Vis enkel innførsel

dc.contributor.authorDootio, Mazhar Ali
dc.contributor.authorLakhan, Abdullah
dc.contributor.authorSodhro, Ali Hassan
dc.contributor.authorGrønli, Tor-Morten
dc.contributor.authorBawany, Narmeen Zakaria
dc.contributor.authorKumar, Samrat Schmiem
dc.date.accessioned2022-05-13T11:11:40Z
dc.date.available2022-05-13T11:11:40Z
dc.date.created2022-01-23T19:55:30Z
dc.date.issued2021
dc.identifier.issn1547-1063
dc.identifier.urihttps://hdl.handle.net/11250/2995616
dc.description.abstractThese days, the Industrial Internet of Healthcare Things (IIT) enabled applications have been growing progressively in practice. These applications are ubiquitous and run onto the different computing nodes for healthcare goals. The applications have these tasks such as online healthcare monitoring, live heartbeat streaming, and blood pressure monitoring and need a lot of resources for execution. In IIoHT, remote procedure call (RPC) mechanism-based applications have been widely designed with the network and computational delay constraints to run healthcare applications. However, there are many requirements of IIoHT applications such as security, network and computation, and failure efficient RPC with optimizing the quality of services of applications. In this study, the work devised the lightweight RPC mechanism for IIoHT applications and considered the hybrid constraints in the system. The study suggests the secure hybrid delay scheme (SHDS), which schedules all healthcare workloads under their deadlines. For the scheduling problem, the study formulated this problem based on linear integer programming, where all constraints are integer, as shown in the mathematical model. Simulation results show that the proposed SHDS scheme and lightweight RPC outperformed the hybrid for IIoHT applications and minimized 50% delays compared to existing RPC and their schemes.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSecure and failure hybrid delay enabled a lightweight RPC and SHDS schemes in Industry 4.0 aware IIoHT enabled fog computingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber513-536en_US
dc.source.volume19en_US
dc.source.journalMathematical Biosciences and Engineeringen_US
dc.source.issue1en_US
dc.identifier.doi10.3934/mbe.2022024
dc.identifier.cristin1988146
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal