCH TIME
The score for each solved taskwas given based on not only the
number of incorrect items previously submitted by that team
during that task but also the time taken to find the correct
image. We now further investigate the performance of each
team by analysing the submission time of systems. Figure 4
illustrates the search time of teams only when they suc-
cessfully submitted correct answers. This means we exclude
the data from tasks that a system could not solve. Because
SomHunter+ had the lowest median search time for solved
tasks, this system secured the second place although the
third-placed LifeSeeker managed to obtain better precision
and recall. Nevertheless, MyScéal is the team having a stable
and low overall search time. Most of the time when MyScéal
found an answer for a task (16 out of 19 solved tasks), it only
took them half of the maximum allowed time meaning that
they spent less than 150 seconds while 300 seconds was
allowed. Contrary to MyScéal, liveXplore and LifeMon are
examples of teams that usually submitted their correct answer
later than other teams, although the latter system could solved
a task with less than a minute twice.
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FIGURE 4. Elapsed time until the first correct submission per team across
all tasks.

Figure 5 depicts the search time of each system for all tasks
regardless of whether they could find the correct answer or
not. If a system cannot submit the correct result within this
time, no score is allocated for that task. As can be seen for the
chart, there is a correlation between the rank of systems with
their search time. Systems having lower search time (faster
performance) tend to have a better rank. Although sharing the
same back-end search engine, Voxento needed slightly less
time to retrieve the results than Memento. Recalling the point
made earlier about participants usually performing better in
second and subsequent years, in this case, Voxentowas partic-
ipating in the second challenge, with Memento participating
for the first tine, so this observation holds true in this case.
There are other two teams using the same back-end which
were vitrivr and vitrivr-VR. Despite solving less tasks (as
shown Table 3), vitrivr-VR showed the promise of applying
virtual reality environments to lifelog retrieval when they got
the correct answer faster than the desktop version for some
solved tasks as indicated in Figure 4. Moreover, Figure 5
reveals a large difference in the search time between the top-6
teams and other teams. This is one of the reasons leading to
a big gap in the final scores between Memento and FIRST.

FIGURE 5. Time till first correct submission per team across all task,
including unsolved tasks. The 300 second time duration should be taken
as an unsolved task.

D. QUERY ANALYSIS
We now analyze more details about each task in LSC’21.
Table 4 shows examples of tasks used in the challenge.
A task included 6 hints (separated by the character ‘ / ’ as
depicted in the Table 4) in which a new hint was shown
to the participants every 30 seconds, in order to provide
additional contextual information for the searcher. The tasks
were constructed with a pattern of initially showing a vague
information about the specific images (i.e. ‘white t-shirt’)
then incrementally revealing more detail (e.g. ‘it said I love
bicycle’, ‘afternoon’). The final piece of information shown
to teams usually indicated the particular places or times of the
answers of the tasks (i.e. ‘15th May 2015’).

Figure 6 illustrates the score awarded to systems for each
query they solved. The maximum score that a team can obtain
for each task is 100. The tasks are ordered in the ascending
level of difficulty (how hard it was to find the correct answer).
The task is considered as easy if many teams can solve it and
have high average score. For example, Figure 6 shows that
most of teams found the correct answer for task 5 and with
relative high score, whilst there were only 4 systems could
not solve the task. The reason behind this is that most of the
important detail were given in the beginning hints including
visual information with places and times (‘whiteboard’, ‘stu-
dent’, ‘blue and black top’, ‘in the office’, ‘in 2016’).

Task 14 was the task that teams managed to solve in
the shortest time period. There were 4 teams that almost
instantly solved this query just right after the first hint was
revealedwhichwereMyScéal, SomHunter+, LifeSeeker, and
CVHunter. This is because the very first hint mentioned the
‘TagHeuer’ text in the images. There was only a few images
containing this brand name, hence this OCR hint helped
teams to find the result quickly and nearly get the absolute
score for the task. For teams that implemented OCR or the
CLIP model (with the inherent OCR), this was an easy task.

One of the hardest tasks was task 11. Only 3 teams which
were MyScéal, LifeSeeker, and lifeXplore submitted the cor-
rect answer. However, there was a huge difference in their
scores where MyScéal achieve 88 but the latter two only
scored 54 and 53 accordingly. For this task, even though its
hints showed many visual details in the beginning, it was not
easy to solve as the main object mentioned in the query text
‘telescope’ was not in the provided metadata of the lifelog
dataset. Moreover, other things such as ‘red flower vase’,
‘white violin’, and ‘painting’ were not clearly visible in the
image that contained the telescope. For very complex queries
such as this, an effective interactive retrieval system (which
supports browsing of the temporal context of search result)
can assist the user in locating the desired items.

Task 4 and Task 18 were also difficult to solve, in that
only a few teams managed to get the correct submission.
Moreover, the scores they were awarded also considerably
lower than other tasks. Regarding task 4, although it had the
OCR information in the hints (‘I love bicycle’), the correct
image included a bicycle icon and not the text. Additionally,
the images were taken from the distance meaning that the text
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TABLE 4. Some example tasks in LSC’21.

was difficult to read. The remaining hints of this task did not
give any additional visual detail to find the answer but until
the final clue about the date. In contrast, task 18 consisted
of many informative hints. Nevertheless, the ‘small computer
chips on rolls’ proved hard for searchers conceptualize to
search.

It is clear that the queries pose different levels of chal-
lenge for teams, and that some systems are better suited to
certain query types than other teams. For example, systems
that implemented OCR (either explicitly or implicitly by
using CLIP embeddings) were better suited to almost half of
the queries, while systems that implemented some form of
mapping or location-based search would have benefited from
the numerous queries that mentioned locations. An additional
complexity is that the tasks were created by the lifelogger
who gathered the data, and the lifelogger did not consider the
eventual distribution of query types.

VI. KEY LEARNINGS
The LSC’21 challenge took place at the end of 2021. After
four instances of the LSC challenge, and with a focus on the
LSC’21 (4th) challenge, we can identify the key features that
we consider to be the most promising components of a lifelog
retrieval system.

Multimodal embeddings have been introduced in LSC’21
and have shown great potential for bridging the semantic gap
between the indexed media content and the textual infor-
mation needs of the searcher. The free-text search model
CLIP has been successfully applied in the image-text retrieval
problem [12] now is employed in the lifelog retrieval field
by a number of systems, such as SomHunter+, CVHunter,

FIGURE 6. Scores of all team across all tasks. The tasks are ordered in
respect to the total of scores earned by all teams. The ones written in
bold contain OCR hints.

Voxento, and Memento. This embedding approach showed
its effectiveness by helping these teams to get high scores,
especially the second place of SomHunter+. Furthermore,
this model did not require searchers to type only concepts
indexed in the search engine, which many searchers would
have had no knowledge about. It is anticipated that more
groups will employ embedding models for future lifelog
search challenges.

Given the temporal nature of lifelog data, it is natural
that some queries included temporal cues. Some groups have
supported temporal query handling either explicitly in the
interface, or by employing basic NLP techniques.

VOLUME 11, 2023 30991



L.-D. Tran et al.: Comparing Interactive Retrieval Approaches at the Lifelog Search Challenge 2021

Regarding OCR, half of the tasks in LSC’21 could have
benefited from OCR text as a data source. Hence by inte-
grating this feature the systems could solve some queries
fast and efficiently, which was rewarded by the LSC scoring
algorithm. It should be noted that OCR functionality can be
achieved explicitly by using OCR toolkits or implicitly by
implementing an embedding model such as CLIP.

The other applied techniques outlined in section IV all
have been shown to contribute to the performance of a mod-
ern interactive lifelog retrieval system. Some of the tech-
niques, such as location visualisation and novel interaction
approaches are all lifelog specific techniques that are imple-
mented by many teams. Others, such as OCR and relevance
feedback are more conventional techniques that would be
obvious additions to a visual interactive retrieval challenge.

In order to develop a competitive lifelog search system
in 2022, it is suggested that teams consider the above men-
tioned features in their system design as a core set of fea-
tures, in addition to the conventional aspects of an interactive
retrieval system. It is also worth noting that while multimodal
embedding models such as CLIP provide a clear benefit to
teams, that they will not work for all types of queries and that
that additional features will be useful to cover a wide range
of query types.

VII. CONCLUSION AND FUTURE PLANS
We have described the 4th annual Lifelog Search Chal-
lenge in which 17 teams participated. We provided a short
overview of the main features of the systems developed by
teams. Although each systemwas implemented with different
approaches for the search engines, all lifelog retrieval systems
shared the same goal, which was to find the correct answer in
the short manner of timewith the least wrong submission. Our
analysis showed that LSC’21 witnessed the competitiveness
between the top performing teams (MyScéal, SomHunter+,
and LifeSeeker) where there was just a small difference in
their final scores.We found that the main points differentiated
the top teams was not the number of tasks solved (they were
equivalent), but the number number of wrong submissions
with the fast retrieval time were the critical aspects. This
is directly related to the scoring mechanism implemented,
which penalised slow or incorrect submissions, however this
scoring measure (also implemented in the VBS challenge)
represents a good attempt to incorporate many important
factors for interactive retrieval into one measure. Therefore
a larger-scale evaluation of the top systems with a similar
methodology as for video retrieval systems [62] could be
interesting.

LSC will continue with larger (multi-year) datasets in
future years and with updates to the challenge configuration.
The coming LSC challenges will include some new types
of tasks [63] such as question answering or ad-hoc queries
which requires participants to find all relevant lifelog images
rather than only one as the LSC’21. In the following years,
the challenge will also explore opportunities for synthetic
datasets.
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