• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra Cristin - Høyskolen Kristiania
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra Cristin - Høyskolen Kristiania
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast and Accurate Deep Learning Framework for Secure Fault Diagnosis in the Industrial Internet of Things

Djenouri, Youcef; Belhadi, Asma; Srivastava, Gautam; Ghosh, Uttam; Chatterjee, Pushpita; Lin, Jerry Chun-Wei
Peer reviewed, Journal article
Submitted version
Thumbnail
Åpne
FINAL+VERSION27802.pdf (596.5Kb)
Permanent lenke
https://hdl.handle.net/11250/3005663
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Publikasjoner fra Cristin - Høyskolen Kristiania [259]
  • Vitenskapelige publikasjoner fra Institutt for teknologi [89]
Originalversjon
IEEE Internet of Things Journal.   10.1109/JIOT.2021.3092275
Sammendrag
This paper introduced a new deep learning framework for fault diagnosis in electrical power systems. The framework integrates the convolution neural network and different regression models to visually identify which faults have occurred in electric power systems. The approach includes three main steps, data preparation, object detection, and hyper-parameter optimization. Inspired by deep learning, evolutionary computation techniques, different strategies have been proposed in each step of the process. In addition, we propose a new hyper-parameters optimization model based on evolutionary computation that can be used to tune parameters of our deep learning framework. In the validation of the framework’s usefulness, experimental evaluation is executed using the well known and challenging VOC 2012, the COCO datasets, and the large NESTA 162-bus system. The results show that our proposed approach significantly outperforms most of the existing solutions in terms of runtime and accuracy.
Tidsskrift
IEEE Internet of Things Journal

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit